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TABLE 7
AcruAL GROSS PRIVATI! DoMI!STIC CAPITAL INPUT. 1929-]967 (constant prices of ]958)

]. Corporate 2. Corporate 3. Non-Corporate 4. Non-Corporate S. Private 6. Private 1. Index of
Year Capital Input, Capital Input, Capital Input, Capital Input, Domestic Domestic Relative

Quantity Index Price Index Quantity Index Price Index Capital Input, Capital Input, Utilization
Quantity Index Price Index

]929 33.7 0.,.2 25.2 o.m 90.4 0.518 0.175
1930 32.1 0.471 25.1 0.411 89.1 0.431 0.697
]931 29.6 0.353 24.5 0.316 85.3 0.397 0.615
1932 25.4 0.267 23.7 0.257 79.6 0.308 0.523
1933 25.7 0'»9 24.0 0.272 17.8 0.314 O.SO
1934 26.3 0.343 24.4 0.314 17.0 0.323 0.626
1935 27.6 0.... 25.3 0.375 78.3 0.393 0.•
1936 28.7 0.444 26.2 0.417 80.2 0.418 0.756
1937 28.6 0.487 26.3 0.433 80.7 0.444 0.739
1938 26.3 0.452 25.9 0.401 78.3 0.408 0.621
1939 29.0 0.4'0 27.2 0.425 82.3 0.438 0.738
1940 32.2 0.518 28.8 0.438 81.8 0.461 0.853
1941 37.5 0.602 30.9 0.521 96.8 0.525 1.021
1942 42.4 0.611 32.7 0.619 105.3 0.5S6 1.132
1943 46.5 0.702 34.1 0.667 110.6 0.653 1.333
1944 45.9 0.710 33.8 0.790 108.6 0.683 1.349
1945 42.2 0.671 32.8 0.855 102.6 0.100 1.224
1946 38.9 0.664 31.8 0.867 97.7 0.171 1.083
J947 43.9 0.764 33.0 0.105 106.4 0.802 1.138
1948 46.8 0.900 33.1 0.848 113.3 0.827 1.116
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T ABLB 7-continued

1

w-00

1. Corporate 2. Corporate 3. Non-Corporate 4. Non-Corporate 5. Private 6. Private 7. Index of
Year Capital Input, Capital Input, Capital Input, Capital Input, Domestic Domestic Relative

Quantity Index Price Index Quantity Index Price Index Capital Input, Capital IQPut, Utilization
Quantity Index Price Index

1949 45.8 0.896 34.1 0.198 115.s 0.801 0.991
19SO 49.8 0.974 36.0 0.867 124.7 0.90S 1.075
1951 53.3 1.032 38.0 0.990 134.8 0.965 1.095
1952 55.2 0.976 38.5 0.946 139.9 0.959 1.048
1953 59.4 0.93' 39.8 0.903 147.5 0.932 1.091
1954 58.4 0.918 39.3 0.920 149.0 0.955 1.019
1955 63.5 1.061 41.2 0.896 151.8 0.996 LIM
1956 66.8 1.020 42.2 0.825 167.6 0.970 Ll09
1957 68.4 1.026 41.9 0.883 172.1 0.913 1.066
1958 67.8 1.000 41.2 1.000 173.3 1.000 1.000
1959 73.6 1.077 43.5 0.886 182.7 1.028 1.092
1960 76.5 1.038 44.2 0.849 189.4 1.023 Ll01
1961 78.1 1.043 44.4 0.903 194.1 1.043 1.083
1962 83.0 1.096 46.0 0.962 202.5 1.091 1.138
1963 87.1 1.114 47.3 0.961 211.0 1.110 1.157
1964 94.0 1.133 49.7 0.935 224.1 1.116 1.224
1965 99.1 1.212 51.0 1.003 235.0 1.183 1.236
1966 105.9 1.248 52.8 1.042 249.1 1.219 1.252
1967 113.7 1.176 54.2 1.020 263.7 1.171 1.250

-----
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utilization. This utilization adjustment reflects both cyclical and secular changes
in utilization; the adjustment employed by Jorgenson and Griliches reffects only
secular changes.

