ORIGINAL

Before the RECE ' VE D ORF’I?_IEIAL

FEDERAL COMMUNICATIONS COMMISSION
Washington, DC 20554 JUN 19 1992

FEDERAL COMMUNICATIONS COMMISSION

In the Matter of: OFFICE OF THE SECRETARY

Global Enhanced Messaging Venture

ET Docket 92-100
PP-80

Amendment of Parts 2 and 22 of the
Commission’s Rules to Establish an
Enhanced Narrowband Data and Paging
Service in the 930-931 MHz Range

TO: The Commission

OPPOSITION

Mobile Telecommunication Technologies Corporation
("Mtel"), by its attorneys, respectfully submits these
comments in opposition to Global Enhanced Messaging Venture’s
(the "Joint Venture") Demonstration of Technical Feasibility
and Request for a Pioneer Preference.! The Joint Venture
proposes to introduce Global Enhanced Messaging ("GEM"),
which is essentially high-speed alphanumeric paging with
return transmission over the landline network. As discussed
below, this proposal is not innovative and should therefore

be dismissed.?

! Global Enhanced Messaging Venture Demonstration of
Technical Feasibility and Request for Pioneer’s Preference,
filed June 1, 1992 [hereinafter "Demonstration and Request"].

2 Mtel has long been an innovative and leading
provider of messaging services. Through its SkyTel™ and Mtel
International subsidiaries, Mtel provides nationwide paging
service to more than 180,000 subscribers across the United
States and overseas. In addition, Mtel has filed a Petition

for Rulemaking and Request for Pioneer’s Preference for a new
(continued...)

No. of Copies rec'd _&__é

ListABCDE

THE JOINT VENTURE HAS FAILED TO DEMONSTRATE
THAT IT MERITS A PIONEER’S PREFERENCE.

Description of the Joint Venture’s Proposal

The Joint Venture requests an allocation of three
nationwide, and three regional, 25 kHz channels to provide
GEM.? According to the Joint Venture, GEM will combine "a
data transmission speed in excess of 6,000 bits per second
with the use of new techniques to increase the efficiency at
which alphanumeric data is delivered to remote receivers."*

In addition to supporting traditional paging receivers
which would receive tone-only, numeric, and alphanumeric
pages, the Joint Venture suggests that GEM would also support
a "two-way, hand-held message communications unit which

comprises a wireless receiver and a landline transmitting

2(...continued)

Nationwide Wireless Network ("NWN") service.

By seeking dismissal of the Joint Venture’s
Demonstration and Request, Mtel does not take a position on
whether the proposed service deserves spectrum. Indeed, Mtel
is well aware of the benefits of alphanumeric paging. It
simply contends that the Joint Venture’s request does not
merit the extraordinary relief represented by grant of a
pioneer’s preference.

3 The Joint Venture does not provide any usage or
loading data to justify its request for a total of 150 kHz of
spectrum. Nor does the Request describe how the Joint
Venture would operate a nationwide license. Since it does
not obtain location information, the Joint Venture would
potentially operate a single nationwide simulcast network,
thereby abandoning the benefit of frequency reuse.
Alternatively, the Joint Venture apparently would operate a
series of regional systems that need not be controlled by a
single entity. ‘

4 Demonstration and Request at i.

device." This unit would permit receipt of alphanumeric
paging information, but would require the subscriber to
respond via the landline network, as with current
alphanumeric pagers. Seeking to turn an inconvenience into a
virtue, the Joint Venture contends that its landline return
proposal would achieve cost savings and spectrum efficiency
by reducing over-the-air bandwidth requirements for a two-way

service and utilizing a lower-cost paging receiver.®

GEM Is Not Innovative.
Mtel respectfully submits that the Joint Venture’s

Request is plainly insufficient under Section 1.402(a) of the
Commission’s Rules.’” These rules were adopted to provide
preferential treatment to parties demonstrating that they
have "developed an innovative proposal that leads to the
establishment of a communications service not currently
provided or a substantial enhancement to an existing
service."® The Commission has emphasized that the

determination of whether to grant a preference is

5 Id. at 3-4.

6 1d.

7 47 C.F.R. §1.402(a) (1991).

8 Establishment of Procedures To Provide a Preference

to Applicants Proposing an Allocation for New Services, 7 FCC
Rcd 1808 (1992) (hereinafter "Reconsideration Order").

discretionary,’ and that preferences will not be routinely
granted.!

The sheer volume of the Joint Venture’s submission
cannot mask the fact that the core of its proposal is the
packaging of an ERMES pager' and a landline terminal. There
is, of course, nothing inherently innovative in combining
alphanumeric paging with a landline return transmission.
Normal commercial pressures have already caused the
introduction of ERMES,!? and GEM’s use of the landline
network for return transmission amounts to nothing more than
a continuation of current, standard technology.®

Moreover, the Joint Venture fails to demonstrate that
GEM is in any way superior to existing services. With

respect to the transmission system, the Joint Venture simply

4 47 C.F.R. § 1.402(a) (1991).
10 Reconsideration Order, 7 FCC Rcd at 1808.
11 By its own acknowledgment, GEM would utilize "4-

level Frequency Shift Keying transmitted at 3,125 baud" -- a
modulation technique already extensively tested by The
European Radio Message Standard ("ERMES"). Demonstration and
Request at 32.

12 The introduction of the ERMES format on United
States paging bands has been publicly announced by NEC, and
Mtel is currently installing ERMES format-capable
transmitters.

13 Moreover, contrary to the Joint Venture’s clainm,
Demonstration and Request at 12-13, 41, GEM would continue
all of the inefficiencies associated with acknowledgment over
the landline network, such as needing to be close to a
telephone to respond, and searching for a working pay phone.

asserts, without supporting documentation, that it has
improved the error control and interleaving of ERMES.! It
also claims credit for an encoding technique that would
achieve a 30 percent compression of text. Mtel, however, has
already experimented with encoding schemes that achieve 50
percent compression of normal text.” 1In addition, because
information encoding does not lessen usage of overhead bits,
a 30 percent compression of text would not increase
efficiency by "at least 30 percent," as the Joint Venture
asserts.!® Finally, there is reason to believe that GEM’s
data compression technique would be less functional than
existing standard techniques, particularly when combined with

limitations in its terminal design.!

