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interference, by interacting with a wanted signal of high amplitude, intermodulation
products might be produced parametrically and which do interfere. The relevant variables
which might determine this are the amplitude of the time domain interference and whether
the resulting intermodulation product is of the time duration of the original wanted signal.

Blocking, which is an overload of the RF amplifiers which increases their
nonlinearity and results in gain reduction, is only possible with large interfering signals.

It is worthwhile to consider the frequency modulation (FM) approach, here,
because it involves (i) frequency tuning, (ii) amplitude limiting; (iii) frequency
discrimination and conversion to AM; (iv) rectification of the AM to audio. Step (ii) rids the
signal of unwanted amplitude variations. The question is, from the time domain point of
view, whether step (ii) removes any time domain signal from interfering with the FM
signal. A second question concerns a possible hindrance to time domain signal use, in that
in an FM system signal-to-noise is increased if the widest bandwidth is used. Now the
limiter, (ii) above, converts the interfering signal into a phase modulation of the required
signal. The result is that for an interfering signal of amplitude x, the instantaneous

frequency is oy - xwcos[w;t], with a maximum deviation of x; , at a modulating
frequency of o, where () is the frequency of the wanted signal and @ is the difference
between () and that of the interference. Thus the interfering output is proportional to the

difference frequency, @, so the wider the bandwidth of the FM system, the less the time
domain system will interfere. It follows that for a wideband FM system, that is, one with a
high modulation index, the interference results in a smaller voltage swing. This is because,
due to the amplitude limiting, the interference is proportional to not only its amplitude, x,

but also the frequency difference, ;. It should also be appreciated that this interference
must first pass through the IF stage. Therefore it appears that the chances of interfering
with FM systems are smaller than with AM systems.

It should be apparent by now that the designers of present-day radio receivers have
been following a design philosophy exactly the opposite to that required for time domain
receiver design. The following quotation reveals this:

"The great majority of radio receivers use the superheterodyne principle because the fixed
intermediate frequency or frequencies can lead to designs with high selectivity. Selectivity
is important in the realisation of the basic idea of a receiver - that it should produce an
(audio) output only from an RF signal at the correct channel frequency."%

That being the case, a major question is whether intermodulation products can be
produced in these high frequency-selective designs. In order not to obtain intermodulation
products from interference, the RF amplifier must be as linear as possible. This
requirement is at odds with the requirement, mentioned above, to convert to an IF signal,
because this conversion uses a nonlinear element to which is fed the signal and the local
oscillator signal. Therefore, the mixer cannot be a linear unit.

The overwhelming majority of most receiver-demodulators concern narrowband
signals. The two exceptions, and for which there is the possibility of interference by a time
domain transmitter, are (i) television signals and (ii) spread spectrum signals. These two
kinds of signals are the most important kind to consider for interference.

2Howson, D.P., RF and mixer stages, pp. 51-74, in W. Gosling (ed) Radio Receivers,
Peter Peregrinus, London, 1986.
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Demodulators recover the baseband signal transmitted. In the past, the baseband
signal was digital, but presently, and in the future, it will be digital. For digital reception,
the demodulator reduces the incoming signal to baseband analog form and then this is
passed to a data modem. The demodulation will depend on the type of transmission defined
with reference to the following generic equation:

y(t) = A cos[at + ¢].

If A is a time-dependent variable, then the signal is AM. If either @, or ¢ are time

dependent, then the signal is FM. Variation of both A and @ or ¢ will generate other
modulations including single sideband AM (SSBAM) and single sideband FM (SSBFM).

In the case of AM signals, the description is:
A() =do + diz(t) = do[1 + {di/do}2(D)],

where z(t) is the baseband modulating function and do, d; are parameters. d;/dg is the
modulation index, m. The classification of AM signals is then25;

(i) if m<1, A(t) is non-zero and positive for all t. This is full carrier double-sideband AM.

(ii) if m = 1, A(t) is positive except for values of t at which it instantaneously falls to zero.
This is also double-sideband AM but at 100%. The instantaneous frequency is always

constant and equal to 0.

(iii) if m > 1, A(t) changes sign for different values of t. This is double-sideband
diminished carrier (DSBDC).

(iv) if m — oo (dp—0), A(t) is identical in sign with z(t). This is double-sideband
suppressed carrier (DSBSC). In the present context it is known as binary phase-shift
keying (BPSK).

In the case of (iii) and (iv), the sign of A(t) can change during the modulation cycle.
When this occurs, there is an instantaneous change in the angle n as A(t) passes through
zero. This change in phase is also an infinite impulse function in the frequency domain.
Therefore, for (iii) and (iv) the instantaneous frequency can become infinite at zeros of A.
These phase "jumps" could be a cause of interference to time domain communications.
However, as they would not be correlated with the pulse train of an operating time domain
systems, there is no reason to suppose that the jumps would affect time domain information
transmission.