As a final step we multiply the index of relative utilization by the index of
potential capital services to obtain an index of actual capital services for non
residential structures and producers' durables in the corporate and non-corporate
sectors. We then divide the price of potential capital services by the index of
relative utilization. The value of the capital service flow as we have measured it is
independent of the rate of utilization; we define a price and quantity index of
actual capital services as price and quantity indexes of potential capital services,
divided and multiplied, respectively, by our index of relative utilization. Price and
quantity indexes of actual capital services for corporate and non-corporate
sectors and price and quantity indexes of actual capital services for the private
domestic economy for 1929-1967 are presented in Table 7. The index of relative
utilization is also given in Table 7.

7. SUMMARY AND CONCLUSIONS

In this paper we have attempted to provide a conceptual basis for measuring
real capital input. We have constructed estimates of real capital input for cor
porate business, non-corporate business, and households and non-profit institu
tions in the United States for the period 1929-1967. Fully satisfactory estimates of
real capital input will require much further research. Additional research on land
and inventory components of the capital stock, paralleling the OBE Capital Stock
Study [16] for depreciable assets, would be valuable. Goldsmith's allocation of
assets and investment by legal form of organization should be updated and
extended.

Further improvement of investment goods price indexes, as in the "constant
cost 2" price index for Don-residential structures for the Capital Stock Study, is
essential for the accurate measurement of investment goods output entering
our perpetual inventory estimates of capital stock. The relative utilization
adjustment for capital we have employed should be estimated separately for each
of the components of capital stock from data similar to that compiled by Foss [9].
Finally, it would be useful to compile data on capital stock by detailed asset class,
lelal form of organization, and industry in order to incorporate additional aspects
of capital quality into the measurement of capital input.
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The paper racioaalizes c:ertain fuoc:tioaal forms for index numbers with fUDc:tional forms for
the Wlderlyins .....tor functioa. AD. aareratoe fimc:tional form is said to be 'ftexible' if'it
can provide a second order approximadoa to aD arbitral)' twice dilfcrentiable linearly homo- _
JIMOUS function. AD. index number fuac:tional form is _ to be 'superIatiw' if' it is exact
(i.e., consistent with) for a 'fta.-ble' .greptor fUDc:tioaaJ form. The paper shows that a
c:ertain f.1JDiJY of index number formulae is e.uc:t for the 'hxible' quadratic: mean of order ,.
aarePtor fWlCtion, (I,I/4,JXc'/2"l'2)1I', defined by DeaDy and others. For ,. equals 2. the
resulting qlWltitY inde~ is Irvine FISher's ideal index. J1Ie~ also utilaa the Malmquist
quaatity index in order to rationalize the TlSoqYist-Thal quaatity index in the nonhomothetic
case. FanaJly, the paper attempts to justify the Jorpa.soo-(irilic:bes productivity tneaSureinent
tee:hDique for the case ofdi.<;aete (as opposed to continuous) data.

I. Introduction

One of the most troublesome problems faciol national income -.accountants
and economctriciaus who are forced to construct some data series, is the question
of wbich functional form for an index number should be used. In the: present
paper, \\e """nsider iais '{uation anJ ,e:.ue fWACti"oal (O:DIS :or t!le unit.iying
production or utility function (or aDJeptor fuaction, to use a neutral termi
nology).

First, define a quantity in.x between periods°and I, Q(p°,r; xO, r), as a
function of the prices in periods °and I, pO > 0K and l > 0K (where 01'1' is an
N~mensional vector of zeroes), and the COrrespondiDg quantity vectors,
XO > 0.... and r > ON, while a price index between periods 0 and I, P(p°,r;
xO, r), is a function of the same price and quantity vectors. Given either a
price index or a quantity index, the other function caD be defined implicitly
by the following equation [Fisher's (1922) weak factor reversal test]:

(1.1) p(pO,pl;xO,r) Q(p0,pl; xO,r) _pl.r/pO.xo,

i.e., the product of the price index times the quantity index should yield the

-This research was partially supported by National Scieace Foundalion Graftt GS-328-A2
at the Institute for M.cbem.tical Studies ia the Soc:ial Sc:iencas at Scantord Ulliwnity••nd
by the Canada Council. A preliminary versioa of thi$ paper was preIeIlted at S....forel iii
AUp&St 1973, and the author is indebted to W. !.au. D. Aisner, KJ. Arrow, E.R. Bemdt,
C. Blackorby, L.R. Christensen and K. LoveU for helpful comments.
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(1.3) QI.(PO,pl;XO,XI) E! [pl'XlpO·XI/p"XOpO.xOJ1.