14 Id. at 34.

15 Mtel has filed a patent for one such scheme, and
there are several other "lossless" encoding schemes, such as
Huffman Codes and Lempel-Ziv Compression that routinely
achieve 50 percent compression of normal text. Moreover, a
company named MicroLitics, using technology developed at the
Xerox Palo Alto Research Center, states that it has widely
implemented compression ratios of 2 or 3 to 1 in transmitting
text to pagers. See Attachment A.

16 Demonstration and Request at 28.

17 In describing its data compression technique, the
Joint Venture simply refers to the Alpha-Tone™ format as a
means of transmitting letters using a combination of DTMF
signals over landlines to a paging controller. Demonstration
and Request at 34, Attachments. This information, plus the
lack of any means of generating lower case letters on the
terminal, leads Mtel to conclude that Alpha-Tone™ is
approximately equivalent to the now obsolete Baudot 5 bit

teletype code. It is true that the use of 5, rather than 7,
(continued...)

Nor has the Joint Venture improved the terminal unit.
Unlike existing units, such as the Sharp Wizard, the GEM unit
would not permit the use of lower case letters. Indeed,
while GEM proposes to utilize a landline terminal possessing
the general characteristics of a Sharp Wizard 8000 equipped
with a Sharp 0Z-B02 fax modem, the illustrations provided by
the Joint Venture indicate a notably inferior keypad and
display.”® Furthermore, the addition of a fax display
capability, as incorporated into GEM’s unit, is simply not
functional. The GEM unit would display a small portion of
the fax image in a window less than a full line long, making
the text very difficult to read.

CONCLUSION

The GEM proposal plainly is not a substantial
enhancement of either ERMES or landline technology. The
Commission’s goal is "not to reward past innovators, but to

encourage future technological innovation and new

17(...continued)
bits to represent a character reduces the bit level by
roughly 30 percent. However, the user is then deprived of a
full alphabet, which is a capability that users demand.

18 Demonstration and Request at 19-26.

services."” Accordingly, the Joint Venture’s Request for

Pioneer’s Preference should be dismissed.
Respectfully submitted,

MOBILE TELECOMMUNICATION
TECHNOLOGIES CORPORATION

By: 'KWW Yo dogh

R. Michael Senkowskil
Jeffrey S. Linder
Lauren A. Brofazi

of
WILEY, REIN & FIELDING
1776 K Street, N.W.
Washington, D.C. 20006
(202) 429-7000

June 19, 1992

19 Reconsideration Order, 7 FCC Rcd at 1812.

CERTIFICATE OF SERVICE

I hereby certify that on this 19th day of June, 1992, I
caused copies of the foregoing "Opposition" to be mailed via
first-class postage prepaid mail to the following:

Lawrence M. Miller

Attorney for Global Enhanced Messaging Venture
Schwartz, Woods & Miller

Suite 300

The Dupont Circle Building

1350 Connecticut Avenue, N.W.

Washington, D.C. 20036

= N -

Evelyn Ramos

ATTACHMENT A

June 19, 1992

Mr. David Ackerman, Sr. Vice President
MTel

c¢/o Wiley, Rein and Fielding
Washington, DC

VIA FAX: 202 429-7207
Dear Mr. Ackerman:

Thank you for your call today regarding our work on data
compression for one way and two way communications devices. We
hold the worldwide exclusive license for certain data compression
technology developed at the Xerox Palo Alto Research Center (PARC),
and co-developed and optimized by our company and Xerox PARC

since 1985.

- The technology is unique in that it works on gxiremely smali, low
power microprocessors, like those used in paging receivers and
cellular telephones, handheld computers, elc., uses very little RAM,
and very low power, and performs compression, decompression, and
retrieval at high speeds, at factors of 3:1 (66% of original size), in
real time. This allows optimization of both transmission bandwidih,
and on board memory. Information can be searched and retrieved in
compressed form (and only needs to be decompressed when
displayed), thus ftripling the on board storage. That is, an 8K RAM
chip can store 24K worth of messages, etc., and you can search for
"Bill Smith,” etc. The technology requires under 500 bytes of scratch
pad memory. We have implemented in on the Motorola 6805 class of
microprocessors, Intel 80C31, and other low power microprocessors.

We have been working with people at Skytel and Motorola on the
implementation of this technology in various systems, and it
appears fully viable.

Mr. David Ackerman
June 19, 1992
Page 2

In addition, compression factors of 4:1 to 15:1 are achieved and are
retrievable on similar low power systems when we can precompress
the digital information before transmission. That is, we reduced the
monthly Pocket Flight Guide from OAG from 5.5 megabytes down to
300K bytes and can transmit it over a paging network for use on a
handheld device. The full 5.5 megabytes of information can be
accessed by searching the 300K byte compressed file. This effort
took an investment of several man years of computer science and
MIS effort on the part of ourselves, Xerox PARC and the Official
Airline Guide (OAG), commencing in 1989 and recently completed. We
see a significani benefit of the precompressed information being
delivered in off-peak hours and retrieved on demand, on both one way
and two way devices, as the information is then available even when

the portable device is out of range.

