
• 1

for immediate release
Contact: Caro I Na¥~ 8 '992

SMPTE Approves Task Force Report on Headers /Descri ptors"Cc'l(.l! CornrnlinicatiOfl> vt,j""lh,dor,

OffIce of the SeGielary
White Plains,'.Y., february 7. 1992 -- The Report of the Task
Force on Headers/Descriptors was approved unanimouslv at the full
mee~in2 of the SMPTE Standards Committee meeting held on Feb. 6.
1992 ill San Francisco. The Committee expressed its ftooreciation
to the Chairman of the rask Force. Dr. \'iilj StaCKhouse . .Jet
Proouision Laboratories, and to the Vice-Chairman, David Staelin,
"Iassachusetts Institute of Technologv. for their leadershio in
(~omoletinll the comoiex reporT. il1 the remarkablv short time of
seven months and to the members of the Task Force for their
expertise, insight, and close collaboration in the preoaration of
its valuable contents.

The report, in essence a feasibility study of possible methods to
imple~ent a header/descriptor mechanism, has been referred to the
SMPTE Committee on Television Production Technology for further
action, including the necessary work leading to detailed SMPTE
documentation of the format, construction., and usa2e of the
header and descriptor for the interchan2e of image, sound, and
related data between systems. It is anticioated that the high
level of collaboration that has existed between the
representatives of various industrv segments will continue into
this work and lead to a rapid convergence of views concerninll the
contents of the documents.

In essence, the proposed header is a digital label, identifvin2
the encodinll standard and the size of the data block contained in
the associated envelope. It mav also indicate the presence of a
reaaabJe descriptor. The header is the enabling mechanism for the
fle);ihle exchange of nicture. sOllnd. or other data between
diverse svstems, providing The necessary unambi~uous information
for the identification of the associated data. The design of The
header must consider the following attributes:

Universal. All relevant data blocks must be labeled and
identified to enable unambiRuous interpretation.

Interoperable. The header enables the sharing of data streams
~cross diverse applications, equipments and environments.

Extensible. Service enhancements and technical innovations can be
accommodated without obsolescence.

Cost Effective. A ran2e of equipment having differing
cost/performance characteristics can be accommodated within a
svstem.

Economic. The header occupies a very small percenta~e of the data
stream (several orders of ma~nitude less than simple sync in
NTSC).

Efficient. The header data can be rapidly acquired after changes
in source or content of data streams, thus allowing editing,
switchin~ and transmission of differing formats in a system.

The descriptor is a block of data that enhances the utility of
the main data for the user. It may contain, in standardized
format, data concerning production, ownership, access, previous
processing, or other information additional to the basic
interpretation of the data. In simple processes, the descriptor
may be skipped.

The header/descriptor is the key to the efficient and flexible
'use of the di~ital data stream for the communication, stora~e or
display of di~itally-expressedpictures, sound, text or other
items and makes possible scalable, extensible systems. It serves
to identify the specific attributes of a data service between
processes and thus enables the interoperability of systems usin~

differin~, but predetermined, standards.

The SMPTE is now undertakin~ the documentation of the standard
for a header/descriptor that will apply to television, multi­
media, image transfer" and a wide ran~e of other related
applications. It anticipates a close liaison with other groups
involved in, or affected by, this work and is actively seekin~

their participation to ensure standards having the widest use and
maximum economy of application. The work represents a major and
practical step towards the goal of fully flexible, interoperable,
scalable, and extensible systems that so many are seeking.
Television, HDTV, HRI, graphics, and image communications will at
last be able to overcome many of the barriers to the free flow of
material.

The completion of the preliminary work on Headers/Descriptors,
enables the Task Force on Digital Image Architecture, chaired by
David Trzcinski, PictureTel, to proceed rapidly with its assigned
work, building on this base, and it is expected to complete its
Final Report during the middle of 1992. Standards derived from
this work by SMPTE, or by other organizations, will notably
facilitate the flow of ima~es between systems, especially across
differing applications or industries.

-30-

Society of Motion Picture and Television Engineers®
595 WEST HARTSDALE AVENUE. WHITE PLAINS. NY 10607-1824

TELEPHONE: (914) 761-1100 / TELEX: 4995348/ FAX: (914) 761-3115

This Report of the SMPTE Task Force on Headers/Descriptors is
an approved document of the SMPTE Standards committee and is
made available for information, as it contains valuable
proposals concerning the development of digital imaging and
video systems and for standardization of certain of their
aspects, that will be of interest generally.

The standardization aspects of the Report will be further
considered under the normal processes of the SMPTE for the
creation and approval of Engineering Documents, which includes
the opportunity for further comment and for pUblic review
prior to their final acceptance. Persons wishing to actively
participate in the development of these standards, including
attendance at Working Groups meetings and ballot response, may
contact the Engineering Department of the SMPTE at the above
address.

It should be noted that Engineering Documents arising from the
contents of this Report may differ significantly from its
recommendations and caution is suggested in the use of this
report as the basis of design or of implementation.

SMPTE
HEADER/DESCRIPTOR TASK FORCE

FINAL REPORT

January 3. 1992

1.0 INTRODUCTION

The Task Force on Header/Descriptors has considered the questions posed
in its Scope of Committee Work. and makes the following final report and
recommendations to the Standards Committee.

The report begins with a discussion of the general objectives of the
header/descriptor. and then presents more specific objectives selected by the
Task Force as it developed two alternative implementations.

Both of the proposed implementations could support new SMPTE
standards. and are described in some detail here. The "ASN.1 Implementation"
is structured using only Abstract Syntax Notation 1 (ASN.1). an existing and
evolving ISO/CCITI standard pIincipally used in the computer industry. The
"Compact Implementation" is designed to minimize the number of bits allocated
to the header/descriptor function. but also permits optional use of the ASN.l
notation later in the header/descriptor for' further extensibility. Both
implementations perform essentially identical functions.

Appendices A and B present illustrative approaches to the design of
transport headers and header-decoding software. respectively. Transport
headers are designed to address certain difficult data transport problems.
Appendix C lists the official task force members as of January 3. 1992.

In view of 1) the great importance to industry and its customers of the
capabilities provided by the header/descriptors described below. and 2) the
degree to which these two possible implementations satisfy the objectives
established at the outset for header/descriptors. the Task Force recommends
that:

The Standards Committee arrange for the preparation of one or
two new standards for digital header/descriptors based on
either the "Compact" or the "ASN.1" Implementations described
below. or on a combination thereof.

2.0 GENERAL OBJECTIVES

The header/descriptor task force was directed to consider
heatler/descriptor architectures and implementations appropriate for the

emerging digital high-definition television (HD1V) and high-resolution system
(HRS) industries. The primary design objectives of the task force are:

• Universality -- All image and other data streams should be labeled
so that signals can be shared across systems and applications
with minimal degradation or confusion: the header/descriptor
should therefore uniquely identify the encoding scheme employed
and how the data is to be interpreted.