The geometric mean of the Paasche and Laspeyres indices has been suggested
as a price index by Bowley and Pigou (1920, p. 84), but it is lrviiig Filiher (!922)
who termed the resulting index itieal:

The Lnspcyres, Pansche and ideal quantity indices arc defined in n sintil~r

manner - quantities and prices are interchanged in the ubove fO:"'11ulne. In
particular, the ideal quantity index is defined as

expenditure ratio between the two periods. (We indicate the inner product of
two vectors asp·:c or pTx.)

Examples ofprice indices are

2. 11Ie T6mqYist-TheIl 'DlYls'a' Index aDd the traasloe functloD

Before stating our main results, it will be necessary to state a preliminary
result which is extremely useful in its own right. Let z be an N-dimensional
vector and define the quadraticfunctionf{z) as

If a quantity index Q(po, pr; xO, x') and a functional form for the aggregator
function/satisfyeq. (1.5) then we say that Q is txact for f. Konyus and Dyush
gens (1926) show that the geometric quantity index n:_.(x1!xr)" (where
s, iii pr .xT/po. xo) is exact for a Cobb-Doullas 81srelator function, while
Afriat (1972), Pollak (1971) and Slunuelson-8wamy (1974) present other
examples of exact index numbers. HoweverI it ap~llrs that out.vll the exact
~cx numbers th~s far exhibited. Oil!! the ideal inde!.:~!..~~~~~_~~_~!..~~£
~~al f~rm forl,wh,!Ch is capa6fe o!p.!.ovid~~I_~.~~~~!.!PP!.~~I:nat~on .t~
an llmltrar1 tWlcc-Oilrcrentiible llOearhOmOleneous function. For a proof
that the fun"'Cffijn:I funrr (.x"'"/ix)i'C£riptovTdesucf,-ci--iccon"d-order approxi
mulion, sec Dicwert (19741).

Let us call a quantity index Q 'sllptrlative' [see Fisher (1922, p. 247) for nn
undefined notion of a superlative index Ilumber] if it is exact for anfwhich can
provide asecond-order approximation to a tinear homogeneous function.

In the following section, we show that the TOrnqvist (1936), Theil (1965,
1967) and KlcJCk (1966, 1961) quantity Index [which has been used by Christen
sen and Jorgenson (1970), Star (1974). Jor,en.lIon and Orilicbes (1972, p. 83),
Star and Hall (1973) ar. a discrete approximation to the Divisia (1926) index]
is also a superlative index number. In section 3, we use the results of section 2
to provide a ri.orous interpretation of the Jorlenson-Griliches method of
measuring technical prOlfCSS for discrete data.

In section .., we introduce an entire family of superlative index numbers.
Section 5 prcsentllOme conclusions which tend to support the use of Fisher's
ideal quantity index In empirical aPPlications aDd thi final section IS an appenaiX
whim Sketches the prOOfs of various theorems developedlftthe following
SectioDS.

(Paasche price indexl.

(Laspeyres price index],

r .. 1,2, •.., R.

,.
P1d(PO,pl; xO, Xl) E! [pl'XOpl'XI/pO'XOpO'XI]l.

p••(pO, pi; x O, Xl) e p' .xl/po. Xl

PL.(p O, pi; x o, Xl) e pl.XO/pO 'XO

(1.5) f(x')If(xO) - QI.(p°,pr; xO, xJ,

Notice that PNQ•• .. pl'Xl/pO ·xo; i.e., the ideal price and quant:ty indexes
satisfy the 'adding up' property (1.1). The following theorem sho\\s that the
ideal quantity index may be used to compute the quantity aggrega!es!(x!).._-- ....--

(1.4) T"eor~m [Byushlens (1925), Konyus and Byushgens ',(1926),
Frisch (1936, p. 30), Wald (1939, p. 331), Afriat (1972, rt. 45) and
Pollak (1971)]. Ltl ]I» ON for p~riods r == 0, 1,2, .••, R,' and
suppos, Ihat x > ON is a solution to max..{f(x): pr. X ~ .or. x, X e:
Olf}' wh~r~ f(x) III (xTAx)l EI (L1-, il-, xJaJix.)l, a)i ..... aiJ' and
th~ maximization takes pTact Ol1tr a region whtrt f(x) is conca", alld
positi", (which m~ans A must Ira'" N-I ztro or negat;l)~ tigtnualues
andont positi", tigtnualut). Thtn '

(1.2)

where the a" a,) are constants and a'J = oJ, for all I,}•
The following lemma is a global version of the Theil (1967, pp. 222-223) and

Klock (1966) local result.
\)

Thus given the bast period normalizationf(xO) = I, the ideal quantity index
may be used to calculate the aggregate f(x) = (xTA.~/)l for r = 1, 2, ..., R,
aDd w~ do not !lavt to tstimatt t!le unknown co~lficients in tile A matrix. This
is the major advantage of this method for determining the aggregates f(x)
[as opposed to the econometric methods suggested by Arrow (1972»), and it is
particularly important when N (the number of goods to be aggregated) is
.larae compared to R (the number of observations in addition to the ~ase period

. observation po, XO).