If z(t) is expanded:
z(t) = 21" acos[yt + ¢,
then:

25Gosling, W., Demodulators, pp. 153-180 in W. Gosling (ed) Radio Receivers, Peter
Peregrinus, London, 1986.
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y(©) = dp{1 + mX;ma,cos[t + ¢;]}cos[wt + ¢],

or

y(t) = agcos[ext + ¢] +
mdoXacos[(@ + Wt + & + ¢;] +
mdo2;™ a,cos[(@ + Wt + ¢ + dr).

The first component is the carrier, the second is the upper sideband and the third is the
lower sideband.

A major observation is that if @, is a function of r, and if the maximum modulating
component is @y, then the spectrum of y(t) then extends from (@ - ®,) to (®; + ,) or
2w,. Thus AM is not, strictly speaking, narrowband. Secondly, most of the energy is in
the carrier, G.

In the case of frequency modulation (FM),

y(t) = A cos[mt + ¢],
where

0O=0: + Awz(t)-1< z < +1.

The spectrum is of infinite extent and symmetrical, but the sidebands diminish rapidly in
amplitude away from ), so there is no interference to neighboring channels. Again, if the
maximum frequency component in z(t) is @y, then the practical bandwidth is (i) 2@, , if A®
<< @y, (narrowband FM); (ii) 2A® for A® 2 ®,,.

A simple kind of AM demodulator is a diode circuit, which, for all its simplicity, is
nonetheless nonlinear and cannot generate IF harmonics and spurious receiver responses. It
remains to be seen whether a time domain impulse signal together with a wanted AM signal
will together generate IF harmonics. The amplitude of the time domain signal would be, of
course, critical.

Another demodulator is the AM product demodulator. This demodulator has the
unsatisfactory property of continuing to demodulate in the absence of a signal because the
limiter amplifier limits fully on noise. It remains to be seen whether a time domain impulse
signal in noise would generate an unwanted signal. In this case, the duration of the time
domain signal would be critical.

The FM pulse counting discriminator demodulator operates on the rising or falling
IF y(t). The hard limiting and digital signals could possibly interfere with the reception of
time domain signals, but not the information transmission if those signals were train
encoded.

In the FM direct conversion receiver, the intermediate frequency is reduced to zero,
and there is an absence of frequency selectivity. There are two ways in which these
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receivers can be suffer interference: (i) spectrum folding: the requirement in this receiver is
for negative frequency components to be superimposed on the positive components using,
e.g., a Hilbert transform receiver. Thus signals from outside the wanted signal band can
appear in the receiver output due to the folding operation; (ii) spurious demodulation: there
is no RF selectivity and due to the presence of some nonlinearity, time domain signals
could mix with wanted signals producing spurious output. Some approaches to removing
this drawback involve using a mixer element which has odd-order symmetry (cubic law)
rather than even-order (square law).

Automatic Gain Control (AGC) or Feedback Automatic Gain Conrol (FBAGC)
might be affected by time domain communications. AGC is a nonlinear closed-loop gain
technique, the objective of which is to suppress large mean level variations of a received
signal's envelope. AGC prevents the gain-stages in AM-type receivers from being
overloaded or undriven and to maintain the output signal level of the receiver at a relatively
constant level. These variations are referred to as fading, and are of the slow and fast type.
The slow type is of no concern to us here. The fast type is the result of multipath and can
occur at rates of up to 100 Hz. In order to reject envelope variations, a signal is extracted
from the output proportional to the magnitude of the envelope. This is passed through a
smoothing filter which removes the high frequency terms (which probably includes time
domain signals). This filtered signal is then compared with a fixed DC reference voltage
and a second filter extracts low frequency components in the resulting difference signal.
The output from this filter is then used to control the gain of a variable gain amplifier
(VGA).

However, FBAGC is only partially successful in achieving suppression of fast
fading. There are problems in time delay. If the bandwidth of the FBAGC circuit is
increased in order to suppress unwanted envelope fading, then complete FBAGC failure
can result?6, Feedforward, rather than feedback AGC systems have been implemented to
combat fast fading. This is known as Feedforward Automatic Gain Control (FFAGC). In
FFAGC, the unwanted fast signal fluctuations are extracted from the input by a temporal
filter and then divided into the total signal plus the signal fluctuations line. However,
FFAGC has no effect on random frequency variations. This suggests that all types of AGC
would function to pursue a futile effort to follow the fading introduced by a time domain
communications system. Another technique, that of FeedForward Signal Regeneration
(FFSR) uses a linear mix-down with a delayed version of the input signal for reduction of
ambient noise. The conventional wisdom now is that FBAGC should be used for slow
fading and FFAGC and FFSR for fast fading - the former for AM systems and the latter for
SSB (single sideband) systems.