• Longevity -- The header/descriptor should provide a number of
potential identification codes adequate to serve for decades. and
preferably centuries: this implies that specific encoding identifiers,
once assigned and registered. should not be reassigned or
redefined. The header/descriptor should also facilitate longevity
for equipment and media of all types.

• Extensibility -- To facilitate service enhancement and innovation,
and to promote longevity of both equipment and recorded signals.
the header/descriptor should accommodate technological
advances in either equipment or recorded signals with minimal
risk of obsoleting existing components, infrastructure, and media
collections.

• Interoperability -- The header should permit optimal sharing of
data streams across data-generation. carrier. and equipment
technolOgies and services in a variety of error environments. and
should permit all equipment and applications to successfully
ignore encrypted or otherwise deliberately inaccessible data.

• Cost/Perfonnance Effectiveness -- The 'header/ descriptor should
permit use of both low-cost equipment as well as more expensive
high-performance equipment: the header/descriptor should also
accommodate inexpensive equipment incapable of decoding all
possible data streams. Economy and simplicity through flexibility
and scalability of the key performance parameters should also be
supportable.

• Compactness -- The header/descriptor should be economic in its
utilization of bits. and should typically comprise a negligible
fraction of the underlying data stream.

• Rapid Capture -- Much video and other serial data is intercepted
mid-stream, such as when users switch to a new channel, and
therefore the header/descriptor should permit rapid header
identification, adequate to meet the needs of all applications.

• Editability -- Common editing and parsing operations, such as
splicing. appending, replacing, inserting, cropping, and overlays,
should be supportable by the header/descriptor architecture
without necessarily requiring decoding and encoding of the data
stream itself.

- 2 -

3.0 SPECIFIC HEADER/DESCRIPTOR OBJECTIVES

To meet the general objectives summarized above. the Task Force selected
the following compact set of specific objectives which are met by both
implementations described later. The header and descriptor are defined here
separately.

II Spedflc Header Oblectlyes

The specific objectives of the header are to:

• Identify by number the encoding standard employed by the
attached block of data.

• Specify the length of that block of data. so that equipment of any
epoch can successfully skip uninteresting blocks of data or data
encoded using standards defined subsequently.

• Indicate whether a readable descriptor follows the header.

• Permit users to intercept data streams at random times. as when
switching channels, so that proper data interpretation begins
swiftly.

• Provide optional error-protection capability. Data generation
entities may wish to supplement error-protection services provided
in subsequent environments experienced by that data. particularly
when those environments are unknown...

The task force considers these attributes of the header to be the minimum
mandatory set. recognizing that additional important capabilities can be
provided by the descriptor.

a..2. Exanwles of Header Use

A simple example illustrates how these minimal capabilities for the header
satisfy the general objectives discussed above. Suppose. after many years,
some HDlV broadcasters wish to provide dual-language sound tracks. This
capability could be provided by adding to the data stream blocks of data
conveying the second language. These new blocks would be labeled by a header
incorporating a standard number not recognized by equipment produced
earlier. This older equipment would read the header and recognize the
standard identification number as being unknown. It could then observe the
length of the associated block. and skip over it to the next header.

All data could be labeled by such flexible headers, or only a designated
portion (e.g. "auxiliary data") of a more ,rigidly defined larger video data stream.
Note that HDlV receivers capable of receiving only 20 Mbits per second could
not accommodate increases except at the expense of any spare capacity
previously reserved for expansion. or by the broadcaster reducing the number
of bits conveying video or audio: in the latter case the original standard would

- 3 -

have to be defined so as to permit receivers to accommodate any such real-time
video or audio truncation. however.

3.3 Sgecific DesCriptor Objectives

The principal function of the descriptor is to convey additional information
that improves the usefulness of the data to the user; its format would be
specified independently of the standard employed for the data itself. Such
optional auxiliary information in the descriptor might include transport
information such as cryptographic. priority. or additional error-protection
information. as well as source time. authorship. ownership. restrictions on use.
royalty payment information. explicit description of encoding or decoding
processes. intermediate processing performed. and other information in forms
that could evolve over the years. To simplify the decoding task. the descriptor
may also contain an abbreviated "table of contents" and a flag indicating
whether any information has changed since the previous desCriptor. The
beginning of the descriptor would also indicate the descriptor length so that it
might be skipped without interpretation if the user chooses. Optional
additional error protection would be available for data originators so desiring it.

Specifically. the descriptor could include:

• A Ust of standard-identification numbers. parameters of operation,
text. and algOrithms. in any desired combination.

• A compact optional table of contents for the descriptor.

• A flag indicating whether changes occurred since the previous
descriptor.

• The length of the descriptor so that it might be readily skipped if
desired.

• Information indicating the number of descriptor entries and their
formats so that they might be properly interpreted.

• Optional error protection for the descriptor.

The presence or absence of a descriptor could be indicated by one of the bits
contained in the header.

3.4 Examples of Descriptor Use

The use of standard identification numbers in the descriptor permits very
compact and flexible encoding. For example. one such number might be
allocated internationally to each model number of studio television camera. so
that subsequent image processing can maximally improve image quality.
compensating for any camera idiosyncrasies. Similar identifiers could be used
for different forms of physical. analog. or digital filtering that has been applied
to the image subsequently. so that user equipment might again appropriately

- 4-

refilter the image in an optimum way depending on the user's intentions. This
is important because performance for any particular display device or audio
system is best when that processing reflects the processing that has occurred
previously.

Authorship. ownership. and other such information could be conveyed by
compact standard-identlflcation numbers. or by use of plain text in English or
some other language. Certain descriptors might simply be numbers indicating
the settings of certain switches at the time the signals were generated. such as
switches controlling audio base. treble. or volume. The descriptor may also
include subroutines or other encoded instructions that facilitate subsequent
processing or decoding.

Standards numbers and parameter fields can also be used to support
transport-layer functions. including essentially all forms of cryptography.
statement of the relative priority of the current data block. priority "bidding"
data (so users can bid for priority in a free-market sensel. synchronization
reinforcement blocks. and other information. the character of which can be
defined over the years as new standards-identification numbers are assigned
and as new languages and protocols are defined. The incorporation of transport
capabilities in this standard should not compromise those established by other
layers. but would merely supplement them. The only limitation is that such
descriptor transport standards should remain robust if block sequences are
shuffied in another transport layer.

