14 DATA COMPRESSION WITH FINITE WINDOWS

SEcTION 6. A FASTER COMPRESSOR

A2 has very fast expansion with a small storage requirement, but, cven though compression
has constant amortized time, it is 5 times slower than expansion. A1l and A2 are most appropriate
in applications where compression speed is not critical and where the performance of the expander
needs to be optimized. such as the mass release of software on floppy disks. However. in applications
such as file archiving. faster compression is needed. For this reason. wr have developed the Bl
and B2 methods desciibed here. which use the same encodings as Al and A2. respectively, bt
- compute window displacement differently. Copy codewords are restricted to start at the beginning
of the yth previous codeword or literal character emitted; they can no longer address every earlier
character. but oply those where literal characters occurred or copy codewords started: we refer
to displacements computed this way as “compressed displacements™ throughout. Copy length is
still measured in characters. like A1. By inserting this level of indirection during window access,
compression speed typically triples. though expansion and the rate of adaptation are somewhat
slower. - :

With “compressed displacements,” suffix pointers and update propagation are unnecessary
and a simpler PATRIC1A tree can be used for the dictionary. Entries are made in the tree only on
codeword boundaries, and this can be done in linear time by starting at the root on each iteration.
It is useful to create an array of permanent nodes for all characters at depth 1. Since copy codewords
of length 1 are never issued. it doesn't matter that some permanent nodes don’t correspond to any
window character. Each iteration begins by indexing into this node array with the next character.
Then hash table lookups and arc character comparisons are used to descend deeper, as in Al.
The new window position is written into nodes passed on the way down. so update propagation is
unnecessary.

In short, the complications necessary to achieve constant average time per source character
with A2 are eliminated. However, one new complication is introduced. In the worst case, the
16.384 window positions of B2 could require millions of characters, so we impose a limit of 12 x
16381 characters; if the fall window exceeds this limit. leaves for the oldest window positions are
purged from the tree. ‘

Because of slower adaptation, B2 usually compresses slightly less than A2 on small files. But
on text and program source files. it surpasses A2 by 6% to 8% asymptotically: the crossover from
Jower compression to higher occurs after about 70.000 characters! A2 codewords find all the near-
term context, while B2 is restricted to start on previous codeword boundaries but can consequently
reach further back in the file. This gives B2 an advantage on files with a patural word structure,
such as text, and a disadvantage on files where nearby context is especially important, such as
scanned images.

We also tried variations where the tree is updated more frequently than on every codeword
boundary and kiteral character. All variations up to and including A2 can be implemented within
the general framework of this method. if speed is not an issue. For example. we found that abont
1% higher compression can be achieved by inserting another compressed position between the two
characters represented by each length 2 copy codeword and another 0.5% by also inserting com-
pressed positions after each character represented by length 3 copy codewords. However, because
these changes slow compression and expansion we haven't used them.
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SecTioN 7. IMPROVING THE COMPRENSION RATIO

In section ﬁwcdnsidercdwagswspecdupcompmﬁonatthemdsmmptathnmd
cxpaunsion. In this section we will explore the other direction: improving the compressian ratio
with a slight cost to the running time of the algorithm.

Wh:::str:gmmimn&eq\mtlyhaﬁk,anthemahodsnbmeeoﬂsﬂemd' ered s0 far waste
space in their encoding: when they are encoding the repeating string, they. are capable of specifying
the copy displacement to multiple previous occurrences of the string, yet only one string needs
to be copied. By contrast, the data structures we have used do not waste space. The repeating
strings share 3 common path near the root. If we base the copy codewords directly on the data
structure of the dictionary, we cab improve the compression ratio significantly. : (This brings us
closer to the second style of Ziv and Lempel's textual substitution work [ZL 78] [MW 84] [J 85},
where a dictionary is maintained by both the compressor and expander. However, since we still
use a window and an explicit copy length coding, it is natural to view this as a modification of cur
earlier compressors, in the style of Ziv and Lempel's first textual substitution work.)