We believe that the compression ranges we are achieving represent
the current state of the art. Compression ranges of 50% have been
common within the industry for many years, as evidenced by the
attached research paper from the Association of Computating
Machinery (ACM), published in January 1989, and authored by anather
Xerox PARC research team. The algorithms they review show that
50% compression and decompression was available in 1989 across a
wide range of digital data, with varying degrees of RAM memory,
processing speed, and horsepower, required. '

You have our permission to include this letter and my earlier letter
to Mr. Sheth of MTel in the information which you explained to me
you are presenting to the FCC. We would be pleased to provide
additional information to you and/or them if needed. Please let me

know how we can be of service.
Sincerely,

L—

Mike Weiner
President

Data Compression with Finite
Windows

Edward R. Fiala and Daniel H. Greene

Data Compression with Finite Windows
Edward R. Fiala and Daniel H. Greene

CSL893 January 1989 [P88-00003)
® Copyright 1989 Associgtion for Computing Machinery. Printed with pernission.

Abstract: Several methods are presented for adaptive, invertible data compression in the style
of Lempel's and Ziv's first textual substitution proposal. For the first two methods, the paper
describes modifications of McCreight's suffix tree data structure that support cyclic
maintenance of a window on the most recent source characters. A percolating update is used'
to keep node positions within the window, and the updating process is shown to have constant
amortized cost Other methods explore the tradeoffs between compression time, expansion
time, data structure size, and amount of compression achieved. The paper inciudes a graph-
Wmmwmmmmmwmmmmm
comparison with an optimal policy, and it includes empirical studies of the performance of
various adaptive compressors from the lerature. .

A vorsion of this paper will appear in the Communications of the Associatlon for Computing
Machinery, 32(1), 1989.

CR Categories and Subject Descriptors: E4 [Data): Coding and Information Theory -
data compaction and compression; F22 [Anslysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems — computations on discrefe structurss,
pattern malching.

General Terms: Algorithms, design, experimentation, theory.

Additional Keywords and Phrases: textual substitution, suffix trees, minimum cost to time
ratio cycle, automata theory, amoriized efficiency.

XEROX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, Callfornia 94304

SECTION 1. INTRODUCTION. '

Compression is the coding of data to minimize its representstion. In this paper, we are con-
cerned with fast, one-pass, adaptive, iuvertible (or lossless) methods of digital compression which
bave reasonable memory requirements. Such methods can be used, for example, to reduce the
storage requirements for files, tomcrusethecommlmuzbonmeowrachanne!,ortoreduee
redundancy prior to encryption for greater security.

By “adaptive” wemmthatacompresmonmethodsbouldbemdelyappﬁabhtodw
kinds of source data. Ideally, it should adapt rapidly to the source to achieve significant compression
on small files, and it should adapt to any subsequent internal changes in the nature of the source.
In addition, xtshmﬂdachievevuyhghwmpmasympbﬁcaﬂyonhryregommhmry
statistics.

Anthecompressxmmcthodsdevelopedinthnpapemwbsumuonal 'hrplcal!y,asuhsﬁ-
tutional compressor functions by replacing large blocks of text with shorter references to earlier
occurrences of identical text. [ZL 77}|Z 78}{ZL 78][RPE 81][SS 82][MW84][W SA]BSTW 85][B 86].
(This is often called Ziv-Lempel compression, in recognition of their pioneering ideas. Ziv and Lem-
pel, in fact, proposed two methods. The unqualified use of the phrase “Ziv-Lempel compression”
usually refers to their second proposal [ZL 78). In this paper, we will be primarily concerned with
their first proposal [ZL 77].) A popular alternative to a substitutional compressor is a statistical
compressor. A symbolwise statistical compressor functions by accurately predicting the probability
ofmd:ndualsymbols,andthenencodhgthesesymbolswﬂhspwedoseto-log,ohhem
probabilities. The encoding is accomplished with either Huffman compression [H 51} which has
recently been made one-pass and adaptive [G 78][K 75][V 85}, or with arithmetic coding, as de-
scribed in [A 63; page 61)[P 76][RL 79][G 80J[J 81][LR 81}[RL 81}[LR 83]. The major challenge of
a statistical compressor is to predict the symbol probebilities. Simple strategies, such as keeping
zero-order (single symbol) or first-order (symbol pair) statistics of tbe input, do not compress En-
glish text very well. Several authors have had success gathering higher-order statistics, but this
necessarily involves higher memory costs and additional mechanisms for dealing with situations
where higher-order statistics are not available [LR 83] [CW 84] [CH 86).

It is hard to give a rigorous foundation to the substitutional vs. statistical distinction described
above. Several authoss have observed that statistical methods can be used to simmlate textual
substitution, suggesting that the statistical category includes the substitutional category [L 83]
[BCW 88). However, this takes no account of the simplicdity of mechanism; the virtue of textual
substitution is that it recognizes and removes coherence an a large scale, oftentimes ignoring the
smaller scale statistics. As a resyit, most textual snbstitution compressors process their compressed
representation in larger blocks thsn their statistical counterparts, thereby gaining a significant
speed advantage. It' was previously belicved that the speed gained by textual substitution would
necessarily cost something in compression achieved. We were surprised to discover that with careful
attention to coding, textual substitution compressors cau match the compression performance of
the best statistical methods.

Consider the following scheme, which we will improve later in the paper. Compressed files
contain two types of codewords:
Literal x passthenm:cbaractmdirectlyinwtbemmprmedontput
copy I, —y g0 back y characters in the output and copy z characters
forward to the current position.

~ Xerox PARC, CSL-89-3, JANUARY 1989

2 DATA COMPRESSION WITH FINITE WINDOWS

So, for example, the follonng piece of literature: .
IT VAS THE BEST OF TIMES, IT VAS THE WORST OF TIMES
would compress to .
(literal 26)IT VAS THE BEST OF TIMES, (copy 11 -26)(literal 3)WOR(copy 11 -27)

The compression achieved depends on the space required for the copy and literal codewords.
Our simplest scheme, hereafter denoted A1, uses 8 bits for a literal codeword and 16 for a copy
codeword. i the first 4 bits are 0, then the codeword is a Jiteral; the next 4 bits encode 3 length
in the range [1..16] and the following 2 characters are Literal (one byte per character). Otherwise,
the codeword is 3 copy; the first 4 bits encode a length x in the range [2..16] and the next 12
bits are a displacement y in the range [1..4096]. At each step, the policy by which the compressor
chooses between a literal and a copy s as follows: If the compressor is idle (just finished a copy, or
terminated 2 literal because of the 16-character imit), then the longest copy of length 2 or more is
issued; otherwise, if the longest copy is less than 2 long, a literal is started. Once started, a Iiteral
is extended across subsequent characters until a copy of length 3 or more can be issued or until the
" Jength limit is reached.