4.0 ILLUSTRATIVE EXAMPLES OF HEADER/DESCRIPrOR USE

An HD1V broadcaster could simply divide·the HOlV signal into blocks.
each beginning with a header of perhaps 6-16 bytes' length. This header would
contain the length of each block. which could be fixed for all time or variable.
and a unique standards number indicating the given HOlV encoding protocol.
which may also be unchanging in the initial years. If the over-the-air broadcast
standard is heavily error protected. little additional error protection might be
added to the header. Good engineering practice would suggest. however. that
the header be independently error protected using some of the options
described later. and that separate. and possibly less robust. error protection be
applied to the remainder of the data stream.

If the HD1V channel is defined so as to perform. all transport functions.
including all synchronization and error correction. then the header/descriptor
described here might be imbedded in the transported data stream. At that level
it would preferably be used to encapsulate all data. but could be used in an
inferior implementation to encapsulate and characterize only substream or
side-channel data. In this example too. the descriptor might convey the origins
and processing history of the data. enabling future higher-performance systems
to employ post-ffiters optimizing the quality of the output images. Such
flexibility could be particularly important if the output display capabilities of the
equipment enabled flexibil1ty in frame rate. pixel interpolation routines. and
chrominance manipulation. In the case of audio signals. descriptors could be
used in a similar manner to enable optimum reproduction by characterizing
microphone placement and preprocessing.

- 5-

A variety of header/descriptors plus associated data could be sequenced in
any side channel to provide a variety of flexible delivered products. such as
multiple audio channels. multiple-language captioning. home-shopping order
information. and even entire 1V signals encoded at lower quality so that more
than one can share a single channel. In this example. the ultimate flexibility
that could be obtained with individual broadcast channels would be heavily
dependent upon the flexibility inherent in the broadcaster's ability to decrease
the data rate associated with the initial broadcast product to accommodate
possible growth in use of the side-channel capability.

It is also possible to send descriptor information in a separate block with
its own header. rather than imbedding it in the same blocks as the associated
data. In this case the characterization of a signal provided by a descriptor
could remain unchanged for many blocks until that descriptor information
changes. In the event the transport layer is prone to shuBling the sequence of
blocks, impairing association of descriptors and use of this data. the inherent
flexibility of this header/descriptor system permits incorporation of sequence
numbers in blocks so that the receiving entity can properly sequence them.
Such separation of descriptor information into separate blocks also simplifies
translation between environments having different transport layer protocols;
any descriptor elements providing transport-layer functionality can be added or
deleted when moving between such environments. as desired. An option
whereby special "transport header/descriptors" are prepended to blocks is
described in Section 5.7.

... To the extent that transport-layer functionality might be imbedded within
the basic data block. it could be harmlessly overlaid by similar transport-layer
functionality in other system elements without loss. Thus the great flexibility
inherent in the header/descriptor architecture. proposed here. including its
ability to perform multiple functions in a multi-layer ISO environment. should
not be a handicap. and may in some applications be an important advantage.

Furthermore. this header/descriptor structure permits efficient utilization
of the standards activities of a wide variety of national and international
organizations. Every standard developed by such bodies for characterizing or
communicating digital information can be characterized by an identitlcation
code which can be conveyed in an efficient manner by the header/descriptor
system described here. Since the implementations proposed here call for each
standards authority to have its own identltlcation number. such standards
bodies could. in this "ID" concept. choose to use the very same identltlcation
numbers they have previously chosen for other purposes. Alternatively. that
authority could choose some other simple one-to-one mapping between
numbers. At the same time. such standards can also use this
header/descriptor system as an imbedded construct within their own protocols.
Although the full power of the flexible extensible structure proposed here will
only become apparent as it is developed and improved over the years. the basic
architecture can be fixed immediately. This would permit immediate fabrication
and utllization of equipment based upon this standard.

- 6-

5.0 COMPACT HEADER/DESCRIPTOR APPROACH

.5..l Couwact Header/Descriptor ArchJtecture

The header is divided into two parts: a two-byte "header key", and the
remainder, or "header tall". Among the available header options are those
without taUs, corresponding to a two-byte header conveying simple messages:
thirty-two possible messages of this type are available for future definition. The
most usual function of the key, however, is merely to "unlock" the tall by
providing information about the format of that tall.

The descriptor is divided into three parts: a two-byte "descriptor key"
(simllar to the header key), a "core" of 0-8 bytes, and the "descriptor tall", which
conveys a series of numbers signifying various pieces of information.

~ Header Key

5.2.1 Header Key Organization

The header key consists of two four-bit fields and one eight-bit field. The
eight-bit field provides two-bit error correction capability for the key, and the
first four-bit length-type "LT' field determines the length of the header field in
the taU which contains the length of the block. A block of data is defined as
CQJllprising the header, any descriptors, and the associated data. The other
four-bit '1D" field normally determines the number of bits in the header-tall field
devoted to indicating the standard number under which the remainder of the
data in the block, possibly including the descriptor, is encoded. Most
descriptors would be publicly readable, however. The ID field also indicates
whether a readable descriptor follows the header: sometimes one might wish to
read the descriptor before deciding whether to decode the rest of the data block.
The ID field can alternatively convey messages for certain four-bit combinations
in the first four-bit "LT' field. In addition to specifying the length of the header
tall field devoted to spectfying block length, the LT field also determines what
level of error protection is being provided for the header.

5.2.2 Header Key: Four-Bit "Length-Type" LT Field

The primary purpose of the 4-bit LT" field is to specify the length of the field
in the header taU devoted to specifying the block length. For six of the sixteen
possible combinations proposed here (the "fixed-length" options) the total length
of the block is pre-specified so that no bits in the header tail are allocated to
specifying block length. The other ten proposed combinations permit use of
one, two, four, and six bytes for specifying the block length in bytes in integer
format: in each case versions with and without error protection capabllity for
the header are available to the standards definition community. The eight-bit
protection provided to the header key is always present, however, since the
integrity of the key is crucial, and it represents such a small part of the total.

The six proposed fixed-length options are as follows:

1. The block is two bytes long and the message is conveyed by the

- 7 -

four-bit ID field; sixteen messages are possible. One of these messages could
sJ.gn1fy that the rest of the header/descriptor is coded in ASN.l (dual compact­
and ASN.l-header decoding capabUity would be necessary for all equipment,
however. but Appendix B suggests this might not be burdensome).

2. Same as (1), except that an additional sixteen messages are possible (for a
total of 32 two-byte options).

3. The block is four bytes long, the message consisting of the
four ID bits plus two bytes, a total of twenty bits.

4. The block length is six bytes: twenty-eight bits (4+3x8) are available. the
remaining byte providing error protection for the last 4-byte set.

5. The block length is six bytes with thirty-six bits of information (4+4x8)
being available. but without additional error protection.

