
Despite what appear to be claims to the contrary, busy channel detection is a complicated
process and current implementations have serious unacknowledged flaws when used in an
ARQ system. It is not possible, without complicated auxiliary listening technologies, to determine
if a wider bandwidth transition will cause interference with adjacent signals, so current
implementations do not check ​once a connection has been established​. It is the intention of
the team developing ARDOP to implement the next best thing, which is to determine maximum
currently available bandwidth as part of the initial connection negotiation. Another thing that
hams tend to overlook is that ARQ modes usually do not have a means of decoding the existing
traffic on a frequency, so users of the associated software do not know if the signals that are
blocking their connection attempts are simply others using the same fixed station or one side of
a QSO in progress, so any interference that results in a “busted QSO” is not necessarily
intentional on the part of the users of automatic stations. They also may not have the time or
power resources to spare to run the computer constantly and monitor with applications that can
determine these things.

The following code sample is the actual VB.NET code used as the busy channel detector in
ARDOP 0.7.2 up to 0.8.1. Similar code is used in WinMOR and other software modems written
by KN6KB. I also have a C# version of the original VB.NET busy channel detector code from
ARDOP posted on Github. With the release of ARDOP Chat 0.8.2 and ARDOP 0.8.2, we have
added Busy Channel Blocking which ends a connection attempt if the receiving station has
detected local channel activity that cannot be detected at the other end. Pactor does have a
busy channel detector as well. Other modes can have identical functionality, but most
developers don't seem to see the need to implement this due to dependence on use of visual
guides that may not adequately prevent interference such as waterfall displays.

‘Function to implement a busy detector based on 1024 point FFT
 Public Function BusyDetect2(ByRef dblMag() As Double, intStart As Integer, intStop As
Integer) As Boolean
 ' each bin is about 12000/1024 or 11.72 Hz
 ' this only called while searching for leader ...once leader detected, no longer called.
 ' First sort signals and look at highes signals:baseline ratio..
 Dim dblAVGSignalPerBinNarrow, dblAVGSignalPerBinWide, dblAVGBaselineNarrow,
dblAVGBaselineWide As Double
 Dim dblFastAlpha As Double = 0.3
 Dim dblSlowAlpha As Double = 0.1
 Dim dblAvgStoNNarrow, dblAvgStoNWide As Double
 Dim intNarrow As Int32 = 8 ' 8 x 11.72 Hz about 94 z
 Dim intWide As Int32 = Round((intStop - intStart) * 0.66)
 Static dblAvgStoNSlowNarrow As Double
 Static dblAvgStoNFastNarrow As Double
 Static dblAvgStoNSlowWide As Double
 Static dblAvgStoNFastWide As Double

 Static intLastStart As Integer = 0
 Static intLastStop As Integer = 0

 ' First narrow band (~94Hz)
 SortSignals(dblMag, intStart, intStop, intNarrow, dblAVGSignalPerBinNarrow,
dblAVGBaselineNarrow)
 If intLastStart = intStart And intLastStop = intStop Then
 dblAvgStoNSlowNarrow = (1 - dblSlowAlpha) * dblAvgStoNSlowNarrow + dblSlowAlpha
* dblAVGSignalPerBinNarrow / dblAVGBaselineNarrow
 dblAvgStoNFastNarrow = (1 - dblFastAlpha) * dblAvgStoNFastNarrow + dblFastAlpha *
dblAVGSignalPerBinNarrow / dblAVGBaselineNarrow
 Else
 dblAvgStoNSlowNarrow = dblAVGSignalPerBinNarrow / dblAVGBaselineNarrow
 dblAvgStoNFastNarrow = dblAVGSignalPerBinNarrow / dblAVGBaselineNarrow
 intLastStart = intStart : intLastStop = intStop
 End If
 dblAvgStoNNarrow = Max(dblAvgStoNSlowNarrow, dblAvgStoNFastNarrow) ' computes
fast attack, slow release