A1l would breaktheﬂrsthtemlintheaboveexamplemtotwolitenlsandcompxmthesoum
from 51 bytes down to 36. A1 is close to Ziv and Lempel’s first textual substitution proposal {ZL
77]- One difference is that Al uses a separate literal codeword, while Ziv and Lempel combine
each copy codeword with a single literal character. We have found it useful to have longer lterals
during the startup transient; aﬁerthestannp,xnsbettutohavenolitmlsconmingspmm
the copy codewords. :

Our empirical studies showed that, for source code and English text, the field size choices for
A1 are good; reducing the size of the literal length field by 1 bit increases compression slightly
but gives up the byte-alignment property of the Al codewords. In sbhort, if one desires a simple
method based upon the copy and literal idea, Al is a good choice.

Al was designed for 8-bit per character text or program sources, but, as we will see shortly, it
achieves good compression on other kinds of source data, such as compiled code and images, where
" the word model does not match the source data particulasly well, or where no model of the sonrce
is easily perceived. Al s, in fact, an excellent approach to genersl purpose data compression. In
the remainder of the paper, we will study Al and several more powerful variations. The paper
is arranged as follows: Section 2 discusses the data structures which support the above style
of compression. It develops the idea of 2 percolating update, which allows a suffix tree to be
maintained for a fixed window of the input in constant average time per character. This innovation -
makes Ziv and Lempel's first style of compression more practically fcasible than was previously
believed {RPE 81].

Section 3 addresses some theoretical issues raised by this work. It proves that the percolating
update does, in fact, keep the suffix tree current and that the aversge number of nodes updated is
less than 2. In addition, it shows, by reduction to a graph search problem, that the A1 policy for
choosing between copy and literal codewords is at worst 25% larger than an optimal policy.

Section 4 discusses a simpler implementation which can be used when the maximum copy
Jength is not too long.

Section 5 elaborates the Al encoding into 3 family of variable-width copy and Yiteral codewords

thaeprnstatsncdproperﬂsofthempmtoacmntdgmﬁumlyhighemm this
method will be called A2.

Xerox PARC, CSL-89-3, Jh.wm 1989

e

oM e n u ,

DATA COMPRESSION WITH FINITE WiNvuws - ‘ -

Section 6 introduces B1 and B2, which are identical to A1 and A2, respectively, but with the
window position computed differently. For these metbods, a simpler dictionary tree updated only at
codeword boundaries and between Jiteral characters is used to represent the window. Compressi
is about 3 times faster at the expense of slower adaptation and slightly slower . resswon

Scction 7 introduces C2, which uses the same data stractures as B2 but derives codewords
directly from the dictionary tree. C2’s compression js higher thau A2 and B2, but it ires that
the expander maintain a parallel dictionary tree. - 1 '

Finally, Section 8 includes empirical comparisons of the compression ratios for the methods
developed in this paper with others we have implemented according to the published literature.

SECTION 2. OVERVIEW OF THE DATA STRUCTURE

The fixed window suffix tree of this paper is a modification of McCreight’s suffix tree [M 76]
(see also [W 73} and [KBG 87}), which is itself 2 modification of Morrison's PATRICIA tree [M 68),
and Morrison’s tree is ultimately based on a Trie data structwre [K 75, page 481]. We will review
each of these data structures briefly.)

A Trie is a tree structure where the branching occurs according to “digits” of the keys, rather

than according to comparisons of the keys. In English, for example, the most natural “digits” are
individual letters, with the Ith level of the tree branching according to the Ith letter of the words

in the tree.

Figure 1. A Trie.

In Figure 1, many internal nodes are superfluous, having only one descendant. If we are
building an index for 2 file, we can save space by eliminazing the superfluous nodes and putting
pointers to the file into the nodes rather than including characters in the dats structure. In Figure
2, the cbaracters in parentheses are not actually represented in the data structure, but they can be
recovered from the (position, level) pairs in the nodes. Figure 2 also shows a suffix pointer (as a
dark right arrow) that will be explained later.

XEeErox PARC, CSL-89-3, JANUARY 1989

-

4 DATA COMPRESSION WITH FINITE WINDOWS

Figure 2. A PATRICIA Tree with a Suffix Pointer.

Figure 2 represents some, but not all, of the innovations in Morrison’s PATRICIA trees. He
builds the trees with binary “digits” rather than full characters, and this allows him to sxve more

space by folding the leaves into the internal nodes. Our “digits” are bytes, 30 the branching factor
canbeashrges%& Since there are rarely 256 descendants of a node, we do not reserve that
much space in each node, but instead hash the arcs. There is also a question about when the
strings in parentbeses are checked in the searching process. In wbat follows, we usually check
characters immediately when we cross an arc. Morrison’s scheme can avoid file access by skipping
the cheracters on the arcs and doing only one file access and comperison at the end of the search.
However, our files will be in main memory, so this consideration is unimportaut. We will use the
simplified tree depicted in Figure 2.

For A1, we wish to find the Jongest (up to 16 character) match to the current siring beginning
anywhere in the preceding 4096 positions. If all preceding 4096 strings were stored in a PATRICIA
tree with depth d = 16, then finding this match would be straightforward. Unfortunately, the cost
of inserting these strings can be prohibitive, for if we have just descended d levels in the tree to
insert the string starting at position i then we will descend at least d — 1 levels inserting the string
at i+ 1. In the worst case this can lead to O(nd) insertion time for a file of size n. Since later
encodings will use much larger values for d than 16, it Is important to eliminate d from the running
time.