6. The length of the block is unknown or irrelevant.

In each of the foregoing options, except the first two, the available bits can be
divided in a yet-to-be-determtned way between those indicating the standard
identification number and any additional message. The proposed SMPTE
standard would constrain only options 4 and 5. allocating the first eight bits to
designating the sovereign state, so that development of these six-byte options
can proceed without international agreement. Designation of standards bodies
and sovereign states is discussed further in Section 5.2.4.3.

The ten remaining proposed options for the LT field provide for either one,
two. four. or six bytes in the header tail to be allocated to specifying the block
length in bytes, always in integer format. Depending on which of these ten
options is chosen, additional information is also conveyed concerning the level
of error protection for the header. These proposed options are as follows:

7. One-byte field in the header tail specifies block length in integer format: no
additional error correction capability is provided to the header. Blocks up to
256 bytes long are available under this option.

8. same as (7). except an additional one-byte is provided for header error
protection.

9. Same as (7). except that two bytes specify block length: the maximum
block length here is 64 KB.

10. Same as (9) with an additional byte for header error protection.

11. Same as (7), except that four bytes specify block length. which can
approach four billion bytes.

12. Same as (11), except that two bytes of header error protection are added.

13. Same as (7), except that six bytes specify block length.

- 8 -

14. Same as (13). except that two bytes of header error protection are added.

15-16. To be detennined.

5.2.3 Header Key: Four-Bit ID Field

When the 4-bit ID field is not being used to convey a message using LT
options 1-6. then the first three bits of the ID field indicate one of eight possible
lengths for the header-taU field conveying the standard identiftcation number,
and the fourth ID bit indicates whether a readable descriptor follows the
header. These proposed eight tail-length field options include one-. two-, four-,
and eight-byte options. These eight tail-length options proposed for the ID field
are as follows:

1. One-byte standard identlfication number allocated internationally.

2. Same as (1). but providing for 256 additional possible standards.

3. Similar to (1). except that the standard field in the header tan contains two
bytes instead of one, providing for 64,000 international standards.

4. Similar to (1), but with a three-byte field in the header taU, providing for
over 16 million international standards.

5., 1\vo bytes in the header taU indicate the standard identlflcation number.
the first byte indicating the sovereign state (see Section 5.1.2.3).

6. SimUar to (5), except that four bytes are available (one for the sovereign
state).

7. Similar to (5). except that eight bytes are available.

8. To be detennined, or reserved for the distant future.

These first four options provide one-, two-, and three-byte standard­
identification numbers to some designated international standards body or
bodies. Two versions of the one-byte option are provided because otherwise too
few combinations would be available. The remaining options provide one byte
(or more) which identifies the sovereign state under whose authority the
remaining standard-identlftcation-number bytes the ID field have been assigned
(I, 3, or 7 bytes remain). Note that receiving equipment would generally not
distinguish between sovereign state identifiers and standard identification
numbers: they would be treated together only as a single merged number that
was known or unlmown.

5.2.4 Header TaU

5.2.4.1 Header TaU Organization

The header taU contains one field for indicating the block length in integer
format. one field for the standard identlftcation number. and optional fields for

- 9 -

error protection. all having been discussed above.

5.2.4.2 Header TaU: Standard-ID Organtzation

The Standard ID comprises two parts: the sovereign state identification
number. and the standard identification number. described in Sections 5.2.4.3
and 5.2.4.4. respectively.

5.2.4.3 Header TaU: Sovereign State Identification

Eight bits is sufficient to designate the authorizing sovereign state. even if
the number of sovereign states exceeds 256: the trick is to subdivide certain
undesignated sovereign state identifiers by borrowing bits from the remaining
standard identifier field. For example. by deferring to the United Nations the
task of defining sovereignty. it should be an easy matter to assign all present
U.N. members unique identification numbers in alphabetical order, and to
assign the next numbers in order of membership admission to states not
replaCing member states who are already members. Once 224 member states
exist, new United Nations members would share the last 32 numbers. Within
these 32 sovereign state "condominium" ident1flers. an additional three bits
would be borrowed from the Standard Identifier field, permitting eight new
member states per condominium. or 256-32+(32xB) =480 possible states. Of
these state designators. 32 would be assigned to existing standards bodies. In
the unlikely event more states are created. still more bits can be borrowed.
permitting unlimited growth.

5.2.4.4 Header Tail: Stan<;lard Identifier

The Standard Identifier would be selected by the indicated Sovereign State
or International Standards Body using existing procedures. To the extent
standards already have unique identification numbers. those same numbers
could be used here. To the extent they do not. each standards body should
map their standards into numbers. preferably a compact or consecutive set.
Most new standards might be introduced under long numbers associated with
minor standards bodies. while standards achieving wide acceptance could be
renamed with short ones. Since bits can be borrowed from the Standard
Identifier field almost indefinitely. the system would permit in certain cases (the
longer header options) for every individual ever born to become a sovereign
definer of standards under some state's authority (the eight-byte option
provides each sovereign state with 70 million billion numbers). In the same
way. a standards body could allocate numbers well spaced numerically so that
their least signillcant bUs could become "user-allocated bits", functioning in lieu
of, or in addition to, a deSCriptor.

Note that the cost of this kind of flexibility, as well as the other sorts of
flexibility described earlier, is essentially negligible given the extensible nature
of this header architecture. That is, the price of using long headers is paid
principally by those who need them. while most users will prefer and use the
shorter options.

5.2.5 Header Organization lliustrations

- 10-

These options can be represented pictor1ally. The sixteen-bit composition
of the header key consists of three parts: the four bits in the length-type LT
field (1). the four bits in the ID field (1), and the eight core error protection bits
(p): these protect only the key. The header key always consists of:

lllliWpppppppp

Ifwe designate this two-byte key by the symbol "K", and the bytes representing
the block length field by "L", the bytes representing the standard identification
number by "S", and the header parity bytes by "P", then for LT options 1 and 2
we have only K (two bytes). For LT options 3. 4. and 5, we have only KSS (four
bytes), KSSSP (six bytes), and KSSSS (six bytes), respectively. In this case of
extremely short blocks, the standard identification numbers SSS and SSSS.
combined with the 4 bits in the ID field. would generally convey messages in
their own right, and could also be used for a variety of transactional and
transport functions. LT option 7 would permit the following possibilities: KLS,
KLSS. KLSSS, KLSSSS and KLSSSSSSSS, where the number of bytes allocated
to the Standard Identification number by S...S is specified by the three bits in
the ID field (see 5.1.1.3). One likely option for HD1V might be LT option 12,
combined with ID option I, represented as KLLLLSPP and comprising nine
bytes. The standard number contained in field S would be an international
standard. If such an international standard were devised to have block lengths
no larger than 64KB, and if one-bit error correction were adequate, then a six­
byte HD1V option is available: KLLSP. Such short 5 or 6-byte header options
could often be employed for non-video information. For example, KLSS (5
bytes) would accommodate 64.000 possible international standards employing
data up to 256 bytes per block.