(2.1) fez) == oo+aTz+izTAz

II. If II

.... ao+ L a'%I+ L L a'Jz,z) ,
J-I '.1 J-I ..
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(2.S)
Ifwe substitute relation (2.10) into (2.9), we obtain

Now we relate[t to the translQg function/. We have

"- L l[s~ +s:] In [x~/x:],.-1

for r .. 0, I and j .. 1,2, .•., N.; Ij - In xj,

N N"
r(z) Ell «0+ L «,z,+! L L YlJz,zJ'

J-I , .. I J-I

(2.11) Inf(xl)-Inf(x~ - ![tl ~~;)+tO ~~;)l[lnxI-lnxO],

[
t" to 0]

In [f(x')lf(xO)) .. ! ::rI:.+~ .[In Xl -In XO]
p x p x

where In x' s lin x~, In xl, ...,In x~), In XO
E [In xV, In x~, ..., In x~], ~I =

the vector .tl dialonaliud into a matrix, and to Ii! the vector XO diagonalizcd
into a matr:x.

ASS\lnlC :hat x' • 0" is a solution to the aggrcgalor maximization problem
max..{f(x): ;·x - ;·x',x ~ O,,}, where; ~ 0" for r - 0, I, and f is the
homopneous tranllol function. The tint-order conditiont for the two maxi
mization Foblcms, after elimination of the Lagranlc multipliers (Konyus
and Byushsens (192G, p. US), Hotellin, (19)~, pp. 71-14), Wold (1944, pp.
69-11) and Pearce (1964, p. S9) lemma], yield the relations ;/;.x' - 17f(X)/
x"17f(X) for r .. 0, 1. Since/is linear homoleneous, x'. Pf(x') may be replaced
by f(x') in the above, and substitution of these last two relations into (2.11)
yields

(2.10) ar(z")/azJ - a Inf(X)fa In xJ - [a[(x')/OxJ](xjlf(x»)·
• ~ . 1

I~(J') - Inf(x'),

Since the functionft is quadratic, we can apply the quadratic approximation
lemma (2.2), and we obtain

(2.9) r(zl)-r(zO) .. !(J7r(ZI)+ 17r(zO)).(zl-zO).

(2.8)

I

Jorgenson and Lau have shown that the homogeneous translog function can
provide a 'second-order approximation to an arbitrary twice-continuously
differentiable linear homoaeneous function. Let us use the parameters which
occur in the translol functional form in order to define the following function,
ft:

max.{{(z): pi .Z .. yl, Z ~ O,,}. where pi ~ 0", yl • pi .Xl, the inner
product of pi and Xl ; X O ~ 0" (I.e., each component of X O is positive)
is a solution to the utility maximization problem

(2.6) max.{/(z): pO·z .. yO, Z ~ ON}' where pO ~ 0" and yO i!i pO·xo;
then the chllngc in' utility betwccn period5 0 and I is

(2.7) f(x')-f(xO) = l(Arl,I+Alp°J-(x' -xO), where A: is the marginal
utility of income in period I for I - 0, 1; i.e., At is thc optimal value
of the Lagrangc multiplier for the maximization problem (2.S), and
~: Is the Losrangc multiplicr for (2.6).

Bowley's lemma Is frequently used in applied welfare economics and cost
benefit analysis, while the quadratic approximation iemma is frequently used
in index number theory, which indicates the close connection between the two
fields.

Suppose that we are given a homogeneous translog aggregator function
[Christensen, Jorgenson and Lau (1971)] defined by

11 N N
Inf(x) 55 «0+ L «" In x.+! L L YJl In xJ In Xl'

,,-I J-I 1-1

wh':!re L~.,a" ... J, YJl = Y1J and IJ-IYJl == °for J - I~ 2, ..., N.

(2.2) Qllc..dratic approximation lemma. If DlId only if the quadratic function
lis dtjined by (2.1), then,

(2.3) f(zl) - f(zo) = 1[17f(ZI)+17f(zo)]T(zl - zO),

where 17f(z') is the gradient veclor offevaluated at z'.