To insert the strings in O(n) time, McCreight added additional suffix pointers to the tree.
Each internal node, representing the string aX on the path from the root to the internal node,
has a pointer to the node representing X, the string obtained by stripping a single letter from the
beginning of aX. ¥ a string starting at i bas just been inserted at level d we do not need to return
to the root to insert the siring at i + 1; instead, a nearby suffix pointer will lead us to the relevant
branch of the tree.

Figure 3 shows how suffix links are created and used. On the previous iteration, we have
matched the string a XY, where q is a single character, X and Y are strings, and b is the first
unmatched character after Y. Figure 3 shows a complicated case where a new internal node, o,
has been added to the tree, and the suffix Enk of a must be computed. We insert the next string

XErOX PARC, CSL-89-3, JANUARY 1989

DATA CoMPRESSION WITH FINTE Winpows ~ © © 5

XYb by going up the tree to node 3, represcnting the string oX. and crossing its suffix link to
9. representing X. Once we have crossed the suffix link, we descend again in the tree. first by
“rescanning” the string Y. and then by “scanning™ from & until the new string is inserted. The first
part is called “rescanning™ because it covers a portion of the string that was covered by the previous
insert. and so it does not require checking the internal strings on the arcs. (In fact. avoiding these
checks is essential to the linear time functioning of the algorithm.) The rescan either ends at an
existing node 4. or § is created to insert the new string XY ¥: either way we have the destination
for the suffix link of a. “eha.verestoredthem\'a:untthateverymtma!node except possibly
the one just created, hasa suﬂix link ,

Figure 3. Building a Suffix Tree.

For the Al compressor, with a 4096-byte fixed window:, we need a way to delete and reclaim
the storage for portions of the suffix tree representing strings further back than 4096 in the file.
Several things must be added to the suffix tree data structure. The leaves of the tree are placed
in a circular buffer, so that the oldest Jeaf can be identified and reclaimed, and the internal nodes
are given “son count” fields. When an internal -son count™ falls to ope, the node is deleted and
two consecutive arcs are combined. In Section 3. it is shown that this approach will never leave
a “dangling” suffix link pointing to deleted nodes. Unfortunstely, this is not the only problem
in maintaining a valid suffix tree. The modificstions that avoided a return to the root for each
new insertion create havoc for deletions. Since we have not always returned to the root, we may
have consistently entered a branch of the tree sideways The poiuters (to strings in the 1096-byte
window) in the higher levels of such a branch can become out-of-date. However. traversing the
branch and updating the pointers would destroy any advantage gained by using the suffix links.

Xerox PARC, CSL-89-3, JANUARY 1989 .

G Data CoMpression wiTit FINiTE Winpows

We can keep valid pointers and avoid extensive updating by partially updating according to a
percolating update. Each internal node has a single ~update™ bit. If the update bit is true when we
are updating a node, then we set the bit false and propagate the update recursively to the node’s
parent. Otherwise, we set the bit true and stop the propagation. In the worst case. a long string of
true npdates can cause the update to propagate to the root. However, when amortized over all new
leaves, the cust of updating is constant. and the effect of apdating is to keep all internal pointers
on positions within the last 1096 positions of the file. These facts will be shown in Section 3.

We can now summarize the operation of the inner loop. using Figure 3 again. If we have just
created node o, ther we use a’s parent’s suffix link to find 9. From 9 we move down in the tree.
first rescanning, and then scanning. At the end of the scan. we percolate an update from the leaf,
moving towards the root. setting the position fields equal to the curent position. and setting the
update bits false, until we find a node with an update bit that is already false. whereupon we set
that node's update bit true and stop the percolation. Fmally. we go to the circular buffer of leaves
and replace the oldest leaf with the new leaf. If the oldest leaf’s parent has only one remaining son.
then it must also be deleted; in this case. the remaining son is attached to its grandparent. and
the deleted node’s position is percolated upwards as before. only at each step the position being
percolated apd the position already in the node must be compared and the more recent of these
sent npward in the tree.

SECTION 3. THEORETICAL CONSIDERATIONS

The correctness and linearity of suffix tree construction follows from McCreight’s original
paper [M 76]. Here we will concern ourselves with the costectness and the linearity of suffix tree
destruction—questions raised in Section 2.
Theorem 1. Deleting leaves in FIFO order and deleting internal nodes with single sons will
never legve dangling suffix pointers. -
Prool Assume the contrary. We have 2 node a with a suffix pointer to a node é that has
Jjust been deleted. The existence of a means that there are at least two strings that agree for [
positions and then differ at I +1. Assuming that these two strings start ar positions i and j.
where both i and j are within the window of recently scanned strings and are not equal to the
current position, then there are two even younger strings at i +1 and j + 1 that differ first at
l. This contradicts the assumptioa that § has one son. (If either i or j are equal to the carrent
position, then o is a new node and can temporarily be without a suffix pointer.)

There are two issues related to the percolating update: its cost and its effectiveness.
Theorem 2. Each percolated update has constant amortized cost.

Proof. We assume that the data structure contains a “credit” on each internal node where the
“update” fiag is true. A pew leaf caa be added with two “credits.” One is spent immediately
to update the parent, and the other is combined with any credits remaining at the parent to
either: 1) obtain one credit to leave at the parent and terminate the algorithm or 2) obtain
two credits to apply the algorithm recursively at the parent. This gives an amortized cost of
two updates for each new lesf.

For the next theorem, define the “span” of a suffix tree to be equal to the size of its fixed window.

So far we have used examples with “span” equal to 4096, but the value is fexible.

Theorem 3. Using the percolating update, every internal node will be updated at lerst once
during every period of length “span.”