In the case of Direct Sequence (DS) Spread Spectrum receivers for frequency
hopping there is a combination of multiplicative mixing and narrowband filter or integration
which is equivalent to correlation. Hence the receiver is a correlator system. A correlation
system has mathematical correspondences with a matched filter, so the receiver is also a
matched filter (although the outputs from a correlator and a matched filter are, of course,
different). In a digital system, a modulator applies impulses to a spreader. Unlike a time
domain communications system, the bandwidth of the impulse is not transmitted, but only
part of its spectrum weighted according to amplitude and phase. The receiver correlator or
matched filter reconstitutes the impulse digital form of the transmitted signal. That the
frequency bandwidth is used sequentially, instead of simultaneously, as in the time domain
communications case, is immaterial to the bandwidth design of the receiver, especially as a

26McGeehan, J.P., Automatic gain control, pp. 181-223 in W. Gosling (ed) Radio
Receivers, Peter Peregrinus, London, 1986.
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number of different transmission channels operate within a given bandwidth allocation. For
maximum noninterference between signals on a multiply-used bandwidth, such signals
must be mutually orthogonal. Orthogonality can be achieved with Walsh functions, Costas
codes, etc. If there is absolutely a necessity for strict orthogonality, then a limited number
of codes is obtained (the number depending on the length of the train). If merely a low
correlation is all that is required, then many more codes are available.

Spread spectrum codes for frequency hopping are based on a feedback shift register
pseudo-random sequence generator. Operation of these codes require knowledge of an
initiation of the sequence. I adapted this approach to time domain communications, which
are a form of time hopping. The codes I developed also require knowledge of an initiation
of the sequence, of course.

Such codes are of the feedback shift-register pseudo-random form. Maximal-length
sequences should be cosidered for time domain communications because of their relative
non-interference properties. Maximal length shift register sequences (m-sequences) are
binary sequences of length p = 2™ - 1, where m is the number of shift register stages. An
m-sequence has the property that a window of length m slid along an m-sequence will see
every 2™ - 1 nonzero binary m-tuple once. m-sequences are also pseudorandom with
respect to the distribution of runs, where a run is a maximal string of identical symbols. In
any m-sequence, one half the runs have length 1, one quarter have length 2, one eighth
have length 3 and so on, as long as these fractions give and integral number of runs. In
each case the number of runs of 0's is equal to the number of runs of 1's.

m-sequences are described by characteristic polynomials which have a binary
feedback shift register form. The number of m-sequence codes possible of length 2m - 1 is
given by Euler's phi function:

¢(2m - 1)/m’

where the phi function describes the number of positive integers including 1 that are
relatively prime to and less than 2m - 1. In the case of m = §, 2m - 1 = 255. The prime
factors of 255 are: 3, 5 and 17, and 128 positive integers are relatively prime to and less
than 2m - 1. Therefore the number of m-sequence codes for an 8 stage shift register is:
128/8 = 16 codes.

Regarding the cross-correlation and auto-correlation sidelobes: in the case of an m-
sequence code of length 255, other codes will correlate with the matched receiver but at 10
db down. To obtain 40 db down, codes should be used of length 14,200. Using my
algorithms I can readily obtain such discriminating codes. However, all these codes require
knowledge by the receiver of the initiation of the sequence (i.e., synchronization). Having
remarked on the similarities between conventional spread spectrum communications and
time domain communications, we turn now to examine spread spectrum receivers.

A sequence inversion keying (SIK) or a phase shift keying (PSK) correlation
receiver has a local oscillator modulated by the same sequence as that of the transmitter.
The receiver sequence must be synchronized with the received signal, i.e., knowledge of
the initiation of the sequence must be available. In which case, the mixing of the spread
local oscillator signal with the received signal gives a narrowband IF modulated by the
original bit stream. Finally, the demodulator gives the information bit stream which is
decoded to give the analog signal.
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The crucial question is as follows: given the same frequency allocation bandwidth,
would a time domain communications systems interfere with, or receive interference from,
a conventional spread spectrum communications system? On first blush, one might say
yes, because even although the time domain system's use of the allocated bandwidth is
both a simultaneous use (in the case of the monocycle pulse) and sequential (in the case of
the coded train), and the conventional spread spectrum's use is always sequential, the
spread spectrum direct sequence receiver's antenna does not know the difference (except,.
perhaps, to transform the signal by dispersion and differentiation). Having arrived at the
front end of the direct sequence receiver, the time domain monocycle should mix with the
local oscillator signal. The further question is whether undispersed pulses of 1 nsec.
duration will interact for a long enough time for a correlation to take place. Furthermore,
there is also the presupposition that the time domain broadband monocycle was also
registered as the initiating pulse for a sequence. In effect, for wideband interference - the
case for a time domain monocycle train - the interfering energy must be in the intermediate
frequency bandwidth. Given that the pulse on-off rate (GHz) for the time domain system is
much faster than that of a frequency domain system, nonetheless, the chip rate (MHz) is
about the same. Thus, given the possibility of a time domain system interference with a
spread spectrum receiver because of the chip rate (MHz), the question, again, becomes
whether actually the time constant of the spread spectrum's mixing and threshold process is
fast enough given the pulse on-off rate of the time domain system (GHz). The answer to
this question can only be obtained by an examination of spread spectrum receivers on a
case-by-case basis. Specifically, there is the need to know the integration time of the
mixing process.

In the case of telecommunications, it is instructive to consider to which of the three
major access techniques to a satellite transponder time domain communications

corresponds. The three are27:

(a) FDMA (frequency division multiple access). As with FDMA the transponder is divided
into frequency band segments and each segment assigned to a user, there is no
correspondence here with time domain communications.