5.2.6 Header Architecture: Equipment Implications

EqUipment interpreting such headers can be particularly simple. Since it
normally would be reading a stream of blocks. and should know when a block
begins, it could simply Jump to one of the 64K words specified by the 16-bit
header key, these words indicating the location of the bytes specifying the block
length. An example of an algorithm to perform these header decoding functions
appears in Section 5.2.8, and an illustrative program coded in C appears in
Appendix B. Simpler equipment might simply look at the first four bits of the
LT field. from which the same information can be deduced in an error-free
environment. EqUipment of intermediate complexity can use the key error
protection bits to an intermediate degree. The ID bits immediately indicate the
field where the Standard Identifier is located. and equipment should compare
this to a list of standards it is prepared to process. After any indicated
procesSing, the eqUipment moves directly to the next header at the specified
number of bytes along the data stream.

Should synchronization be lost, it could readily be recovered in most cases
of interest For example. in the nine-byte HDlV header example above. these
nine bytes would probably never change within a single broadcast program.
HDlV broadcast receivers would simply scan the data stream for that particular
nine-byte sequence, which could be used as a traditional synchronization block.
This would work even if multiple header types were being interleaved.

- 11 -

Accidental synchronizations (very rare) in the data block would be recognizable
because the indicated false block length would probably not lead to a valid
header.

The most direct use of these header/descriptors would be as a series of bytes at
the start of each data block, where the data blocks are then concatenated in a
comma-less string of bits. Other uses could also be made, however. For
example, a particular transport scheme (e.g. over-the-air HD1V) might package
data blocks in discontinuous but fixed form within a larger data stream, this
stream being characterized by the imbedded header/descriptors. A
header/descriptor could also characterize (say) each frame of an HD1V
sequence, and the same header/descriptor technique could also be used within
each frame to communicate details about its internal structure. Such nesting
of header/descriptors does not impair synchronization much, although an
initial false synchronization could occur within a larger block; this would be
quickly detected if the presumed block ended without a valid header following
it. The search for a valid header could then resume.

5.2.7 Header Architecture: Transport Functionality

If one wishes to incorporate synchronization augmentation, extra error
protection, block prioritization information, or cryptography for the header or
descriptor, it must either be defined at the outset in the header/descriptor
definitions, or its incorporation becomes standard-specific--but how could we
know the standard ifwe were not synchronized or error-free, etc.?

For example, in high-error-rate environments users may wish to provide their
header/descriptors with more synchronization rnformation or error protection
than is available in the basic definitions. Fortunately, much additional
transport-related information can be conveyed efficiently through repetition of
short blocks. One simple approach is to insert brief bursts of short 2-byte
headers into the data stream, where the synchronization powers of these 2-byte
header blocks are cumulative; the greater the anticipated channel noise, the
longer these bursts should be. Although the software of some receivers may not
be sophisticated enough to synchronize such bursts well, this approach is
standard independent, and so such software could be designed today. Such a
burst inserted anywhere in a sequence of blocks pennits synchronization of the
entire stream. Since two-byte headers can correct two bits in 16,
synchronization bursts fail only when the bit error-rate continually exceeds
-0.2. In still higher noise environments where it is known such two-byte bursts
might be employed, the receiver can either autocorrelate the signal or correlate
it with potential 16-bit synchronization words: this could provide
synchronization for nearly any bit error rate, provided the burst length was
sufficiently long.

Similar issues arise when extra error protection for the header/descriptor
is desired. If the nature of such protection is defined only in a data or
standard-ID area which can not be read unless error protection is employed,
the data is generally inaccessible. One option is for the user to generate, as
above, bursts of short blocks that convey primarily the identity of the desired
error protection scheme employed in the longer data blocks. Such standards

- 12-

could be defined so that they are presumed operative for all following data until
"turned off' by another command. Alternatively one of the short blocks (say 2
bytes) could be employed to indicate that error protection, cryptography, or
other such schemes were to be conveyed in a "tum-on, tum-off' fashion: a
separate short block could be used to convey the opposite message. Such a
repetitious series of short blocks can also be well protected and synchronized in
essentially any reasonable error environment (BER <0.2) using the existing
defined header/descriptor options. In this case the user would need to know
only the definition of the chosen error-protection ID number. Such error­
protection schemes and protocols can be defined in simple ways over the years.

Yet another similar problem involves the possible incorporation of block
priority information. For example, if some data processing. transmission,
storage, or display step can not handle all the data, the originator of that data
might wish to tell the user which data is more expendable. Yet the user might
wish to do only minimal decoding to determine priority. Although such
information would then be descriptor-standard specific, one or more descriptor
standard ID's could be defined in such a way as to convey relative block
priority, say on a scale from one to ten. Such information could also be
imbedded in the data itself, but this would generally require the user to do more
decoding before discarding any block. Although confusion could arise because
multiple priority-labeling descriptor schemes might arise, they would all have
standard numbers which, in principle. could be accessed. Section 5.4
describes another approach, which can be used in parallel.

~ Although this discussion has not been exhaustive, it does suggest that the
proposed header/descriptor definition has great flexibility for handling a variety
of problems faced when it must supplement or provide transport-layer or other
OSI layer functions.

5.2.8 Compact-Header Decoding Algorithm

For simplicity here, we assume the block has been synchronized and that
the header key has been error corrected, perhaps by using a 16-bit dispatch
table. We also assume the equipment is provided with a list of standard ID's
which it knows how to interpret, as well as a much shorter list of ID length
fields corresp?nding to these standards (possible values ofK, defined below).

1. Dispatch on the first byte (256 options): return with 4 integers:
I =length oflength field (0+, 0-. I, 2, 4, or 6 bytes)
J =block length B bytes if I =0 (2, 4. or 6 bytes)
K =length ofID field in tail (1. 2, 4, 8, or 32 bytes)
L =presence of descriptor (0 or 1)

2. If I =0, set block length B =J
3. Ifl = 0-, dispatch (Table 1) on M, bits 5-8 of the header

Interpret resulting message and go to 12, or skip directly to 12 if
message unknown.

4. Ifl =0+, dispatch (Table 2) on bits 5-8 of header.
Interpret resulting message and go to 12, or skip directly to 12 if
message unknown.