The C2 method uses the same PATRICIA tree data structures as B2 to store its dictionary.
Thus it takes two pieces of information to specify a word in the dictionary: a node, and a location
along the arc between the node and its parent (since PATRICIA tree arcs may cosrespond to strings
with more than one character). We will distinguish two cases for a copy: if the arc is at a lesf
of the tree, then we will use a LeafCopy codeword, while if the arc is internal to the tree will use
a NodeCopy codeword. Essentially, those strings appearing two or more times in the window are
coded with NodeCopies, avoiding the redundaucy of A2 or B2 in these cases. .

The C2 encoding begins with a single prefix bit that is 0 for a NodeCopy, 1 for & LeafCopy
or Literal , . A

For NodeCopy codewords, the prefix is followed by 2 node number in [0..maxzNodeNo], where
mazNodeNo is the largest node number used since initialzation; for most files tested, mazNodeNo
is about 50% the number of leaves. Following the node number, 2 displacement along the arc from
the node to its parent is encoded; for most NodeCopy codewords the incoming arc is of length
1, so no length field is required. If a length field is required, 0 denotes 3 match exactly at the
pode. 1 a displacement 1 down the arc from the parent node, etc. Rarely is the length field Jonger
than one or two bits because the arc Jengths are usually short, so all possible displacements can be
enumerated with only a few bits. For both the node number and the incoming arc displacement,
the trick described in Section 5 is used to eliminate wasted states in the field; that is, if v values
must be encoded, then the smaller values are encoded with {log; vj bits and larger values with
[log, v] bits. . ' '

LeafCopies are coded with unary progressions Jike thase of A2 or B2. A (1, 1,11) progression
is ysed to specify the distance of the longest match down the leaf arc from its parent node, with 0
denoting a [iteral; this progression leads to a maximum copy length of 4094 bytes.  Since another
literal never occurs immediately after a Uteral of less than maximum literal length, the LeafCopy
arc distance progression is shifted down by 1 when the preceding codeword was a literal (ie., arc
displacement 1 is coded as 0, 2 as 1, etc.) On a cross section of files from the data sets discussed
later, distance down the leaf arc was highly skewed, with about half the arc displacements occurring
one character down the leaf arc. Because of this probability spike at 1 and the rapid drop off at
larger distances, the average length field is small. Following the length field, the window position
is coded by gradually phasing in a (10, 2, 14) unary progression exactly ke B2’s. :

Literals are coded by first coding a LeafCopy arc displacement of 0 and then using 2 (0,1,5)
unary progression for the literal length exactly like B2.

XeEroX PARC, CSL-89-3, JANUARY 1989 - .



16 -DATA CoMPRESSION wiTH Finitee WINDOWs

Unlike A2 and B2, the expander for C2 must maintain a dictionary tree cxactly like the
compressor’s tree to permit decoding. Notice that this is not as onerous as it might seem. During
compression, the algorithm must search the tree downwards (root towards leaves) to find the longest
match, and this requires a hash table access at each node. By contrast, the expander is told which -
nodewasmatched.anditmrecoverthelengthandwmdonposttlonofthematch&omthenode.
No hash table is required, but the encoding is restricted: a copy codeword must, always represent
the longest match found In the tree. In particular, the superior heuristic used by B2 to choose
between Literal and Copy codewords must be discarded; instead. when the longest match is of
length 2 or more, a copy codeword must always be produced. With this restriction, the expander
can reconstruct the tree during decoding simply by hanging each new leaf from the node or arc
indicated by the NodeCopy or LeafCopy codeword, or in the case of Literals, by hanging the leaf
from the permanent depth 1 node for each literal character.

SECTION 8. EMPIRICAL STUDIES

In this section, we compare the five compression methods we bave developed with other one-
pass, adaptive methods. For most other methods, we do not have well-tuned implemeutations and
report only compression results. For implementations we have tuned for efficiency, speed is also
estimated (for our 3 MIP, 16-bit word size, 8 megabyte workstations). The execution times used
to determine speed include the time to open, read, and write files on the local disk (which has
a relatively slow, maximum transfer rate of § megabits per second); thespeedlscomputedby B
d;vidingthenneompmssedmemebythee:ecutmntxmefora.largeﬁle. :

Wetstedﬁletypeslnportammourworlnngenvuom Eachnumbermthetablebeb'xs
the sum of the compressed file sizes for all files in the group divided by the sum of the original file
sizes. Charts 1-3 show the dependency of compression on file size for all of the compression methods
tested on the source code (SC) data set. The gray area in these charts shows the distxibution of
file sizes in the data set, and the numbers next to the labels are the total compression ratios,
duplicating the SC column in the table below.