(b) TDMA (time division multiple access). A TDMA user has access to a broadband
channel of communications and digital transmission is usual, so there is some common
ground with time domain communications. However, only one user appears on the
transponder at any one given time, so there is no correspondence with time domain
communications in this regard.

(c) CDMA (code division multiple access). With CDMA coding is used to spread the
transmitted signal over the available frequency and temporal bandwidths. Time domain
communications certainly uses coding to achieve comparable spreading. However, the
short duration monocycle signal is frequency spread to begin with, which is not the case
with conventional CDMA.

A reading of the literature on conventional receivers reveals that so prevailing is the
mindset concerning frequency selectivity, that, as yet, I have not found any specifications
on the transient response time of those receivers. It is important to know those
specifications. A narrowband receiver may have a steady state response, say 1 GHZ, while

27Freeman, R.L., Radio System Design for Telecommunications (1-100 GHz), Wiley.
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its transient turn-on response is less speedy, say 100 MHz (Fig. 1). In order to predict the
interference with the receiver, the transient response must be known.

___ Slow Onset
Narrow Band
Frequency Domain
Receiver

\ Time Domain

Broad Band
Receiver

Fig. 1. This is a time-frequency representation of a time domain monocycle
pseudorandomly coded pulse train and the receiver for a narrow band sinusoid. The area of
narrowband reception does not overlap with the pseudorandomly coded pulse train, but this
would not be apparent if viewed only from the vantage of a frequency-amplitude plot even
if the narrow-band receiver is tuned to the pulse average frequency. There is a maximum
frequency indicated - that of the pulse's average frequency. This would only be seen or
sampled and displayed on a television screen which is a form of realm-time reception. The
time domain pulse, represented here, is of too short a duration for the turn-on time of the
2Ialrrow-band receiver, even although the receiver and the pulse are at the same frequency
ocation.

The major difficulty in characterising the interference to frequency domain receivers
is the difference in philosophy underlying the approach to frequency, versus time, domain
receivers. In the case of frequency domain narrow band sinusoidal signals of long
duration, At, any point of discontinuity, dt, e.g., at the beginning and end of the signal, is
small compared with the duration At. For such signals, local time methods relate the global
nature of the signal, i.e., its envelope, to its spectrum. This procedure is followed in
Fourier analysis, as well as in Taylor series and other expansions.

In contrast, in the case of time domain pulse or wave packet signals, any point of
discontinuity, dt, is large or of the same order compared with the signal duration At.
Therefore time domain signals must be treated differently using real time methods to
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preserve the local nature, or fine structure, of the signal. Periodic, or aperiodic (transient),
i.e., frequency domain approaches to time domain signal processing, cannot be used due to
the fact that for time domain signals: dt = At. The implication of this is that time domain
signals and their derivatives do not possess discontinuities, indicating their analytical signal
properties. Analytic signals are not deterministic or causal but are continuous and require
local, or real time methods for characterization. Whereas the frequency domain signal is
characterized by its harmonic frequency, the time domain signal is characterized by its
instantaneous frequency.

That being the case, what is the required referent for a time domain receiver

corresponding to the frequency (phasor) referent of frequency domain receivers? With @ as
the radian frequency of a wave and s the phasor, or neper, frequency defining the envelope
shape, a complex signal is:

so = Gp + iy,

and an analytic signal (also known as the preenvelope function) is:
S(t) = S(t) + iS(t) = exp[so] = A(Dexplimgt+ ¢t] = expliwplexp[cp],
with real part

S(t) = exp[op]coswot,

and imaginary part:

§(t) = exp[op]Jsint.

S(t) is the Hilbert transform of S(t):

S = /myf S@se - .

-co

oo

S =-(1/m) | S(o)(t - vdr.

-0

Therefore, §(t) can be considered the output of a quadrature filter with input S(t). The
quadrature filter has an impulse response:

h(t) = 1/(xt)
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and system function:
H(iw) =-1,0>0;i, 0<0.

The envelope of a wave packet (also known as the absolute value of the preenvelope) is
defined as:

envS(t) = exp[onl = VIS()2 + S(H2],
and the carrier, average or midfrequency is defined as:
explion] = [S(®) + ISOVIVIS®)2 + S©2I].
For example, suppose
S(t) = A(t)cosapt,
then using the Hilbert transform the analytic signal is:
S(t) = A(t)cosapt + iA(t)sinagt,
and the envelope of S(t) is:
envS(t) =exp[on] = \/[(A(t)cosmot )2 + (A(t)sinagt)?] = A(t).
Now the power spectra are defined:
Dss(w) = Dss(WH(I0) = -iDss(®), © > 0; = iDss(w), ¥ <0,
Therefore:

D33(0) = 2[Dss(0) + iPs5(W)] = 2Pss(®) , > 0; =0 W < 0.