XErox PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WiTh FiniTe Wivoows ~ R

Proof. It is uscful to prove the slightly ':trongor result that cvery internal node (tbat remains
for an cutire period) will be updated twice during a period, and thus propagate at least one
update to its parent. To show a contradiction. we find the earliest period and the node B
farthest from the root that does not propagate an update to its parent. If 8 bas at Jeast two
children that have remained for the entire period, then 3 must have received updates from
these nodes: they are farther from the root. I B has only one remaining child, then it must
have a new child, and so it will still get two updates. (Every newly created arc causes a son to
updmeapamrwpmhtmgfnmu)smﬂaﬂymmchﬂ&makommm,
By every accounting. 8 will receive two updates during the period, and thus propagate an
update- - contradicting our assumption of 8’s faflure to update its parent.

There is some flexibility on how updating is bandled. e could propsagate the currentpoatm
upwards before rescanning, and then write the current position fnto those nodes passed during
the rescan and scan; in this case, the proof of Theorem 3 is conservative. Alternatively, a similar,
symmetric proof can be used to show that updating can be omitted when new arcs are added so
longaswepmpameanupdateaﬁereveryarcxsdeleted. The choice is primarily a matter of
implementation convenience, although the method used above is shightly faster.

The last major theoretical comsideration is the effectiveness of the Al policy in choosing
between literal and copy codewords. We have chosen the following one-pass policy for Al: When
the encoder is idle, issue a copy if it is possible to copy two or more characters; otherwise, start a
literal. If the encoder bas previously started a literal, then terminate the literal and issue a copy
only if the copy is of length three or greater.

Notice that this policy can sometimes go astray. For example, suppose that the compressor is
idle at position ¢ and has the following copy lengths available at subsequent positions: .

i ikl 42 43 iH S , - (1)
1 3 16 15 14 13 ..

Under the policy, the mmpmsor encodes position with a literal codeword, then takes the copy
of length 3, and finally takes a copy of length 14 st position £ +4. Itmesﬁbytsmthccnooding
(Biteral 1)X(copy 3 —¥)(copy 14 —7)

If the compressor bad foresight it could avoid the copy of length 3, compressmgthesame'
matenal into 5 bytes: -
(litesal 2)XX(copy 16 —y) ‘

The optimal solution can be computed by dynamic programming [SS 82): One forward pass
records the length of the Jongest possible copy at each position (as in eguation 1) and the dis-
placement for the copy (not shown in equation 1). A second backward pass computes the optimal
waytoﬁnmhmmpmgtheﬁkﬁomnchposiﬁmbymdhgtbebatwdewwdmmand
the length to the end-of-file. Finally, another forward pass teads off. the solution and outputs the
commessedﬁlaﬂm,onemuldpmbabbmumwmdymmkmmmgdmetbe
one-pass heuristic is a lot faster, and we estimated for several ;pical files that the heuristically
compressed output was only about 1% larger thaa the optimpm. hermore, we will show iu the
remainder of this section that the size of the compressed fileis never worse than 5/4 the size of the
optimal solution for the specific A1 encoding. This will require developing some analytic tools, so
the non-mathematical reader should feel free to skip to Section 4. .

The following definitions are useful:
Definition. F(i) is the longest feasible copy at position i in the fle.

XeRrROX PARC, CSL-89-3, JaNvuARY 1989

8 Data CoMPRESSION wiTH FINITE WIiNDOWS

Sample F(i)’s were given above in equation 1. They are dependent on the cncoding used. For now,
we are assuming that they are limited in magnitude to 16 and must correspond to copy sources
within the last 4096 characters.

Definition. B(z)ktbemoftbebestwaytocomprssthemamderoftbeﬁk. s'rartmgat
position i.
B(t)swouldbecomputedmthereversepasoftheoptmalalgomhmmtlinedabow.

The following Theorems are given without proof:

Theorem. F(i+1)> F(i) - 1. '

Theorem. There exists an optimal solution where copies are the longest possible (i.e., only copies
corresponding to F(i)’s are used)

Theorem. B(i) is monotoue decreasing.

Theorem. Any solution can be modified, without affecting length, so that (literal z,) followed
imnmediately by (literal z;) implies that z, is maximum (in this case 16).

We could contizue to reason in this vein, but there is an abstract way of looking at the problem
that is both clearer and more general. Suppose we have a nondeterministic finite antomaton where
each trausition is given a cost. A simple example is shown in Figure 4. The machine accepts -
(a + b)*, with costs as shown in parentheses.

a(1)

b(2)

Figure 4. A Nondeterﬁ:inisﬁc Automaton with Transition Costs.

The total cost of accepting & string is the sum of the transition costs for each character. (While
it is not importaut to our problem, the optimal solution can be computed by forming a transition
matrix for each letter, using the costs shown in parentheses, and then multiplying the matrices
for a given string, treating the coefficients ss elements of the closed semiring with operations of
addition and minimization.) We can obtain a solution that approximates the minimum by deleting
transitions in the original machine until it becomes a deterministic machine. This corresponds to

XErOX PARC, CSL-89-3, JANUARY 1989 -

- DATA COMPRESSION WITH FINITE WiNDOWs =~ 9.

choosing a policy in our original data compression problem. A policy for the machine in Figure 4
ix shown in Figure 5.

Figure 5. A Deterministic “Policy” Automaton for Figure 4.