DATA SETS

SC Source Code. Aﬂ&-bitAswsourceﬂles&omwh:chthebootﬁleﬁorourpmgrammmgm‘
ment is built. Files include some English comments, and a densely-coded collection of formatting
information at the end of each file reduces compressibility. The files themsealves are written in the
Cedar langusge. (1185 files, average size 11 Kbytes, total size 13.4 Mbytes) :
TM Technical Memorands. All files from a directory where computer science technical memoranda
- and reports are filed, excluding those containing images. These files are 8-bit Ascii text with densely-
coded formatting information at the end (like the source code). (l3451es,averagesnze22h‘byts.
total size 2.9 Mbytes)

NS News Service. One file for each work day of a week from a major wire service; these files
are 8-bit Ascii with no formatting information. Using textual substitution methods, these do not
compress as well as the technical memoranda of the previous study group, even though they are
. much larger and should be less impacted by startup transient; inspection suggests that the larger
vocabulary and extensive use of proper names might be responsible for this. (5 files, average size
459 Khytes, total size 2.3 Mbytes)

Xerox PARC, CSL



06/19/92 13:04 B7182485871 SELECTRONICS
” DATA CoMpRressitoN WiTh FINITe WiNpows = - 17
Text Binary Fonts Images
Mcthod SC ™ NS CcC BF SF RCF | SNI sC1 BI
HO 732 | 612 | 500 | 780 | 732 | 626 | 756 | 397 | .845 | 48
H1 401 | 424 | 467 | 540 | 573 ] 380 | 597 ] .181 | .510 | -101
KG 751 | 625 | 595 | %04 | .756 | 637 | .767 | 415 | 850 | 205
\Y 749 | 624 | 595 | 802 | 756 | 637 | .766 | 414 | 850 | 205
W 369 | 358 | 326 | .768 | 544 | 516 | 649 ] 233 | .608 | .106 -
MW1 | 508 | 4720 | 487 | 770 | 626 | 558 | 705 | 250 | .728 | .17
MW2 | 458 | 449 | 458 | 784 | 594 | 526 | 692 | 270 | 774 | .17
Uw 521 | 476 | 442 | 796 | 638 | .561 | .728 | .255 | .697 | .118
BSTW | 426 | 434 | 465 | -- | .684 —~ | 581 — — ] -
Al 430 | 461 | 520 | 741 | 608 | 502 | 657 | 351 | .766 | 215
A2 366 | 305 | 436 | 676 | 538 | 460 | 588 | 259 ) .700 | .123
Bl 449 | 458 | 501 | 753 | 616 | 505 | 676. | 349 | 777 | 213
B2 372 | 403 | 410 | 681 | 547 | 459 | 603 | 255 | .714 | .117
c2 360 | 376 | 375 | 668 | 527 | 445 | 578 | 238 | 662 | .105

Table 1. Comparison of Compre&s:on Methods.

CC Compiled Code. The compiled-code files produced from the SC data set. Each ﬁ.le contains
several different regions: symbol nsames, painters to the symbols, statement boundaries and source
positions for the debugger, and executable code. Because each region is small aud the regions have
different characteristics, these files severely test an adaptive compressor. (1220 files, average size
13 Kbytes, total size 16.5 Mbytes)

BF Boot File. The boot file for our programming enviromment, basically a core image and memory
map. (1 file, size 525 Kbytes)

SF Spline Fonts. Spline-described character fonts used to generate the bitmaps for chanct.er sets

" at a variety of resolutions. (94 files, average size 39 Kbytes, total size 3.6 Abytes)