This final result is the ultimate reason for considering time domain signals as
analytic signals, rather than complex signals in the time doman. The issue of causality for
random continuous signals dictates that the power density spectrum be zero for negative
frequencies. The analytic signals - together with the Hilbert transform - permits this
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condition to be met. The use of the complex signal (i.e., with real and imaginary part) does
not, and therefore is not suitable for use in the time domain. Causality conditions require
that inverse transforms must be zero for negative t and have to be met in order to preserve
the information in the signal. If the real and imaginary parts of a Fourier integral of a

function S(t) satisfy the Hilbert transform relations, then S(t) is causal.

Fig. 2. shows the representations of a complex plane representation of the complete
wave packet . It is usual in the teaching of electrical engineering to represent a circuit's
response on the left side of the complex plane, i.e., the transient decay, but never on the
right side, which is the transient response. However, time domain pulses must be
represented on both sides and the transient onset response is critical in the understanding of
receiver circuitry to such pulses. Unfortunately knowledge of the transient onset response
is lacking for frequency domain receivers. The supposition has been that noise would
always be frequency domain noise.

10

Fig. 2. Representation of a short pulse (left) in the complex plane (right). The onset of the
pulse is represented in the right upswing in the complex plane, and the offset is represented
in the left of the complex plane.

Returning to Fig. 1., if a cut is made through the figure then temporal response of a
time domain pulse can be shown with respect to the transient turnon reponse of
representative receivers (Fig. 3). Each synchronous frequency domain receiver is labeled
with respect to its transient onset response (100, 50, 25, 10 and 5 MHz) and its steady state
reponse (all: 1 GHz). Even for the case of the fastest transient response shown, 100 MHz,
the time domain signal is 20 db down.
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1 GHZ monocycle 100 MHz, 1 GHz
50 MHz, 1 GHz
0.8 25 MHz, 1 GHz
- 0.6
= 10 MHz, 1 GHz
g_ 0.4
) 5 MHz, 1 GHz
o 0.2
=
2
- 2 4 6 8 10
nanoseconds —

Fig. 3. This is a cut through the three-dimensional Fig. 1., above, and represents the
transient onset response of synchronous frequency domain receivers with respect to that of
a time domain 1 GHz pulse of 1 nsec. Representative transient responses are shown with
the transient onset frequency represented. All receivers shown have a steady state response
of 1 GHz.

The final question considered, here, is whether conventional signals can cause
interference to time domain communications. This question can be examined from two
points of view: (i) because the monocycle's receive antenna is broadband, there should be
many conventional sources, including spark ignitions from automobiles, etc., which
should cause noise to a microsignal (at GH:z rates) in a time domain system; (ii) on the
other hand, as the pulse train is sequentially coded, there should be sufficient processing
gain that the macrosignal (at MHz rates) is recoverable from the noise. In other words,
given that each individual pulse is vulnerable to interference, can the sequential coding
provide enough processing gain offsetting the individual pulse's noise interference? The
present conclusion is that the processing gain provided by the coded sequence offsets any
individual pulse interference.
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Appendix C.
Abstract: The types of codes necessary for minimum interference between users of

impulse radio are examined. The types of codes proposed which give minimum
interference are modifications of frequency-hopping Costas codes to time hopping.

The coding prolem can be thought about in the following way. The pulse train
sequence can be considered in the time hop format (or Barrett-amended Costas codes), in
which we have a code of length 10 and 10 dither slots within a frame (10 x 10, because
256 x 256 is too tedious, although, of course, it can be done). An illustrative coding
scheme is shown in Fig. 1, below.

As an exercise, we can look at the possible interference between two Costas codes
amended for time domain hopping. Then:

(1) nis the number of T = 1 nsec. pulses in a pulse train. n must be one less than a prime
number, p, i.e., n = p - 1. We shall address n = 10, and thus p = 11, which is a prime
number.

n is also the number of dithered intervals, dt, so we have an n x n matrix, i.e., a 10x 10
matrix.

(2) We can define a goincidence function C(r,s) as the number of coincidences of marks
between an original array and its translation. The parameters r and s define the amount of
translation; r is the number of integer shifts to the right or left (translated by columns), and
s is the number of integer shifts up or down (translated by rows). The coincidence function
isa d1scxete analog of the (unnormalized) ambiguity function. Similarly, the cross-

is a discrete analog of the cross-ambiguity function. That is, With two
nxn arrays, A and B, for each integer pair, (r,s), their cross-coincidence CAB(r,s) is
defined as the number of coincidences of marks between A and translated versions of B,
which has been shifted to the right by r and up by s.

(3) A Costas array is an array (i) consisting of n rows and n columns which has exactly one
mark in each row and column; (ii) with a coincidence function satisfying:

Crs) <1 (1)

for all integer pairs (r,s) # (0,0) with Il <n - 1, Isl <n -1. In other words, a Costas array is
a permutation matrix where the vector between each pair of elements in the array (matrix) is
unique.

(4) We now run into a problem. If we require the following:

“Fmd1 tv|v<l) nxn 1Costas arrays, A and B, such that Cg(r,s) < 1 for all integer pairs with Irl
<n si<n-1."

then it is known, that it is not possible to find two such arrays if
n 2 4. An n x n array for n = 4 is too small a pulse sequence to work with.