The above result should be contrasted with the usual Taylor series expansion
for a quadratic function,

f(Z')-f(zO) = [Pf(ZO)]T(zl-zO)+!(zl-zO)Tp 2f(zO)(ZI_ZO),

where 17 2/(ZO) is the matrix of second-order partial derivatives of / evaluated
at an initial point zoo ,In the expansion (2.3), a knowledge of _172f(~l is t.!Ql
required, but a knowledgC or 17/(%1) is r~uirea: It must be emphasize~ that
~myTonlnl~Z01leiongr;gto an open set if and only if/
is a quadratic function.

Actually, the quadratic approximation lemma (2.2) is closely related to the
following result which we will prove as a corollary to (2.2): ,

(2.4) umma [Bowley (1928, pp. 224-22S»). 1[ a consumer's preferences
can be represented by a quadratic [unction f, defined by (2.1); Xl ~ ON
is a solution to the utility maximization problem
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N
(2.12) f(xl)lf(xo) = n [x~/x~]H'ft'+SftO) a Qo(pO,p';XO,xl),

II-I

(2.13) Ltmma [Shephard (1953. p. 11), Samuelson (1947)]. Iff is positive,
/intarly homOltntous and concave: if

Now under the assumption of cost-minimizing behc:."ior in periocis 0 and 1
[which implies (2.14)], we have upon applying the quadratic approximation

.Jemma (2.2) to the translog unit function,

I Proof: divide (2.13) byp'.; .. e<p")f(X).

. N N N
In C(P) • «:+ L Of: InplI+i L L 111: Inp} 10 PI:.

}_l }-ll:-l

where r:-l«: - 1. 111: =- .,:} and U'-l.,Ji =- 0 for J =: 1,2, ••., N. We··;I~o
need the following results.

or

where s: - p:x'Jp'·:c' (the nth sbnre of cost in period r), p' » ON (period r
prices. r - 0. 1). x' ~ ON (period I quantities. I .. O. I), and c(p) .. the trnnslog
unit cost function. 2

The rllht-hand side of (2.1 5) corresponds to Irving Fisher's (1922) price index
123. The above arlument shows that this price index is tXDCt for a translog
unit cost function. and that this is the only differentiable unit cost function
which is exact for this price Index.

Let us denote the riaht-hand side of (2.1 5) as the price index function Po(p0,
pi; Xl. xl). and denote the riaht-hand side of (2.12) as the quantity index
QO(P°.pl i Xl. Xl). It can be verified that Po(po, pi; xo. x1)Qo(pO, l; xO, Xl)
.", pl.xI/po .xo in aeneral;, i.e.• the price index Po and the quantity index
Qo do not satisfy the weak factor revenal test (1.1). This is perfectly reasonable,
since the quantity index Q. is consistent with a homoleneous translog (direct)
aareptor function. while the price index Po is consistent with an a"regator
function whic1l- is dual to the translog unit cost function, and tlrt "·'0 aggrtgQtor
functions t!o 1I0t in Itnffal COIIlCIM; i.e.• they correspond to different (aure
ption) technoloafes. Thus, liven Qo. the corresponding price index, which
satisfies (1.1). is defined by I'oCP°.pl;XO.XI)l!pl'XI/(P°'XOQ0(p0,p';
Xl, ;~l)]. The quantity index Qo and the correspondin, (implicit) price index
Po were used by Chriltensen and Joraenson (1969, 1970) in order to measure
U.S. real input and output. On the other hand, given Po, the corresponding
(implicit) quantity index. which satisfies (1.1), is defined by ao(pO,pl; xO, xl) !5

pl'XI/[p°'XOPO(p°.pl;XO.Xl)). The prlce-quantity index pair (Po, ao) was
advocated by Klock (1967, p. 2) over the pair (p0' Q0) on the following grounds:
as we disaggrcgute morc and more, we enn expect the individual consumer or
produ~r to' utilize positiv: amounts of fcwel' and fewer goods (i.e., as N grows,
components of the vectors .~c and xl will tend to become zero), but the prices
which th~ pioducer or consumer faces are generaliy positive irrespective of

2Note that the validity or (2.1S) depend. crudally on lhe validity or (2.14), which will be
valid if,' and,I belona to an open convex let of prices P,such thaI lhe translo. C(P) "lisfles
the re&Warlty conditioot orpositivity, linear homoaendlY and concavity overP.

