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A. Algorithmic Details

The purpose of this appendix is to briefly describe the algorithmic underpinnings of
SDMA. An extensive technical literature concerning direction of arrival (DOA) estima
tion exists, we refer the reader to the bibliography contained in the Phase I proposal for
a starting point. Here, the emphasis is on the ESPRIT (Estimation of Signal Parame
ters via Rotational Invariance Techniques) algorithm whose accuracy and computational
simplicity make it particularly well suited to SDMA.

The Narrowband Data Model

Though ESPRIT is generally applicable to a wide variety of problems, for obvious
reasons the discussions herein focus on DOA estimation. Data from an array of sensors
are collected and the objective is to locate point sources assumed to be radiating energy
that is detectable by the sensors. Herein, the transmission medium is assumed to be
isotropic and non-dispersive so that the radiation propagates in straight lines, and the
sources are assumed to be in the far-field of the array. For the ranges of RF's considered
herein, this assumption is easily shown to valid. Consequently, the radiation impinging
on the array is in the form of a sum of plane waves. For simplicity, it will initially
be assumed that the problem is planar, thus reducing the location parameter space to
a single-dimensional subset of~, i.e., (Ji E [-1r,1r), where (Ji is the direction-of-arrival
(DOA) of the i th source. Assuming the signals are narrowband and have the same known
center frequency, Wo, Xk(t), the complex signal output of the kth sensor at time t, can be
written as

eo
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Xk(t) = L: ak((Ji)si(t - Tki) = L: ak((Ji)si(t)e-il<lOTIo; ,
~1 ~1

(A.I)

where Tki is the propagation delay between a reference point and the kth sensor for the
i th wavefront impinging on the array from direction (Ji, ak((Ji) is the corresponding sensor
element complex response (gain and phase) at frequency wo, and there are assumed to
be d point sources present.

Employing vector notation for the outputs of the m sensors, the data model becomes

d

x(t) = L:a((Ji)si(t) ,
i=1

(A.2)

where a((Ji) = [al ((Ji)e-il<lOTd l ;) , ... ,am ( (Ji) e-il<lOT",(I;))T , often termed the array steering
vector for direction (Ji. Setting A(8) = [a((Jl)'"'' a((Jd)] , s(t) = [d1(t), ... ,dd(t)]T, and
adding measurement noise n(t), the measurement model for the passive sensor array
narrowband signal processing problem is

z(t) = A(8)s(t) + n(t) .
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Note that z(t),n(t) E em, s(t) E ed, and A(8) E Cmxd , and it is assumed that m > d.
ESPRIT enjoys a significant reduction in computational complexity relative to most

DOA algorithms, obtained by imposing a simple constraint on the structure of the sensor
array. The constraint is most easily described by an example. Consider a planar array
of arbitrary geometry composed of M/2 sensor doublets as shown in Figure A-I. The
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Figure A-I: Sensor Array Geometry for Multiple Source DOA
Estimation Using ESPRIT

elements in each doublet have identical sensitivity pa.tterns and are translationally sepa
rated by a known constant displacement vector ~. Other than the obvious requirement
that each sensor have non-zero sensitivity in all directions of interest, the gain, phase, and
polarization sensitivity of the elements in the doublet are arbitrary. Furthermore, there
is no requirement that any of the doublets possess the same sensitivity patterns, though
as discussed in [IJ, there are advantages to employing arrays with such characteristics
such as uniform linear arrays (ULA's).
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ESPRrr Data Model

1MUSIC impoees the requirement d < 2m, and can therefore can handle roughly twice as many
sources as I!SI'IftT in general. For uniform linear arrays, however, I!SPRrrcan handle as many sources
as MUSIC by employing overlapping subarrays.
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(A.4)

(A.5)

(A.6)

Zo(t) = Aos(t) + Ilo(t) ,

Zl(t) = Ao.s(t) +nl(t),

z!O)(t) = t sle(t)ai(81e ) + nOi(t),
Ie=l

Z!l)(t) = t sle(t)ei ""OAain9. l cai (81e) + nli(t),
Ie=l

where fJ le is the direction of arrival of the kth source relative to the direction of the
translational displacement vector A.

