
* p:: payload byte
*
*/

extern void fakeO:
extern void nullO:

/* fake predefined func to init It table */
/* null func for unused function entries */

/* It table structure */
/* block length or length of length field */
/* predefined function for It 0 ..5 */
/* offset to ident field for It 6.. 15 */

/* id table structure */
/* length of ident field */
/* which table to use in lookup */

typedef struct {
char length:
void (* functlon)Q:
char id offset:

) Lt entry;

Lt entry It table[16] = { /*U table declaration */
{2, fake, Ol, {2, fake, Ol, {4, fake, Ol, {5, fake, OJ, /* 0 ••3 */
{6, fake, Ol, {O, fake, O}, {I, null, 3l, {I, null, 4}, /* 4 .•7 */
{2, null, 4}, {2, null, 5}, {4, null, 6}, {4, null, BI, /* 8..11 */
{6, null, B}, {6, null, 10}, {O, null, O}, {O, null, O} /* 12.. 15 */

};

typedef struct {
char length:
char table:

}Id_entry:

Id_entry id_table[B) = { /* id table declaration •/
fI, Ol, {I, I}, {2, O}, {S, O}, {2, 2}, {4, 2}, {B. 2}, {O, O}

};

extern void (* 100kupOJO; /* id lookup function */

/* EXEcurABLE CODE STARfS HERE */

int decode compact header(pkt) /* call standard decoder and return length */
unsigned char ·pkt; /* pointer to packet */

{
unsigned char .p =pkt:
int It:
int length:
Id entry ·pid:
void (* flO:

It = *p» 4:
if (It < 6)

(
length =It table[It) .length:
(* It table[lt).function)(p):
return length:

}

/* working pointer to packet */
/* length type */
/* block length */
/* id table pointer •/
/* standard function returned from lookup */

/. get length type from bits 4..7 of key */
/* process predefined formats: It < 6 */

/*get block length from It table·/
/* call predefined function */

/* extract enough bytes to cover length field and shift out unused bits */

- 48-



length = ((int)*(p+2)«24) I ((int)*(p+3)«16) I ((int)*(p+4)«8) I *(p+5);
length »= 32-(1t table[It].length * 8);

pid =&id table(*p & Ox7}; /*get id table ptr using bits 0••2 of key */
p += It table[lt].id offset; /* move pOinter to start of id field */
f = lookup(p,pid->length,pid->table); /* lookup function */
p += pid->length /* move pointer to start of payload */
(* O(p,length-(intHp-pkt)); /*call function with payload ptr,length*/
return length:

}

B.2 ASN.l Header Decoder

The following program decodes a packet with an ASN.l header. The ASN.l
header is a compatible subset of the standard ASN.l EXTERNAL type. As
stated in section 6., not all the flexibility of the standard EXTERNAL type is
needed to meet the objectives. Thus this decoder has been specialized to
support a level of function roughly comparable to that of the compact header
decoder.

Decoding an ASN.l header is performed by parsing a sequence of tokens. Block
length is defined by one sequence, standard identification by a second. The
header has short or extended forms. The short form is used for blocks of 128
bytes or less and is processed by extracting block length from a single byte.
The extended fonn is processed by constructing block length from multiple
bytes.

The identifier is left as a string of bytes used to compute a hash table lookup of
a decoding function. The hash table lookup is performed by the procedure
100kupO which takes identifier address and length and returns a pointer to a
corresponding function (f).

B.2.1 Cautionary Notes

Context dependent headers are not decoded by the code below. They are
decoded by standard decode procedures at a time they are expected.

Block length is assumed to fit within one 32 bit word. Extending the program
and/or the C language to support larger word sizes, thus larger block lengths,
is possible and likely to happen as 64 bit processor architectures emerge.

If an unknown identifier is encountered, the lookup function will return a
pointer to an appropriate default function that ignores the payload and displays
an informative message.

B.2.2 Program Text

The program has two parts---the first part contains variable and procedure
declarations, the second part (at the end) contains the dozen or so statements
actually executed. Throughout the code descriptive notes (comments that are

- 49-



not executed) are placed between comment delimiters (r...•f).

r ASN.I header has one of three forms:
•
• Each character in the strings below represents a byte; bytes between
• square brackets are optional; payload bytes are not counted
•
• 2 byte (minimum) header for context dependent messages:
•
• "tl[.. .l]"
•
• 7 byte (minimum) header for short blocks:
•
• "tltll[.. .i]tl"
•
• Extended header for longer blocks:
•
• "tl[...l]tl1[.. .i]tl[.. .l]"
•
• Key:
•
• t:: tag byte
• I:: length byte
• i:: id byte
•
·7

r EXECurABLE CODE STARfS HERE •/

r get 1st length byte •/
r look for short form •/

r get id field length •/
r lookup function */
r call function •/
r return total length •/

r calc length oflength field */

r call standard decoder and return length •/
r pointer to packet • /

r id lookup function •/
/. working pointer to packet •/
r block length •/

r standard function returned from lookup·/
r temp register •/

decode_asn I_header(pkt)
unsigned char ·pkt;

{
extern void (. 100kupOlO;
unsigned char .p =pkt;
unsigned int length;
void (* f)0;
unsigned int t;

length = .(p+ I);
if (length < 127)

(
t = ·(p+3);
f =100kup(p+4,t);
(. f)(p+t+6,length-(p+t+6-pkt));
return length + 2;

}
t = length - 128;

r extract enough bytes to cover length field and shift out unused bits •/

length = ((int)·(p+2)«24) I ((int)*(p+3)«16) I ((int)*(p+4)«8) I *(p+5);
length »= 32-(t * 8);

- 50-



P += t + 3;
f = lookup(p+l"p);
p += *p + t + 3:
(* f)(p.length-(int)(p-pkt));
return length + t + 2;

}

r move pointer to start of id field */
r lookup function */
/* move pointer to start of payload */
/* call rune (payload ptr and size) */
r return total length */

- 51 -



APPENDIXC

HEADER/DESCRIPTOR TASK FORCE MEMBERS

Will Stackhouse. Chairman

David H. Staelln. Vice ChaiIman

Walter Bender

Rita Brennan

Wayne E. Bretl

David C. Carver·

Gary Demos

Ephraim Feig

Brimko Gerovac·

Jeffrey W. Johnston

Michael Uebhold

Lee McKnight

Arun Netravali

Bruce Sidran

D. Scott Silver

Richard J. Solomon

David L. Tennenhouse

David L. Trzcinski

KenC. Yang

Jet Propulsion Laboratory

Massachusetts Institute ofTechnology

Massachusetts Institute of Technology

Apple Computer. Inc.

zenith Electronics

Digital Equipment Corporation

Demografx.

IBM

Digital Equipment Corporation

Eastman Kodak Company..
Apple Computer Inc.

Massachusetts Institute of Technology

AT&T Bell Laboratories

Bellcore

Tektronix. Inc.

Massachusetts Institute of Technology

Massachusetts Institute of Technology

PictureTel

Ampex Corporation

• Associate members making significant written contributions.

- 52-