5. If I * 0, read I bytes (yielding block length B), starting at bit 17 of
header.

- 13-

6. IfID field length K not on list of known ID field lengths, go to 12.
7. Read ID field of length K bytes, starting at bit 17 + 81.
8. If ID is not on list of known ID's, then go to 12.
9. IfL =I, read descriptor length D (part of descriptor decoding

algorithm. not described here).
10. IfL= O. then D = O.
11. Go to algOrithm specified by ID and execute over a block of B bytes.

starting at the end of the desCriptor at I + K + D bytes.
12. Jump to end of block (B bytes long) and read next header.

l2& Descriptor Specification

5.3.1 Introduction

Publicly readable descriptors mayor may not be incorporated in any data block,
as indicated by one of the bits in the header key. They would convey auxiliary
information concerning the nature of the associated data, such as authorship,
distributorship. ownership, intellectual property restrictions, sampling patterns,
mtering employed, color. nonlinearities. etc. This information would generally
be in the form of identification numbers assigned by standards bodies, although
options for conveying text, programs. or other data would exist. Like the
header, descriptors would indicate their length so that equipment could skip
past if desired, and they would have optional provisions for error protection. An
efficient ASN.l eqUivalent for the descriptor definition proposed below could
also be developed.

5.3.2 Descriptor Architecture

The descriptor is divided into three parts: a 2-byte "key". a "core" ranging
from 0-8 bytes, and the "tail" of length defined by the core. The key unlocks the
core. which defines the length of the descriptor. an indication of the nature of
the contents of the descriptor. and the nature of any optional error protection
for the core. The tail consists of a series of descriptor identification numbers.
similar in concept to the standard identification numbers provided in the
header. For each camera type, non-linear luminance mapping, movie producer.
mtering algorithm. royalty payment procedure. etc.. there could be a separate
descriptor number assigned or registered by appropriate standards bodies.
indicated in a manner also similar to that of the header. To properly convey
this list of descriptor identification numbers. the tail also contains fields giving
the number of such descriptor standards. the length and type of each such
standard number, and the nature of any optional error protection employed.
The tail also supports delivery of fields of text in any of a large number of
languages. such as English or Portuguese, as well as computer languages such
C. Postscript. etc. Such software elements would permit the decoding
procedures to be defined explicitly, if desired.

A potential area for future improvement is development of a more universal
subset of descriptor elements for widespread usage. It would include
parameters such as resolution. raster definition, bit packing, etc.

- 14-

5.3.3 Descriptor Key Definition

5.3.3.1 Descriptor Key Architecture

The descriptor key consists of three parts: 1) a 4-bit "type" field which
characteI1zes the contents of the descriptor. 2) a 4-bit "length type" field which
indicates the format of the descriptor length field. and 3) an 8-bit "protection"
field for the key.

5.3.3.2 Descriptor Key: 4-Bit 'Type" T Field

The purpose of the T field is to indicate: 1) whether or not this descriptor
contains a public index (1 bit). 2) whether the descriptor length field in the core
(if any) is 2 or 4 bytes long in integer fonnat (l bit). and 3) which of four error­
protection options are being employed (2 bits). The four descriptor error­
protection options are: 1) no protection. 2) protected core plus unprotected taU.
3) both core and taU protected. and 4) both core and tail doubly protected.

5.3.3.3 Descriptor Key: 4-Bit "Length-Type" DLT Field

This field contains the length of the descriptor after the core. in bytes.
unless its contents are "zero. zero. zero. zero" (for descriptor taUs longer than 16
bytes). in which case the length is given by the core in a field which is either 2
or 4 bytes long. as specified in the T field (see 5.3.3.2).

5.~.3.4 Descriptor Key: 8-Bit "Protection" P Field

The function of the P field is identical to that of the 8-bit error-protection
field of the header key: it protects the 2-byte descriptor key only.

5.3.4 Descriptor Core Definition

5.3.4.1 Descriptor Core Architecture

The descriptor core consists of three parts: 1) a field defining the
descriptor length (0-4 bytes). 2) a field indicating the nature of the contents of
the descriptor (0 or 2 bytes). and 3) an optional protection field for the core only
(0. 1. or 2 bytes). The total length of the descriptor core thus ranges between 0
and 8 bytes.

5.3.4.2 Descriptor Length Field

This field is of length zero if the descriptor length specification has been
preempted by the length field in the descriptor key: otherwise it is either 2 or 4
bytes long in integer fonnat. as determined by one of the bits in the T field of
the descriptor key (see 5.3.3.2). The length of the descriptor field as presented
in the core is defined as including all the bytes in the descriptor. including
those in the key. core. and taU.

5.3.4.3 Descriptor Core Contents Index

This field contains either 0 or 2 bytes. as indicated by one of the bits in the

- 15-

descriptor key T field (see 5.3.3.2). In its 2-byte fonn it indicates whether or not
the following descriptor contains information concerning any of sixteen
categories of information about the data stream. Among others, these
categories of information include synchronization reinforcement. error
protection data, encryption keys, packet priorities. authorship. distributorship,
time or date of any event. ownership, intellectual property restrictions, sampling
patterns, ffitering history, color. nonlinear mappings employed, etc. The last bit
of the index is zero if this descriptor is the same as the previous one associated
with the same header ID. The purpose of this contents index: is to spare
equipment the burden of decoding descriptors when their contents may be of no
interest. This is particularly so when a long sequence of descriptor elements is
repeated periodically to aid certain users having only segments of the data
stream available to them. Users of longer segments could therefore ignore such
data more readily.

5.3.4.4 Descriptor Core Parity Protection

This field would contain 0, 1. or 2 bytes. as indicated by two of the bits in
the descriptor key T field (see 5.3.3.2). These bytes would protect the core only,
using codes similar to those employed in the header.

5.3.5 Descriptor Tail Definition

5.3.5.1 Descriptor Tail Architecture

The descriptor tail consists of four fields:

1) the element-number field, which indicates' the number of independent
descriptor identification numbers contained in this descriptor: its length
ranges from 4 bits to a maximum of 2 bytes:

2) the deSCriptor element length-type field. which specifies the lengths of each
of the descriptor identification numbers contained in the following field,
together with their respective types: these types include identification
number types similar to those employed for indicating standard numbers
in the header, as well as supporting transmittance of text and computer
programs: its length is typically 2-4 bits per descriptor identification
number;

3) the descriptor identification number field. which consists typically of one
or more descriptor standard numbers. each in a 1-6 byte format or
appearing as a sequence of text or code: the total length of this field
approximates several bytes per descriptor element. or substant1ally more if
text or code is incorporated: and

4) the protection field. as defined jointly by the protection option indicated in
two of the T bits (see 5.3.3.2) in the descriptor key combined with the
indicated descriptor length; longer descriptor lengths would require more
bytes of protection for any indicated level of protection.