 ' Wide band (66% ofr current bandwidth)
 SortSignals(dblMag, intStart, intStop, intWide, dblAVGSignalPerBinWide,
dblAVGBaselineWide)
 If intLastStart = intStart And intLastStop = intStop Then
 dblAvgStoNSlowWide = (1 - dblSlowAlpha) * dblAvgStoNSlowWide + dblSlowAlpha *
dblAVGSignalPerBinWide / dblAVGBaselineWide
 dblAvgStoNFastWide = (1 - dblFastAlpha) * dblAvgStoNFastWide + dblFastAlpha *
dblAVGSignalPerBinWide / dblAVGBaselineWide
 Else
 dblAvgStoNSlowWide = dblAVGSignalPerBinWide / dblAVGBaselineWide
 dblAvgStoNFastWide = dblAVGSignalPerBinWide / dblAVGBaselineWide
 intLastStart = intStart : intLastStop = intStop
 End If
 dblAvgStoNNarrow = Max(dblAvgStoNSlowNarrow, dblAvgStoNFastNarrow) ' computes
fast attack, slow release
 dblAvgStoNWide = Max(dblAvgStoNSlowWide, dblAvgStoNFastWide) ' computes fast
attack, slow release
 'Debug.WriteLine("[BusyDetect2: StoN Narrow = " & Format(dblAvgStoNNarrow, "#.0") & "
StoN Wide = " & Format(dblAvgStoNWide, "#.0"))

 ' Preliminary calibration...future a function of bandwidth and squelch.
 Select Case MCB.ARQBandwidth
 Case "200MAX", "200FORCED"
 If (dblAvgStoNNarrow > 1.4 * MCB.Squelch) Or (dblAvgStoNWide > 2 *

MCB.Squelch) Then Return True
 Case "500MAX", "500FORCED"
 If (dblAvgStoNNarrow > 1.4 * MCB.Squelch) Or (dblAvgStoNWide > 2 *
MCB.Squelch) Then Return True
 Case "1000MAX", "1000FORCED"
 If (dblAvgStoNNarrow > 1.4 * MCB.Squelch) Or (dblAvgStoNWide > 2 *
MCB.Squelch) Then Return True
 Case "2000MAX", "2000FORCED"
 If (dblAvgStoNNarrow > 1.4 * MCB.Squelch) Or (dblAvgStoNWide > 2 *
MCB.Squelch) Then Return True
 End Select
 Return False
 End Function ' BusyDetect2

 Private Sub SortSignals(ByRef dblMag() As Double, intStartBin As Integer, intStopBin As
Integer, intNumBins As Integer, ByRef dblAVGSignalPerBin As Double, ByRef
dblAVGBaselinePerBin As Double)
 ' puts the top intNumber of bins between intStartBin and intStopBin into dblAVGSignal, the
rest into dblAvgBaseline
 ' for decent accuracy intNumBins should be < 75% of intStopBin-intStartBin)
 Dim dblAVGSignal(intNumBins - 1)
 Dim dblAVGBaseline(intStopBin - intStartBin - intNumBins - 1)
 Dim dblSigSum As Double
 Dim dblTotalSum As Double
 Dim intSigPtr As Integer = 0
 Dim intBasePtr As Integer = 0
 For i As Integer = 0 To intNumBins - 1
 For j As Integer = intStartBin To intStopBin
 If i = 0 Then
 dblTotalSum += dblMag(j)
 If dblMag(j) > dblAVGSignal(i) Then dblAVGSignal(i) = dblMag(j)
 Else
 If dblMag(j) > dblAVGSignal(i) And dblMag(j) < dblAVGSignal(i - 1) Then
dblAVGSignal(i) = dblMag(j)
 End If

 Next j
 Next
 For k As Integer = 0 To intNumBins - 1
 dblSigSum += dblAVGSignal(k)
 Next
 dblAVGSignalPerBin = dblSigSum / intNumBins
 dblAVGBaselinePerBin = (dblTotalSum - dblSigSum) / (intStopBin - intStartBin -

intNumBins + 1)
 End Sub