Fortunately, we can bound the bandwidth of the dithering to be a small portion of the
total b::éi:vhldth of each dithered pulse train. The problem is now constrained and can be
TEWOT us:
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"Given an integer m (0 < m <n - 1), find two n x n Costas arrays, A and B, such that
Cag(r,s) < 1 for all integer pairs with Il <n - 1, Isl <m."

(5) Finding two arrays which minimally correlate implies that the signals based on those
arrays minimally correlate, i.e., that the maximum value of the cross-ambiguity function
between signals f(t) and g(t) given by:

|Tf(t)g*(t)exp[-i21t<1>tdtl2 2)

is small compared with the peak value of the ambiguity function.
The problem stated in (4) can be solved but with the following restrictions:

n=p-1, 3)
m < (n - 2)/2, 4)
m<(Mn-q)/q or(m+1)q<n, (5)

where q is the number of Costas arrays with the required noninterference properties.

What this means is: if the amount of dither (m) is set, and the number of pulses in the pulse
train (n) is set, then the number of noninterfering Costas codes (q) is determined.
Alternatively, if it is decided that a certain number of noninterfering Costas codes (q) is
required, then the number of pulses in the pulse train (n) and the amount of dither (m) are
determined. In a word: there is a set relation between the number of noninterfering codes to
be obtained, the number of pulses in the pulse train, and the amount of dither.

(6) We now procede to construct Costas codes for n = 10 (i.e., p = 11). This approach can
be the basis for an algorithm to construct codes of any n. First, some more definitions:

GF(p) is a Galois field in arithmetic modulo, p. (Galois fields are finite fields containing q
< oo elements).

a is a primitive element of the Galois field.

dj=(m + 1)(§ - 1) + 1, j = 1,...,q are integers in the (6)

A; = [a%, adl+l,  adi+n-1], j = 1,..q arrays. @

where q satisfies the inequality (5) and the powers in (7) are evaluated modulo p. A; is
called a Weich array.

(7) We commence with n = 10, p =11, m = 2, q = 3 (satisfying (5)). The primitive element
of GF(11)isa = 2.

Using (5), dji=Q2+ DA -D+1=1,forj=1.

Using (6), we obtain the following numbers: 2,4,8,5,10,9,7,3,6,1, by

2=21

4=22

8 =23

5=24-11=16-11
10=25-22=32-22
9=26-55=64-55
7=27-121=128-121

3 =28-253=256-253

6= 27-506 =512 - 506
1=210 - 1023 = 1024 - 1023
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This is the A; array or a Welch array. We can plot this as a coding matrix in Fig. 1.
Coding matrix
o]

ot

Fig. 1. Coding Matrix for an amended Costas sequence (the A; array or the Welch array
forn=10,p=11,m =2, q = 3). o = 2 is a primitive element of GF(11). A; is
2,4,8,5,10,9,7,3,6,1.

(8) The next step is to extend the Welch amended Costas array horizontally to the right by
periodic extension with period n. From the periodically extended array (upper in Fig. 2) an
n X n subarray is taken starting at (m + 2)- nd column (shaded area in Fig. 2). This is Aj.

A2
e E——
A1 Al
- - -

rl

o B
A1 A2

Fig. 2. Generation of the A array from the A; Welch array forn=10,p=11,m=2,q=

3. o =2is a primitive element of GF(11). A, is 2,4,8,5,10,9,7,3,6,1; A, is
5,10,9,7,3,6,1,2,4,8.
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(9) The next step is to generate As. A similar procedure is followed as in step 8) above,
but starting the subarray at the (m + 1)(j - 1) column for m = 2, j = 3. This is Ag (Fig. 3).

A3
IA—I A1
-1 ——— i

A1 A3
Fig. 3. Generation of the A3 array from the A; Welch array forn=10,p=11,m=2,q=

3. o =2is a primitive element of GF(11). A, is 2,4,8,5,10,9,7,3,6,1; A3 is
7,3,6,1,2,4,8,5,10,9.

(10) Difference matrices can then constructed for the A, A; and A sequences (Fig.s 4-6).

a 2 4 8 5 10 9 7 3 6 1
i=1 2 4 -3 5 -1 2 -4 3 -5
=2 6 1 2 4 3 6 -1 2

=3 3 6 1 2 7 3 -6

-4 8 5 -1 2 -4 -8

= 7 3 5 1 9

=% 5 -1 2 -4

=7 1 2

=% 4 -3

=9 -1

Fig. 4. Difference Matrix for A;.
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g 5 10 9 7 3 6 1 2 4 8
=1 5 -1 2 -4 3 -5 1 2 4
=2 4 3 -6 -1 2 -4 3 6

=3 2 7 3 6 -1 -2

-4 2 -4 8 5 1 2

= 1 9 7 3 5

= -4 -8 -5 1

=7 3 6 -

=8 -1 22

=9 3

a7 3 6 1 2 4 8 5 10 9
el 4 3 5 1 2 4 3 5 1
2 1 2 4 3 6 1 2z 4

3 6 1 2 1 3 6 1

4 5 1 2 4 8 5

= 3 5 1 9 7

% 1 2 4 8

27 2 1 3

% 3 6

=9 2

Fig. 6. Difference Matrix for As.