5.3.5.2 Descriptor TaU Element-Number Field

- 16-

This field consists of one. two. three. or four 4-bit words indicating the
number of descriptor elements contained within this descriptor. Each 4-bit
word contains 3 bits indicating the number of elements. and 1 bit indicating
whether or not an additional 4-bit word is appended. up to a maximum of four
words total. Thus one 4-bit word will suffice for 0-7 descriptor types. which
normally should be sufficient. Two concatenated 4-bit words offer up to 2 exp 6
= 64 possible elements. Three words can accommodate up to 512 elements.
while use of all four words (2 bytes} can accommodate more 8.000 elements.
which should be sufficient and is the maximum number per header allowed
under this protocol.

5.3.5.3 Descriptor Tail Element Length-Type Field

11lis field consists of a series of extensible 2-bit words. one sequence of
such words applying to each descriptor element. In most cases a single 2-bit
word would suffice: the options here are that a 1-.2-. or 3-byte field is reserved
for the associated descriptor identification number: the fourth option is that two
2-bit words are being employed. If the second 2-bit word is employed. the
associated options are that 4. 5. or 6 bytes are being employed to indicate the
associated descriptor identification number: this accommodates up to 10 ex:p
12 possible identification numbers. which should be adequate. The fourth
option available for the second 2-bit word indicates that an additional 4-bit
word is to be interpreted. 1bis 4-bit word offers 16 additional options. the first
of which is that following the 4-bit word. a I-byte word specifies the length of
t4e descriptor identification field.

The remaining 15 options are of similar form. but indicate that types of
descriptor data are being employed other than the standard identification
number type. For example. type 2 would indicate that ASCII text was being
employed in a language indicated by the first character of the text stream: thus
256 possible languages can be used. Types 3-16 would indicate which of
several possible computer languages or image description formats were being
employed. such as C. Postscript. etc. If it is felt that the 15 possible languages
available under the 4-bit extension option in the element length-type field is
inadequate. then additional 4-bit fields could be appended by using an
extension bit. or by using 1 bit in each 4-bit field to indicate additional 4-bit
fields are appended and can be interpreted as were the series of descriptor tail
element-number 4-bit words. (Alternatively. the 4-bit word could be reduced to
1 or 2. with the understanding that the language is specified by the first
following 2 bytes.} Definition of these options is left to the next step in the
SMPIE standards definition process.

5.3.5.4 Descriptor Tail Standard Identification Numbers

If one or two 2-bit words have been previously employed to indicate the
length of the descriptor identification number. then 1-256 bytes may be
employed for the ID number itself. The formats for each of these options are
indicated below.

1 byte International standard established by single
designated authority

- 17-

2 bytes

3-256 bytes

l6-bit standard number designated by authorized
international standards body (bodies)

1 byte indicating the sovereign state. and the
remainder (2-255 bytes) being available for the
standards number

The sovereign state and standards numbers would be designated using
procedures s1m1lar to that specified in the header. Note that the longer
standards numbers permit subdesignations under the sovereign state indicator
for subsidiary standards bodies. including individual corporations. institutions.
and even individuals. The longer fields also permit use of user-defined bits
which can be assigned at execution. thus providing a data field. Such data
fields could be used for conveying dynamically changing information such as
average luminance. audio gain. etc.

5.3.6 Descriptor Tail Error Protection

This field could be concentrated at the end of the descriptor or distributed
throughout to simplify processing. The number of bytes and protocol employed
for this purpose would be determined Uniquely by the 2 bits in the descriptor
key T field and the descriptor length. as speCified in the descriptor core
descriptor length field or in the descriptor key length field. Definition of these
protection strategies might parallel those employed in the header and remain to
be defined more fully.

M Transport Header{Descriptors

5.4.1 Motivation and Objectives

Section 5.2.7 discusses several reasons why providing error protection.
synchronization reinforcement. packet priority. and higher level encryption to
header/descriptors could pose problems for interpretive hardware if the data is
excessively noisy. Although the solutions suggested there will accommodate
most error environments. still more serious situations can be handled using a
transport header/descriptor block such as described here. Such a transport
block has the additional advantage that if insufficiently protected data is
moving into a more hostile transport environment, additional protection can be
incorporated in the transport block without having to redefine the input blocks.
Similarly, such transport blocks can be removed without penalty when moving
into more error-free or otherwise benign environments.

The objective here is to suggest how the architecture of such transport
blocks are consistent with the header/descriptor definitions presented above,
but not to define all the details. Thus establishment of the header/descriptor
standard can proceed without waiting for all details of the transport block to be
resolved. It would be useful to resolve such details, however. before users of the
standard adopt inferior methods of addressing the same transport problems.

The principal motivation for defining transport blocks is to avoid

- 18-

proliferation of standard-spec1fic alternatives for addresSing such transport
problems. Such proliferation could increase the cost of decoding equipment
which would have to accommodate all these possibilities. In a high-error
environment. executing the multiple search strategies necessary when
synchronization is lost or heavy errors exist. could become prohibitive. For this
reason it is important to have only a few standard options for certain aspects of
the transport block. Defining an efficient small set is beyond the scope of the
present effort. and would take considerable study. Therefore it is reasonable to
assume that this study would be completed after any initial header/descriptor
standard Is specified. One illustrative candidate for such a set appears here in
Appendix A:. it is intended only to initiate discussion of these issues.

5.4.2 Architecture of Transport Blocks

Transport header/descriptor blocks would consist of a single
header/descriptor. where the header would specify an international standard 10
indicating which type of transport block was involved; only a few such types
would ever be defined. The descriptor of the transport block would convey up
to eight different elements:

1) Descriptor Table of Contents (standard fonnat defined earlier).

2) Synchronization reinforcement bits. not error protected.

3) Error protection bits for the transport header and its attached following
v header/descriptor.

4) Encryption key for deciphering the descriptor. if any. in the following
block.

5) Block priority; determined by data originator. indicating relative priority of
the following block concerning interpretation or transmission in cases
where inadequate capacity is available. Authorization keys may also be
needed to verify priority in certain cases. Price bidding could be supported
here too.

6) Authorizations and fee mechanisms for alteration or use of data.

7) Block sequence numbering and timing-reconstruction infonnation.

8) Padding to yield one of the very few allowed lengths for the transport block
corresponding to the international header standard 10.

In addition to these elements there would also be the traditional field in the
descriptor defining its length. although interpretation of this length would be
unnecessazy because the transport block length is specified by the header. and
there is no data payload following the descriptor.

The six main descriptor elements would convey information using
traditional descriptor standard numbers. where long numbers accommodating
an adequate number of user bits could be employed. Defining these descriptor
standard numbers Is the task which can and probably must be postponed until
the technical tradeoffs associated with different choices are better understood.

- 19-

Thus standards for headers and descriptors can and should be adopted in
advance of these descriptor definitions for transport blocks.