RCF Run-coded Fonts. High-resolution character fonts, where the original bitmaps have been
replaced by a run-coded representation. (68 files, average size 47 Kbytes, total size 3.2 Mbytes)
SNI Symthetic Images. All 8 bit/pixel synthetic image files from the directory of an imaging
researcher. The 44 fles are the red, green, and blue color separations for 12 color images, 2 of
which also have an extra file to encode background transparency: in addition, there are 6 other
grey scale images. (44 files, average size 328 Kbytes, total size 14.4 Mbytes)

SCI Scanned Images. The red separations for all 8 bit/pixel scanned-in color images from the
directory of an imaging researcher. The low-order one or two bits of each pixel are probably noise,
reducing compressibility. (12 files, average size 683 Kbytes, total size 8.2 Mbytes)

BI Binary Images. CCTTT standard images used to evaluate binary facshnile compression methods.
Each file consists of a 148 byte header followed by a binary scan of 1 page (1728 pixels/scan line
x 2376 scan lines/page). Some images have blocks of zeros more than 30,000 bytes long. Because
these files are composed of 1-bit rather than 8-bit items, the general-purpose compressors do worse
than they otherwise might_ (8 files, average size 513 Kbytes, total size 4.1 Mbytes) :

Xerox PARC, CS
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18 DATA COMPRESSION WITH FINITE WiNDOWS

The special-purpese CCITT 1D and 2D compression methods reported in [HR 80} achieve,
respectively. -112 and .064 compression ratios on these standard images when the extrancous end-
of-line codes required by the facsimile standard are removed and when the extrancous 148-byte
header is removed. The special-purpose CCITT 2D result is significantly more compact than any
gencral purpose method we tested. and only CW and C2 mtrpassod thc iD rvsnlt.

MEASUREMENTS AND COMPRESSION METHODS
HO and H1. Thesc are entropy ca.lculanous madc on a per ﬁlo basis armrdmg to:

H0=—ZP(J'="5)1°£2P(I=¢‘.'). )
=4
n=1
Hl, = - Z P(J' =‘('i) P(y = (jll' = (‘i)logz P(g = J-'_r - ‘-’-)_ (8)
ijmt

where x is a random symbol of the source, ry is a randonily chosen pair of adjacent source characters,
and ¢; ranges over all possible symbols. ‘Because of the small file size, the curves in charts 1 to
3 drop off to the left. In theory, this small smnpling problem can be corrected according to [B
59]. but we have found it difficult to estimate the total character set size in order to apply these
corrections. Nevertheless, chart 1 shows thatHﬂusagood estimator for how well a memoryless
(zero-order) compressor can do when file size is a large maltiple of 256 bytes and H1 bounds the

- compression for a first-order Matkov method. (None of our ﬁls were Iarge enough for H1 to be an

accurate estimator.)
KG and V. These adaptive methods maintain a Huffman tree based on the &equencyofcha.rartexs
seen so far in a file. The compressor and expander have roughly equal performance. The theory
behind the KG approach appears in [G 78] and [K 85]. The similar V method, discussed in [V
85], should get better compression during the startup trensient at the expense of being about 18%
slower. It is also possible to bound the performance of Vitter’s scheme closely to that of a fixed
non-adaptive compressor. Except on the highly compressible CCITT images, these methods achieve
compression slightly worse than HO, as expected. But because of bit quantization, the compreasion
of the CCITT images is poor—arithmetic coding would compress close to HO even on these highly
compressible sources. .
CW Based on {CW84],thismethodgathe:shxgher-ordastamtmthan KG or V above (which
we ran only on 2eto-order statistics). The method that Cleary and Wiitten describe keeps statistics
to some order o aud encodes each new character based on the context of the o preceding characters.
(We've used o0 = 3, because any higher order exhausts storage on most of our data sets.} If the
new character has never before appeared in the same context, then an escape mechanism is used
to back down to smaller contexts to encode the character using those statistics. (We've used
their escape mechanism A with exclusion of counts from higher-order contexts.) Because of high
event probabilities in some higher-ordered contexts and the possibility of multiple escapes before
a character is encoded, the fractional bit loss of Huffinan encoding is a concern, so [CW 81] uses
arithmetic encoding. We have used the arithmetic encoder in [WNC 87].