The difference triangle can be viewed as follows. The first row (i=1) corresponds

to a Ot dither of one time slot. Therefore the first element (=2) of this row means that two
shifts upward will yield a coincidence between the transmitted pulse, Ty, and the
transmitted pulse, T, i.e., they will be ambiguous. Two shifts upward corresponds to two
steps in the pulse train. Therefore an ambiguity diagram, or sidelobe diagram can be
created, in which the "2" in the first row will correspond to a "1" in the sidelobe matrix in

the row that corresponds to a shifted T of 2, and in the column that corresponds to a 3t of
1. This sidelobe matrix for the A; array of Fig. 1 is shown in Fig. 7, for the A array in
Fig. 8 and for the A3 array in Fig. 9.



Sidelobe Matrix
9 1
8 I
7
6 1T 1
5 1 1 1
4 T T T 1 T
3 17 11 1 1
- 2 1 1 111 1
'g 1 1 1 1 1
Z 0 1
% -1 1 17T 1 1
-2 171 11 1 1
-3 1 1 1 1 1]
-4 1 111 1
-5 1 1 1 |
-6 I 1
-7 I
-8 I
-9
9 -8-76-5-4-3-2-1012 8

Dither Delay Interval
Fig. 7. Sidelobe Matrix for the A array.
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Sidelobe Matrix
9 1
8 1 1
7 I 1
6 1 I 1 1
5 1 1 1 1 I
4 1 11 1 11 1
3 1 1 1] 1 1
w2 T 1 1] 1 1 T
'g 1 I 17 11 1 IT 17 1
Z 0 1
2
E -1 I I 1 1 1
-2 Il 1 111 1 1
S i1 if1 1
-4 11 1 111 1 1
-5 1 1 1
-6 1 1 1
-7 1
-8 1 1
-9 1
98-76-5-4-3-2-1012 34526789
Dither Delay Interval

Fig. 8. Sidelobe Matrix for the A; array.
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Sidelobe Matrix
9 T
8 T T
7 T |1 T
6 T T T
5 | | | T[T
4 T 1 1 T T
3 T T T I 1 |
w2 | T[T 1 T T
'g 1 | T 111 T I 1] 1 T
Z 0 1
% -1 1 I 1 1 T I I [ 1
2 | | T 1 T 1
-3 1 T 1] 1 1 T
-4 T | 1 T
-5 T[T | T |
-6 T 1 |
-7 T T T
-8 1 1
-9 1

9-8-7-6-5-4-3-2-1012 3 4567829
Dither Delay Interval
Fig. 8. Sidelobe Matrix for the Aj array.
We may now procede to answer the : What is the interference between two of these
codes? Taking the sidelobe matrix plots of arrays A;, A; and A3, the composite

superimposed matric plot is shown in Fig. 9. This indicates considerable overlap, indicated
by the 2's and 3's, but also considable uniqueness.
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Sidelobe Matrix
9 1
8 2 1
7 1 |
6 3 2 1
5 1 2 3 71
4 3 |3 1
3 11 1 g 7| 3 4 2 T i
ey 2 1 232 32. 2 1
g 1 I 1 1 I 433 3 2] 2 G I
Z 0 3
% -1 T2 12 A 2[ 2{2 3121 I{ § 41 {111
2 1 1 2 | 2] 3 2[ 3212 [T |1
ST [1 212 [ 3[ {21 21 21 [2 2
-4 | | 1 3] 3 3 2
-5 IT A 2 3 3 2| 1 1
-6 1 3 21 3 1
-7 1 3 1
-8 1 2 1
-9 1 2

9 -8-76-5-4-3-2-1012 34526789
Dither Delay Interval
Fig. 10. Sidelobe matrix A;, A, and A3 superimposed.
In order to show this uniqueness pictorially, i.e., that Costas-Barrett signals can be
noninterfering, the data of Fig. 10 are replotted and coded in Fig. 11. This Figure shows

that any square not black, which indicates hits of 2 and 3, is unique to the codes from the
A1, Aj and Aj arrays.
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Sidelobe Matrices A1, A2 and A3:n=10,p=11,m=2,q=3. o =2is aprimitive element of GF(11

\©

S = N W s NI

Pulse Number

98-76-543-2-1012 3452461712829

Dither Delay Interval

. 2 or 3 overlaps

. Welch or Costas Al array
Costas A2 array

E Costas A3 array

Fig. 11. Sidelobe matrix A;, A, and A3 superimposed and uniquely labeled.

The result and answer is clearcut for only two codes: unique, and therefore
noninterfering, time-frequency patterns are obtained for these codes and the reader is
reminded that this analysis is based on only a 10 x 10 array. (However, all of the above
reasoning applies to arrays of any size - all that is required is scale-up).
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The maximum number of intersections and the maximum value of the discrete
cross-correlation function, R(k,n), between two Costas arrays is bounded by the maximum
of the relative powers [ and m between the analogous primitive elements defining the
arrays, i.e., R(k,n) < max(I,m). (1= m = 10 for the 10 x 10 matrices considered here).