5.4.3 Decoding Issues for Transport Headers

Decoding such a transport header in a high-error environment would be
relatively straightforward. First. if synchronization had been lost.
synchronization would be established. Initially this might be done assuming a
low-error environment. If the environment is noisy. then each of a few possible
synchronization blocks would be sought. including periodic repetition of legal
header keys. assuming that key bursts might have been employed for this
purpose. Because all possible synchronization words might be sought. it is
important to have only a few legal ones if they are many bytes long. Because
the synch reinforcement bits could be only in a small number of positions
relative to the beginning of the transport block. each such position could be
tested for consistency with the associated error protection bits. which are also
located in a small number of possible locations. Confirmation of
synchronization follows 1£ legal headers come immediately after the indicated
end of any block. Once the transport block is synchronized and error corrected.
the remaining descriptor fields containing any encryption key for the descriptor
in the following block. or any packet priority information can be deciphered.

One principal new constraint should be imposed by the standard on
manufacturers of equipment handling this header/descriptor standard. If
transport blocks are to be useful, such equipment must never insert data
between a transport block and the following block to which it applies.
Transport systems should try not to scramble the sequence of data blocks in
any event. but if a transport block should accidentally be prepended to the
wrong data block. the packet priority. encryption key for the data block
descriptor. and the error protection for the header/descriptor could be
inappropriate. resulting in a scrambling of the interpreted header/descriptor.
Such scrambling would also typically cause local loss of synchronization.
particularly in high-error environments. Since transport blocks would normally
be quite brief compared to typical data blocks. such a constraint should not be
difficult to satisfy. Such transport blocks could also be added or subtracted at
will by a given transport layer. however, provided they are appropriate to the
blocks which they precede.

If a data stream is entered in the middle of a transport block. then
confusion might result. To protect against this unlikely possibility. equipment
might choose to wait until the second valid header is intercepted before
commencing decoding.

6. ABSTRACT SYNTAX NOTATION 1 (ASN.l)
HEADER/DESCRIPTOR ARCHITECTURE

6.1 Backifound

Abstract Syntax Notation 1 (ASN.l) is an existing ISO/CCIT!' standard in
common use within the computer and telecommunications industries. Within

- 20-

the ASN.l framework. it is straightforward to define a SMPTE header/descriptor
that meets the objectives described in Sections 1-5 above. and it would leverage
existing tools. expertise, and administrative structures.

ASN.IIs derived from earlier work at Xerox PARC on CouI1er (late 19708). An
early version of the notation (c. 1984) was used in the first draft of the CCITf
X.400 series of recommendations on message handling systems (i.e.• electronic
mail). ISO and CCI1T then jointly developed ASN.l for use within the OSI
presentation layer (c. 1988).

ASN.I Is now widely used in a range of standards activities. including the
CCI1T X.500 directory service and both the OSI and Internet network
management systems. Over the years. a collection of software tools and utlllties
to support ASN.I has been (and is being) developed.

~ Concepts

ASN.I is an extensible notation for desCribing data that is to be exchanged by
transmission or storage. It is much like a programming language. such as C
and Pascal. There are several simple types. such as integer. real, and octet
string (i.e.. byte string), and constructor types that can be used to build
arbitrarily complex data structures. including hierarchical representations (e.g..
packet within packet).

AQ. ASN.I header can be thought ofas an envelope that contains. for example. a
single video frame. ASN.l supports the notion of embedding. which allows one
or more data structures to be contained within another. Thus. a sequence of
frames can be embedded within an outer header (or envelope) that labels a
program segment. This can be taken to coarser granulaI1ty. e.g.• shots. scenes.
programs. etc. S1m1larly. it can be taken to finer granularity to embed audio
tracks, closed captioning. descI1ptors. etc. within individual frames.

A key feature in ASN.l is the separation of how the data is described (Abstract
Syntax) and how data is encoded (Basic Encoding Rules. "BER"). Data
structures are described in a human-readable syntax and automatically
translated into the bits and bytes for transfer. When a new data structure (or
type) Is defined. its representation is automatically generated. Furthermore.
deployed ASN.I compliant systems will be able to interpret new structures
without hardware modification.

The following summary description of ASN. 1 presents only enough detail to
motivate its use for the specific needs of a header/descriptor. For formal
definition of ASN.I refer to ISO 8824/8825 and/or CCITf X.208/209. A more
accessible description can be found in: Marshall T. Rose. The Open Book: A
Practical Perspective on OSI. Prentice Hall. 1990.

~ Basic Encoding Rules mER)

All ASN.l types. whether a simple type or a structured type. can be encoded
using the same basic format of three fields:

- 21 -

[tag] [length] [value]

The three fields together make up a data item. Each field is variable in size to
accommodate arbitrarily complex substructures and encodings. A simple type.
such as an integer. requires only a few bytes. A structured type. such as a long
byte string. can be megabytes. gigabytes. or larger as necessary to contain the
payload data value. The basic format is inherently self identifying and
extensible.

A data stream is a sequence of items each ofwhich can be structured or nested.
Thereby. one can define arbitrarily structured data for both header and
descriptor. including nested packet-within-packet structures.

~ag Field·. The tag field spec1fles the type of the item value. Several simple
and structured types (integers. character strings. etc.) are Universally defined in
the ASN.l standard. and are recognized in all compliant environments. Also.
one can define types that exist within the specific environment of an application
or communications context. A tag is principally encoded as a Single byte. but
can be extended. In the BER. the tag is encoded as:

<2> <1> <5> -- bits per field
{class I p I tag number]

The tag field allows a receiver to "parse" the incoming data stream. selecting
those components/types in which it is interested and bypassing others.

The EXTERNAL type is of particular significance. In essence. it is a universal
header for the data that it encapsulates. The ·EXTERNAL type is described
further below. Other types are relevant to use in a descriptor.

Length Field. The length field indicates the size of the value. It is an integer
of one or more bytes that specifies the number of bytes in the value field. In the
BER, the short fonn of length is encoded as a single byte. and can indicate
lengths of 0.. 126 bytes of value. In extended form. the first byte spec1fles the
number ofbytes of length. Length is encoded as:

short form : 1 byte : [Obbbbbbb] : lengths of O.. 126 bytes

extended form: n bytes: [lnnnnnnn] [bbbbbbbb] [bbbbbbbb] ...n

Only the number of bytes needed to specify length are used. Thus. the length
field is compact. The extensibility of the length field permits a maximum length
field that is 126 bytes to specify a length of _21\ 1008 or -101\303.

Note that a common length specification is used regardless of the associated
data item. Accordingly. there is no need to invent custom length encoding
schemes for each new data item.

*Value Field·. The value field is the value in the type spec1fled by the tag. It is

- 22-