As Table 1 shows, CW achieves excellent compression. Its chief drawbacks are its space and

time performance. Its space requirement can grow in proportion to file size; for example, statistics
for 0 = 3 on random input could require a tree with 256* leaves, though English text requires

.much less. The space {(and consequently time) performance of CW degrades dramatically on

“mhore random” data sets like SNI and SCL A practxcal implementation would have to limit storage *.

- somehow.

XEerox PARC, CSL-89-3. JANUARY 1989
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Even on English, Bell, Cleary, and Witten estimate that Moffat’s tuned implementation of CW is
3 times slower compressing and 5 times slower expanding than C2 (BCW 38].

MW1. This method, described in [MW 84}, is related to the second style of Lempel-Ziv compres-
sion, alluded to in the introduction- It uses a Trie data structure and 12-bit codes. Initially (and
always) the dictionary contains 256 onc<character strings. New material isx encoded by finding the

longest match in the dictionary, outputting the associated code. and then inserting a new dictionary - -

entry that is the longest match plus one more character. After the dictionary has filled. cach itera- -

tion reclaims an old code from amaong dictionary leaves, following a LRU discipline, and reuses that

code for the new dictionary entry. The expander works the same way. MW1 is simple to imple-
ment and is balanced in performance, with good speed both compressing and expanding (250,000
bits/sec and 310.000 bits/sec respectively). The original method used 12-bit codes throughout for
simplicity and efficiency. However, our implementation starts by using 9-bit codewords. increasing
to 10. 11. and finally to 12 hits as the dictionary grows to its maximum size; this saves up ta 352
bytes in the compressed file size. On text and source code, Miller and Wegman detenmnined that
the 12-bit codeword size is close to optiral for this method.

MW2. One drawback of MW1 is the slow rate of buildup of dictionary entries. If for example, -
the word abcdefghi appears frequently in a document, then ab will be in the dictionasy after the
first occurrence, abe after the second, and so on, with the full word present only after 8 occurrences
(assuming no belp from similar words in the document). A1l below, for example, would be able
to copy the whole ward abcdefghi after the first occurrence. but it pays a penalty for the quick
response by having a length field in its copy codeword. The idea of MW2 is to build dictionary

. entries faster by combining adjacent codewords of the MWL scheme. Longer words like abedefghi -
~ are built up at an exponential rather than linear rate. The chief disadvantage of MW2 is its

increased complexity and slow execution. Our implementation follows the description in [MW 84]
and uses an upper limit of 4096 dictionary entries (or 12-bit codewords). We did not implement
the 9-12 bit phase-in that was used in MW so the size-dependent charts understunateMW2s
potential performance on small files.

UW. This is the Compress utility found in the Berkeley 4.3 Unix. which modifies a met.hod de-
scribed in a paper by Welch [W 84]; the authors of this method are S. Thomas, J. McKie, S. Davies,
K. Turkowski, J. Woods, and J. Orost. It builds its dictionary like MW 1. gradually expanding the
codeword size from 9 bits initially up to 16 bits. The dictiopary is frozen after 65.536 entries, but
if the compression ratio drops significantly, the dictionary is discarded and rebuilt from scratch.
We used this compressor remotely on 2 VAX-785, so it is difficult to compare its running time and
implementation difficulties with the other methods we implemented. Nevertheless, because it does
not use the LRU collection of codes, it should be faster than MW1. However, it has a larger total
storage requirement and gets worse compression than MW'1 on most data sets studied.

BSTW. This method first partitions the input into alphanumeric and non-alphanumeric “words,”
so it is specialized for text, though we were able to run it ou some ather kinds of data as well. The
core of the compressor is a2 move-to-front beuristic. Within each class, the most recently seen words
are kept on a fist (we have used list size 256). If the next input word is already in the word list.
then the compressor simply encodes the position of the word in the list and then moves the word
to the front of the list. The mave-to-front heuristic means that frequently used words will be pear
the front of the list, so they can be encoded with fewer bits. If the next word in the input stream
is mot on the word list. then the new word is added to the front of the list. while another word is
removed from the end of the list, and the new word must be compressed character-by—chararter.