Combining the outputs of each of the sensors in the two subarrays, the received data
vectors can he written as follows:

where the vector s(t) is the d x 1 vector of impinging signals (wavefronts) as observed at
the reference sensor of 8ubarray Zo, and Ao is the array response vector associated with
Zoo The individual signals can be temporally correlated, i.e., E{Si(t)Sj(t)} # 0, i # j.
Coherent (or fully correlated) sources can easily be handled as discussed in the next
section if there are multiple invanances in the array. However, coherent sources can not
be uniquely located with only a single array invanance and unknown array manifold
vectors. The matrix • is a diagonal d x d matrix of the phase delays between the
doublet sensors for the d wavefronts and may be written as I» = diag[ eh1 , ... , ehd ],

where ""tie = wo~sin81c/c. I» is a unitarymatrix (operator) that relates the measurements
from subarray Zo to those from subarray Zl.

Assume that there are d ::; m (m is the number of sensors in each subarray) narrow
band sources l centered at frequency wo, and that the sources are located sufficiently far
from the array such that in homogeneous isotropic transmission media, the wavefronts
impinging on the array are planar. As before, the sources may be assumed to be sta
tionary zero-mean random processes or deterministic signals. Additive noise is present
at all M = 2m sensors and as before is assumed to be a stationary zero-mean random
process with a spatial covariance 0'21. There is no loss of generality in comparison with
the assumption that the covariance is 0'21::". As long as 1::" is known, pre-whitening of
the measurement noise can be performed, or generalized singular value or eigendecom
positions can be employed.

To describe mathematically the effect of the translational invariance of the sensor
array, it is convenient to describe the array as being comprised of two subarrays, Zo and
ZI, identical in every respect although physically displaced (not rotated) from each other
by a known displacement vector A. The signals received at the ith doublet can then be
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expressed as



Defining the total array output vector as z(t), the subarray outputs can be combined
to yield

where

z(t) = [:~:~] = As(t) +o,(t),

- [Ao] [DO(t) ]A = A o• ' n%(t) = nl(t) .

(A.7)

(A.S)

(A.9)

It is the structure of A that is exploited to obtain estimates of the diagonal elements of
• without prior knowledge of Ao.

In its single invariance, eigenvalue decomposition version, the ESPRrr algorithm
operates as follows. Details can be found in [1, 2}.

1. Obtain an estimate of R zz , denoted Rzz, from the measurements.

2. Compute the eigen-decomposition of Ru

where A =diag{AI,"" AM}, Al ~ ... ~ AM, and E =[el !... leM].

3. Estimate the number of sources J using the minimum description length statistical
criterion.

4. Obtain the signal subspace estimate Sz = 'R.{Es } del [el ! ... ie,j] and decompose
it using a selection matrix J according to a particular choice of subarrays,

- [Eo]JEs = E
I

.

5. Compute the eigendecomposition (AI> ... > A2J),

and partition V into J x J submatrices,
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6. Calculate the eigenvalues of 'It = -V12V 22
1
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Signal CopY

In signal waveform estimation (often termed signal copy), one signal of interest (Sal)
is often assumed to be present along with a number of other directional sources (jammers
or interferers) and additive noise. The total number of sources and their DOA's are
assumed to be known or to have been estimated (e.g. via ESPRIT). As stated earlier,
the received signal x(t) is given by

x(t) =A(8o)s(t) + n(t),

XN =[x(l), ... , x(N)] =A(9o)SN +NN,

(A.10).

(A.l1)

where A(9o) is the collection of sensor responses parameterized by 9. The signals set)
are assumed to be independent of the additive noise n(t).

The deterministic signal model [3] assumes that the signal waveforms, SN, are un
known deterministic quantities to be estimated. The resulting normalized negative log
likelihood function has the form

VN =m log(1r(
2

)

-2

+UN Tr{(XN - A(8)SN )*(XN - A(9)SNn.

Minimizing (A.12) with respect to 8 and SN is equivalent to minimizing

(A.12)

(A.13)

This is a sepa.ra.ble problem in 8 and SN, and the estimate of SN is given by the least
squares solution of (A.13),

SN = (A*(8)A(8))-1A*(8)XN =At(B)XN

=W;zTXN.

Substituting this back in (A.13) leads to
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where Rxx is the sample covariance XNX'N/N. It is interesting to note that the signal
parameter estimates 8 obtained {rom the deterministic ML method are not efficient, i.e.,
the method does not attain the deterministic CRa [4]. This is a consequence of the {act
that the estimates of the signal waveforms themselves are inconsistent.
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