Wenowmshwmmpue,mthemstme,thedﬂambetmopﬁmaﬂyma
string with the nondeterministic machine, and deterministically accepting the same string with the
“policy” machine. This is done by taking a cross product of the two machines, ss shown in Figure
6. _

In Figure 6 there are now two weights on each transition; the first is the cost in the nonde-
terministic graph, and the second is the cost in the policy graph. Asymptotically, the relstionship
of the optimal solution to the policy solution is dominated by the smallest ratio on a cycle in this
graph. In the case of Figure 6, there is a cycle from 1,1’ to 1,2’ and back that has cost in the
nondeterministic-graph of 2+ 1 = 3, and cost in the policy graph of 3+ 3 = 6, gmngarahoof
1/2. That is, tbepohcysoluuoncanbemceasbadastheoptmmonthestrmgabaw

In general, we can find the cycle with the smallest ratio mechanically, using well known tech-
niques [DBR 66}, {L. 76]. The idea is to conjecture a ratio r and then reduce the pairs of weights
(x, y) on the arcs to single weights £ — ry. Under this reduction, a cycle with zero weight has ratio
exactly r. If a cycle has negative weight, then r is too large. The ratio on the negative cycle is
used as a new conjecture, and the process is iterated. (Negative cycles are detected by running a
shortest path algorithm and checking for convergence.) Once we have found the minimum ratio
. cycle, we can create a worst case string in the original automata problem by finding a path from the
start state to the cycle and then repeating the cycle indefinitely. The ratio of the costs of accepting
the string nondeterministically and deterministically will converge to the ratio of the cycle. (The
path taken in the cross product graph will not necessarily bring us to the same cycle, due to the
initial path fragment; we will, nevertheless, do at least as well.) Conversely, if we have a sufficiently
long string ‘with nondeterministic to deterministic ratio r, then the string will eventually loop in
the cross product graph. If we remove loops with ratio greater than r we only improve the ratio of
the string, so we must eventually find a loop with ratio at least as small as r.

Xerox PARC, CSL-89-3, JANUARY 1989

10 DaTA COMPRESSION WITH FINITE WINDOWS

Figure 6. The Cross Product.

The above discussion gives us an algorithmic way of analyzing our original data compression
problem. The possible values of F(i) are encoded in 2 17 character alphabet py...p;c, represent-
ing the length of copy available at each position. The compression algorithm is described by a
nondeterministic machine that accepts strings of p;; this machine has costs equal to the lengths
of the codewords used by the algorithm. There are two parameterized states In this machine: [-
means that there is a Literal codeword under construction with x spaces still available; c, means
that a copy is in progress with y characters remaining to copy. The idle state is [y = cp. In the
nondeterministic machine, the possible transitions are: '

o
L.
L

Cy

7@
2.{1)
———
@

P.-{0)
—

hs
lz-l
Ci-1
Cy-—1

start a Bteral

continue a litersl (z > 1) @)
start a copy

continue a copy

(An asterisk is used as a wild card to denote any state.) Based on the thearems above we have
already eliminated some transitions to simplify what follows. For example,

cy @ L5 start a literal from inside a copy (y 2 1) (8)

XeErox PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WiTH FINrTE Wivpows 11
is unnecessary. The deterministic machine, given below, eliminates many more transitions:

b 22 p, start a literal if i < 1
I 22 1, contimealiteralfz>1andi<?2 @
L 22 ¢, statacopyfi>3orz=0sndi=2 |

0) .
o =2 ¢,_1 continue a copy

F'mally weaddonemoremanhmﬁoguaranuethatthesmngsofp;anrulstic. Intlnsmadune, |

state s; means that the previous character was p;, so the index of the next character must be at
least p;_i:
s o8 ((2i-1) (%)

The cross product of these three machines has approximately 17K states and was analyzed me-
chanically to prove a minimum ratio cycle of 4/5. Thus the policy we bave chosen is never off by
morethan25%,andthewomtcaseisrulizedopasnin¢thatmpeauap;pattmasfonows:

1 2 3 4 S & 7 b) S 10 111 12 13 14 15 (6)
Pro Pio Po Ps PT Ps P5 P4 P3 P2 P P2 Pro P10 P9 .- <

(There is nothing special about 10; it was chosen to illustrate a long copy and to match the example
in Appendix A.) The deterministic algorithm takes a copy of length 10 in the first position, and
thep switches to a literal for positions 11 and 12. Fivebytemusedmud:npetitmdthe
pattern. The optimal solution is one position out of phase. It takes a copy of length 10 in the
second position, and then finds a copy of length 2 at position 12, for s total of four bytes on each
-l I- .) . B .
We have abstracted the problem so that the possible copy operations are descxibed by a string
of pj, and we have shown a pathological pattern of p; that results in 5/4 of the optimal encoding.
There might still be some doubt that such a string exists, since the condition that our third machine
(5) guarantees, F(z + 1) > F(i) - 1, is a necessary but not sufficient condition. Nevertheless, the
details of an actual pathological string can be found in Appendix A.

SecTioN 4. A SIMPLER DATA STRUCTURE -

Although the quantity of code associated with A1 is not enormous, it is complicated, and the
data structures are fairly large. In this section, we present simpler methods for finding the suffix
and for propagating the window position.

The alternative to a percolating updste is to update the positions in all nodes back to the root
wbenever a new leaf is inserted. Then no updates are needed when nodes are deleted. The update
flags can be eliminated.

The alternative to suffix pointers is more complicated. The cost of movement in a tree is not
uniform; moving deeper requires a hash table lookup, which is more expensive than following &
parent pointer. So we can determine the suffix by starting at the suffix leaf and following parent
pointers back toward the root until the suffix node is reached. The suffix leaf is known because the
string at i matched the string at some earlier window position j; the suffix leaf 7 + 1 is the next
entry in the leaf array. With this change, the suffix pointers can be eliminated.

From a theoretical perspective, these modifications, which have O(nd) worst case performance
foraﬁleofsizenandcut—oﬁ'depthd,areinferiortotheO(n)performanceofthesuﬁxnee. For

XEerox PARC, CSL-89-3, JANUARY 1989

12 Data COMPRESSION WITH FINITE WINDOWS

A1, with a cutoff of 16, these modifications improve average performance, but the A2 method
discussed in the next section has such a deep cut-off that suffix pointers and percolated updates
are preferable.

SECTION 5. A MORE POWERFUL ENCODING

The 4,096-byte window of Al is roughly optimal for fixed size copy and literal codewords.
Longer copies would, on average, be found in 2 larger window, but a larger displacement feld
would be required to encode them. To exploit a larger window, we must use a variable-width
encoding that is statistically sensitive to the fact that recent window positions are more likely to
be used by copy codewords than those positions further back. Similarly, it is advantageous to use
variable-width encodings for copy and literal lengths.