Since the empirical results in [BSTW 85] do unot actually give an encoding for the pasitions of
words in the list or for the characters in new words that are output. we have taken the Iiberty of

Xsnox PARC. CSL-89-3, JANUARY 1989
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using the V' compressor as a subroutine to gencrate these encodings adaptively. (There are actually
four copics of Vitter's algorithm running, one to encode pasitions and one to encode characters in
cach of two partitions.) Using an adaptive Huffman is slow; a fixed eucoding would run faster,
hut we expect that a fixed encoding would slightly reduce compression on larger files while slightly
improving compression on small files. We could not run BSTW for all of the data sets, since the
parsing mechanism assumes humap-readable text and long “words™ appear in the other data sets.
When the unrcadable mput parscd wo.ll, as in the case of run-coded font.s, the eomprmn was
very good. . : -
Al. ‘I‘lns:sourbasxcmethod described earljer. Ithmafastandsxmpleexpanda(mm :
bits/sec) with a small storage requirement (10.000 bytes). However, the compressar is much slower
and larger (73.000 bits/sec, 145,000 bytes using scan-fronr-leaf and update-to-root). The encoding
has a maximum compression to 1/8 = 12.5% of the original file size because the best it can do is
copy 16 characters with 2 16-bit codeword.

Caveat: As we mentioned above, the running times reported include the file system overhesd
for a relatively slow disk. To provide a baseline, we timed a file copy without compression and
obtained a rate of 760,000 bits per second. Thus, some of the faster expansion rates we repart are
severely limited by the disk. For example, we estimate that witbout disk overhead the A1 expander
would be about twice as fast. On the ather hand, removing disk overbead would hardly affect the
compression speed of Al.

A2. This method, discussed in Section 5, enlarges the window to 16,384 chamcters and uses
variable-width unary-coded copy and literal codewords to significantly increase compression. The
running time and storage requirements are 410,000 bits/sec and 21,000 bytes for expansion and
60,000 bits/sec and 630,000 bytes for compression (using suffix pointers and percolated update).

B1l. This method, discussed in Section 6, usestheAlencodmgbuttnplscomprmonspeed_
byupdatmgthetreeonlyatcodewordboundanesandhtaaldxmters The running time and
storage requirements are 470,000 bits/sec and 45,000 bytes for a:panﬂon and 230,060 bits/sec and
187,000 bytes for compression.

B2. This method. discussed in Section 6, uses the same encoding as A3 butmplscomptmon
speed by updating the tree only at codeword houndaries and literal characters. The compressor
and expander run at 170,000 and 380.000 bits/sec. resped.wely, and have storage requirements of
792,000 and 262,000 bytes. . ‘
C2. This method, discussed in Section 7, uses the same data structures as 32 but a more powaful '
encoding based directly upon the structure of the dictionary tree. Compression is about the same
and expansion about 25%. slower than B2; the compressor nses about thesamestorageasBz. but

- the expander uses more (about 529,000 bytes).

Table 1 highlights some differences between textual substitution methods like 02 and statistical
metbods like CW. (Time and space performance differences have been discussed earlier.) There
are several data sets where these methods differ dramatically. On NS, CW is significantly better
than C2. We believe that this is because NS shows great diversity in vocebulary: a property that
is troublesome for textual substitution, since it cannot copy new words easily from elsewhere in the
document. but this property is benign for CW, since new words are likely to follow the existing
English statistics. On CC, for example, C2 is significantly better than CW. We believe that this
is hecause CC contains several radically different parts, e.g. symbol tables, and compiled code. C2
is able to adjust to dramatic shifts within a file, due to literal codewords and copy addressing that
favors nearby context, while CW has no easy way to rapidly diminish the effect of older statistics.

Xerox PARC, CSL-89-3, JANUARY 1989
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For all of our methods. A2. B2. and C2. window sizc s a significant consideration because
it detenmines storage requirements and affects compression ratios. Chart 4 shows compression as
a function of window sizc for the NS data set {concatenated into a single file to avoid start-up
cffects), and for the BF hoot file. These two data sets were typical of the bimodal behavior we
observed in our other data sets: large human-readable files benefit greatly from increasing window
size. while ather test groups show little improvement beyond a window size of 4K,

C‘ouc LUSIONS

e have described sevexal practical methods for lossless data compression and developed data .
structures to support themn. These methods are strongly adaptive in the sense that they adapt not
only during startup but also to context changes occurring later. They are suitable for most high
speed applications because they make only one pass over source data, use only a constant amount .
of storage, and have constant amortized execution time per character.