The sidelobe arrays studied above are digital representations of the corresponding
ambiguity functions. That is, the ambiguity problem is "discretized" by these arrays. This
correspondence is established as follows:

The energy in the T = 1 nsec.-long duration transmitted pulses can be normalized.
If A is the constant amplitude of a sine wave present in each segment of length T/N
seconds, then the energy of each segment is AZT. To normalize the energy of a rectangular
pulse requires:

A=1IAT ®
and each pulse is:
si(®) = (AN Tlexpli(ax + dy), for 1 Sk SN ©9)

within the 1 nsec. time interval, i.e., within (k - 1)T/N <t <kT/N. If B is the 1 nsec.
pulse's signal bandwidth, (so that each pulse occupies a signal time-bandwidth product of
2BT), then the frequency components of the pulse are given by:

ax = o + yx(B/N), (10)

where the yi, k = 1,2,...., N are an ordered set of integers. The complete 1 nsec. signal
can then be given as:

(11)
N N
u(t) = Xsi(t) = AN expﬁagﬂlzexpw x expli(B/N)ywt] p(t - (T/N)K),
where p(°) is a rectangular gating pulse given by:
p(t) = 1, if -T/N <t £ 0; 0, otherwise. (12)
The ambiguity function for the signal is then:
+oo
Ay(T,m) = J. u(t + tHu*(explint]dt (13)

NN
= (1/T) e:gl[goﬂZZexp[m - 0] expli(B/N)yx1]

x exp[-i(T/N)(® - (B/N)(yk - yD)]
x Ap(T - (T/N)(k - D; @ - (B/N)(yx - YD),

where * denotes complex conjugation and A, is the ambiguity function of the rectangular

gating pulse p(e). If the phase of each pulse is zero, i.e, ¢x =0, then Eq. (13) becomes:
NN

Au(t0) = (1/T)explicot] XX AT 0), (14)
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k=0 0

where each A, &(T;w) is given by:

L 2. 3,
A®X(r,0) = expli(B/N)yyT] exp[i(’l;/N)lm] exp[il(BT/N2)(yk - y)I

(15)

x Ap(t - (T/N)(k - D; @ - (B/N)(yk - y)-

Now the terms labeled 1. and 2. are frequency x time functions and term 3. is a multiple of
27 reducing to unity for digital representation. In other words, in the case of digital
representation Eq. (15) reduces to term 4. which is the sidelobe matrix.

Having established the relationship between the discrete ambiguity function
representation of the sidelobe matrix and the continuous conventional representation, we
may procede to plot in "bird's eye" form the conventional ambiguity function for a 10 x 10
Costas-Barrett signal in Fig. 12 using Eq. (15).

2. (.Egstas-Barrett Signa__P
N
D)

0.5t [}

f e SN

i
(
o R A

-2 -1.5 -1 -0.5 0 0.5 1.5

o)

Fig. 12. Contour plot of the ambiguity diagram for a 10 x 10 Costas-Barrett signal.

The above was based on two small 10 x 10 array and their interference overlap.
Naturally, a 256 x 256 would be more enlightening, but in a report like this, the argument
would be less transparent to a reader. However, needless to say, the same logic applies.
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November 5, 1992

William S. Moorhead, President
Pulson Communications

8280 Greensboro Drive, Suite 500
McLean, VA 22102-3807

Dear Mr. Moorhead:

I’'m writing to you to report my impressions to date of Pulson Communications’ im-
pulse radio technology, especially with regard to the number and quality of nearly orthog-
onal codes for controlling pulse transmission times. I understand that this letter may be
used as part of a filing to the Federal Communications Commission.

As you know, these codes are a critical part of the system because they accomplish
two things: (1) they smooth the distribution of energy in the frequency domain, thereby
minimizing the potential for interference to and from conventional receivers, and (2) they
contribute to the maximization of the impulse radio system’s capacity.

In order to develop my opinion of the coding requirements for Pulson Communications’
system, I developed a thbrough understanding of the system, including all aspects of pulse
formation, transmission, and receiver processing. Moreover, I observed demonstrations of
signal propagation in a laboratory environment. My conclusions at this time are:

o Good pseudo-random codes for controlling monocycle transmission times do exist, and
these codes will tend to spread the transmitted signal power relatively uniformly over

a bandwidth on the order of the reciprocal of the monocycle’s duration.

¢ There are a large number of codes that meet the technical requirements of the system.

Moreover, these codes can be generated with standard digital circuits.

I believe that the multiple-access impulse radio system is sound and holds the promise
of providing service equalling and quite possibly surpassing that of other asynchronous
multiple-access technologies. Furthermore, I believe that Pulson’s impulse radio technology
is by far the widest of the asynchronous wideband RF multiple-access technologies currently
being developed for commercial applications. Hence it represents a true pioneering effort
that is likely to reveal new communication capabilities and novel system architectures. For
example, while observing signal propagation in the laboratory, it was clear that the sub-
nanosecond time resolution of the Gaussian monocycle waveform makes unprecedented
multipath resolution possible. Application of Pulson’s proprietary receiver technology,