There are several approaches we might use for variable-length encoding. 3We could use fixed
or adaptive Huffman coding, arithmetic encoding, a variable-length encoding of the integers. or a
manageable set of hand-designed codewords. We eliminated from consideration adaptive Huffman
and arithmetic coding berause they are slow. Moreover, we felt thex would provide (at best) a
secondary adaptive advantage since the “front end™ textual substitution is itself adapting to the
input. We experimented with a fixed Huffman encoding. a hand-designed family of codewords. and
a variable-length encoding of the integers, so we will compare these options briefly:

Hand-Designed Codewords. This is a direct generalization of Al. with short copies that use
fewer bits but caunot address the full window, and longer copies that can address larger blocks
further back in the window. With a few codewords. this is fast and relatively easy to implement.
However, some care must be taken in the choice of codewords to maximize compression.

Variable-Length Integers. The simplest method we tried uses a unary code to specify field
widtb, followed by the field itself. Copy length and displacement fields are coded independently via
this technique, so any correlations are ignored. There are more elaborate codings of the integers
(such as [G 66}, [E 73], or [ER 78]), that have been used by [RPE 81}, and [GH 82] in their
implementations of Lempel-Ziv compression. These encodings have nice asymptotic properties for
very large integers, but the unary code is best for our purposes since, as we will see shortly, it can
be tuned easily to the statistics of the application. The unary code has the additional advantage
of a simple hardware implementation. We will return to the nnary code in more detail shortly.

Fixed Huffman. Ideally, 3 fixed Huffiman encoder should be applied to source consisting of the
copy length and displacement concatenated together (to capture the correlation of these two fields).
However, since we wish to expand window size to 16384 and meximum copy length to 2000, the
realities of gathering statistics and constructing an implementation dictate that we restrict the
input of the fixed Huffman compressor to a size much smaller than 2000 x 16384 by grouping
together codes with nearly equal copy lengths and displacements. To improve speed we use tables
to encode and decode a byte at a time. Nevertheless, the fixed Huffman approach is the most
complex and slowest of the three options compared here.

To decide how much compression could be increased with a Fixed Huffman approach, we
experimented with several groupings of nearly equal copy lengths and displacements, using a finer
granularity for small values, so that the input to the Fixed Huffman compressor had only about
30,000 states, and we computed the entropy to give a theoretical bound on the compression. The
smallest entropy we obtained was only 4% more compact than the actual compression achieved
with the unary encoding described below, and any real implementation would do worse than an
entropy bound. Consequently, because the Fixed Huffinan approach did not achieve significantly

Xenrox PARC, CSL-89-3, JANUARY 1989

. DATA COMPRESSION WiTH FINITE WINDOWS 13

higher compression, we favor the simpler unary code, though this is not an overwhelmingly clear
choice.

Define a (start, step, stop) unary code of the integers as follows: The nth codeword has » ones
followed by a zero followed by a field of size start + n - step. If the field size is equal to stop then
the preceding zero can be omitted. The integers are laid out sequentially thmugh these codewords.-
For example, (3,2,9) would look like:

Codeword Range
- Ozzz 0-7

10zzzzz 8-39

110zzzrrrz 40-167

11lzzzzrrrrT 168679

Appendix B contains a simple procedure that generates unary codes.

The A2 textual substitution method encodes copy length with a (2,1, 10)code,lead;ngt.oa
maximum copy length of 2044. A copy length of zero signals a literal, for which Lteral length is
then encoded with a (0,1, 5) code, leading to 2 maximum lLiteral length of 63 bytes. If copy length
is non-zero, then copy displacement is encoded with a (10,2, 14) code. The exact maximum copy
and literal lengths are chosen to avoid wasted states in the unary progressions; 2 maximum copy
lengthof2044msuﬁaentforthehndsofdatastud:edeecth ’I‘heAlpoliqrﬁorchoosmg
between copy and literal codewords is used.

Thmreﬁnmeﬁsmuxdhmmﬂsmmbyappmmﬂdyl%wm First,
since neither another Lteral nor a copy of length 2 can_immediately follow a literal of less than
maximum literal length, in this situation, we shift copy length codes down by 2. In other words,
in the (2, 1.10) code for copy length, 0 usually means literal, 1 means copy length 2, etc; but after
a literal of less than maximmm literal length, 0 means copy length 3, 1 means copy length 4, etc. -

Secondly, we phase-in the copy displacement encoding for small files, using a (10— z,2,14 1)
code. where £ starts at 10 and descends to 0 as the pumber of window positions grows; for example,

z = 10allows 2°+2242¢ =21valuestobecoded.sowhcnthenumberofwmdwpositiomexceeds
21, z is reduced to 9; and so forth

Finally. to eliminate wasted states in the copy displacement encoding, the largest field in the
(10 — x,2,14 — 1) progression is shrunk until it is just large enough to hold all values that must
be represented; that is, if v values remain to be encoded in the largest field then smaller values are
encoded with {log,] bits and larger values with [log, v'] bits rather than 14 — z bits. This trick
increases compression during startup, and, if the window size is chosen smaller than the number
of values in the displacement progression. it continues to be useful thereafter. For example, the
compression studies in Section 8 use an A2 window size of 16,384 charactess, so the (10,2, 14) code
would waste 5, 120 states in the 14-bit field without this trick.

Percolating update seems preferable for the implementation of A2 because of the Jarge max-
imum copy length; with update-to-root, pathological input could slow the compressor by a factor
of 20. Unfortunately, the percolating update does not guarautee that the suffix tree will report the
nearest position for a match, so longer codewords than necessary may sometimes be used. This
problem is not serious because the tree is often shallow, and nodes near the root usually bave many
sons, so updates propagate much more rapidly than assumed in the analysis of Section 3. On
typical files, compression with percolated update is 0.4% less than with update-to-root.

XEROXx PARC, CSL-89-3, JANUARY 1989