Our empirical studies point to several broad generalizations. First, based on the HO and
H1 theoretical limits, textual substitotion via A2, B2, or C2 surpasses memoryless or first-order
Markov methods applied on a character-by-character basis on half the data sets. On the other
half, even the CW third-order method can’t achieve the H1 bound. This suggests that, to surpass
textual substitution for general purpose conipression, any Markov method must be at least second-
order, and to date, zll such methods have poor space and time performance.

Secondly, the methods we've developed adapt rapidly during startup and at transitions in
the middle of files. One reason for rapid adaptation is the use of smaller representations for
displacements to recent positions in the window. Another reason is the inclnsion of multi-character
literal codewords.  Together the literals and short displacements allow our methods to perform’
well on short files, files with major internal shifts of vocabulary or statistical properties, and files
with bursts of poorly compressing ma.tenal—all properties of a szgmﬁcant number of files in our
environment.

Thirdly, it appars that the displacement-and-length approach to textual substxtutnon is espe-
cially effective on small files. On 11,000-byte program source files, for example, A2 and B2 were
over 20% more compact than textual substitution methods which did not use a length field (UW,
MW1, and MW2). This is not surprising because the particular advantage of the length field
in copy codewords is rapid adaptation on smsll files. However, even on the largest files tested,
A2 and B2 unsually achieved significantly higher compression. Only on images did other methods
compete with them; our most powerful method, C2, achieved higher compression than auny other
textual substitntion method we tested on all data sets. The effect of a length field is.to greatly
expand dictionary size with little or no increase in storage or processmg time; our results snggest
~ that textual substitution methods that use a length field will work better than thase whick do not.

Fourthly, studies of A2, B2, and C2 using different window sizes showed that, for human-
readable input (e.g. English, source code). each doubling of window size improves the the compres-
sion ratio by roughly 6% (for details see Chart 4). Furthermore, the data structures snpporting
these methods scale well: running time is independent of window size, and memory usage grows
linearly with window size. Thus increasing window size is an easy way to improve the compression
ratio for large files of buman-readable input. For other types of input the window size can be
reduced to 4096 without significantly impacting compression. »

Going beyond these empirical results, an important practical consideration is the trade-off
among speed, storage. and degree of compression; speed and storage have to be considered for both
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compression and expansion. Of our own methods, A2 has very fast expansion with a minimal
storage requirement. ks weakness is slow compression, which is seven times slower than expansion,
even though the suffix tree data structure with amortized updste uses constant amortized time per
character. However, in applications which can afford relatively slow compression, Azxsemeﬂent._
'forexample,Azmuldbegoodformasdistﬁbutwnofsoﬂ:‘ammﬂoppydisborfam@t"
compression of files on a file server. Furthermore, if the parallel matching in the compression side

ofAzwmsuppondmthVLSLtherwﬂtwogldbeafmgpowaﬁﬂmethoqummgmmml .

stongefcrbothcomprssmgandexpandmg _ _
szrovidsnearlythmetlmsfastermmpmonthmA.zbuthassomewhatsbwerexpanmn :
and adaptation. Thus, B2 is well suited for communication and archiving applications. ‘

A1l and Bl do not compress as well as A2 and B2, respectively, but becanse of their two-
codeword, byte-aligned encodings they are better choices for applications where simplicity or speed
is critical. (For example, J. Gasbanohasdsxgnedandxmplementcdanacpansionmethod'chl
to improve the bandwidth of a VLSI circuit tester [G 88].)

C2 achieves significantly higher compression than B2, bntmacpaaderusomewhatslawer

and has a larger storage requirement. Inthecompressionstudyreportedeecuon&C‘&achnwd .

the highest compression of all methods tested on 6 of the 10 data sets.

We believe that our implementations and empirical results demonstrate the value of wmdow-
based textual substitntion. Together the A, Bandeet.hodsoRergoodopnonsthatcanbe :
chosenaccordmgtorsonrcerequnements. ‘ cee e T

Acxnowx_anom
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APPENDIX A. A anox.a.u-u. Exmpu-.

We now show a string that has the F pattern of equation (6) of Section 3:

I 2 3 4 % 6 1T ¥ 9 1w 11 12 13 14 15 ©
PmePstP‘PﬁPGIMPstPlPszPmPs--»

Hereafter we will stop a.hstractmg thestnngbyits copy lengths. Capra!lettezsz:esuings,sman
lettersarcsmglcchararwrs,and a,J.r,p,barcmr.egers Thepaﬂmlogxal stﬁngiollowsthepattem.

Mom..-u,_;MoM....u,-tu..ux..., S *(9; |

wherethepanmeterlschosenla.rgeenonghso thatonextenuonexceedstheﬁmtewindw (this
prevents direct copying from the beginning of one Afy to a.suhsecment Ap). Within each M; we
have groups,
M; = GuGnGiz - --Gitnjp—1) (10)

and each group is-

Gij =_Sijoau+ﬂaci’ir+tBlsu+np+:€-'-’1p+=3=’u+i»+z°isjp+=---Brlsu+i)p+p41ci- - (13)

We bave introduced two mare parameters: p is the number of minor hlocks B;, and n is the

- number of s-characters. All of the s snbscripts in the above formula are computed mod n. The

groups skew so that, for example, the beginning of Gyp = 81 Bispy41 . . . will not match entirely with
the beginning of Gog = 8;8:9; .. .- It will, however, match in two parts: the prefix s, B, appears
in both strings, and the sufix Gy = ... Bispy1 . .. will match with the sufix of Go; = ... Byspy4.
If, for example, B, has 9 characters, this gives two consecutive locations where 2 copy of size 10 is
posible.mthepattemofeqmtbns.
Itrmmtoaatethemauhcﬂength2atposumn12meqnaﬂou(6) Fotth:spurpose.emh
of the c; above are either ¢; or o;. They will always precede respectively even and odd numbered
2;, and match in palrs with their following s;’s. For example, the ey in Gao = 5, Bys16082B253 ...
wmn.:a.tchwithsz..l‘hee.szma:chishiddeninanﬁm;bb&,mated&omtheqddmmbemd .

¥

Bg = zeosgenszcnss -- -2
"By = TeoSsCSs+2€aSe it - - - €S2

. Bupp m 1818001520184 - 1582 az)

Bp/2 = T0uS100S300S5 - - . OuSh-1
This causes p and n to be related by:
pb = 2nr
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In the case of our running example. where the finite window is size 4096 and the maximum copy
length is 16 characters, an appropriate setting of the above parameters is:

r=2 b=8 p=100. n=200 ‘ (13) .

\r\eneedtotahsomecmthatfhe heuristic docs not find the optimal sohition- It turns dut. that 1i.
we just start as in equation 9, then the first Afy will not compress well, but the heuristic will start -
the behavior we are seeking in Afy. Asymptotxcallyv;ea‘hmaworstmse ratio of-l/S bﬁm_ E

theoptnnalalgmthmandthepoﬂcyhcurisﬂc.
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Appendix B: Computing a Unary-Based Variable-Length Encoding of the Integers

InSmSnqujda(mnep.aop)umcdeqﬂﬁewegersmamdnonafawwdby .
a zero followed by a fleld of j bits, where j is in the arithmetic progression defined by (start, step.
stop). Mca:kdejindpwbythﬁﬂomgm

EnmdeVa-rxoc[ou:cmDmM.msap.hscmmq {
UNTIL out < Powes2fstart] DO

PuBiL 1}

* out « out - Power2[start};

start « start + Step.
IF start € last THEN PutBits{out. start + 1] ~ 0 followed by fleld of size “stars”
ELSE IF start > last THEN ERROR
?SEPULBHWLM]; - save a bit

PutBits: PROC fout: CARD, bits: INTEGER] ~
Ourpwzhebim.ryencoﬁngof"aw'bmfwldqfslu‘bin“

NatkeMMzmadnkabIei&mmbﬂmﬂnthﬁzqﬂkarhmw