N
(2. IS) C(pl)/c(pO) .. n [p~/p:]H'ft'+'ftO],

11-1

N

.. L [s~ +s:] In [p~/p:] •
11-1

Jnc(pl)-lllc(PO) .. {pI r:;;)+po V:;:>}[lnp1_lnpO]

[
Xl XO ]-! f :r:r+po -o:ii ·[Inpl-Inpo]

p ·x p ·x
(using 2.14)

for r:.: 0, 1.

for r =- 0, 1.x' - pc(p')f(x),

Corollary.1 x/p··." =: Vc(JI)/c(p) ,

y.x' - minJr{Jf'x:f(x) ~f(xl} a c(P1l(Jl.J, lor r =: 0.1.

and if tlrt unit cost function c Is differentiable at p'. thtn

(2.14)

or

where s: == p:x:/p·· X, the nth share ofcost in period r.
The right-hand side of (2.12) is the quantity index which correr-ponds to

. Irving Fisher's (1922) price index number 124, using (l.l). It has :'llso been
advocated as a quantity index by Tornqvist (1936) nnd Theil (1965, 1967,
1968). It has been utilized empirically by Christensen nnd Jorgenson (1969,
1970) as a discrete approximation to the Divisia (1926) index and by Star (1974)
and Star and Hall (1973) in the context of productivity measurement. The above
argument shows tha{this quantity index is txact for a homogeneou Cl translog
aggregator function, and in view of the second-order approximation property
of the homogeneous translog function, we sec that the right-hand side of (2.12)
is a suptrlative quantity index.

It can also be seen [using the if and only if nature of the quadratic approxi.
mation lemma (2.2)] that the homoaeneous translol function is the only dif
ferentiable linear homogeneous function which is exact for the Tornqvist
Theil quantity index.

The above argument can be repeated (with some changes in notation) if
the unit cost function for the a"regator function is the translog unit cost
function defined by



122 W,E, Dlewert, Exoct ond superlotlve Index n/lmMrS
W.E. DltM'trt, E.·enet ontllufWrlollve Indu r::tmbtrs

the degree of d'isaggregation. Since the logarithm of zero is not finite, Qo will
tend to be indeterminate as the degree of disaggregation increa~es, but Po
will still be well defined (provided that all prices arc po!\itive).

Theil (1968) and Klock (1967) provided a somewhat different interpretation
of the indices Po und Qo. an interpretation which docs not require the nggre
gator function to be linear homogeneous. Let the aggregate u be deflned by
u - f(x), where f is n not necessarily homogeneous aggregator function which
satisfies for example the Shephard (1970) or Diewert (1971) regularity conditions
for a production function. For p » ON' Y > 0, define the total cost function
by C(u; p) II!! min.{p.x:f(x) ~ u; x !i: ON} and the indirect utility function
by g(pIY)" max.{f(x):p,x ~ Y. x :i! ON}' The true cost of living price index
evaluated at 'utility' level u is defined as P(pO,p'; II) == C(u; p')/C(u; po), and
the Theil index of quantity (or 'real income') evaluated at prices p ,s defined as
Qy{p; ,,0, u') !i!! C(u'; p)/C(uo; pl. The Theil-Klock results arc tha~: (i) Po(pO,
p'; xO, Xl) is a second-order approximation to P(pO, pi; g(u·», where the nth
component of 11· is 11: !!I (p~p~/po.xop'.x')t, for n I: 1,2, ••., N, and (ii)
Qo(pO,p';xo.x') is a second-order approximation to QT(P~i~(p°,';;o,x~.

g(p'/p'·x'», where the nth component ofp. is P: !!! (p~p~)t.

In view of the Theil-Klock approximation results, we mipt be led to ask
whether the index number Po is exact for any Fneral (non.homothetic) func·
tional forms for the cost function C(u; pl. The following theorem Ilnswers this
question in the affirmative:

(2..16) Theorem. /At the functional form for the cost functl(,n he fJ general
translog oftheform

11 11 11 •.•.-.

In C(u;p) • «:+ L It: Inp,+i L L 11" InPJ Inp"'-I J-I II-I
11

+p·ln u+6·(ln U)2 + L ann u Inp,~
II-I

where Lr-I«f - I, 1/11 - 1:Ji 11-11rI: 0, for J - 1,2: ..., N, and
11-1'1 - 0.3 Let (u ; po) and (u'; P ) belong to a (u; p) region where
C(u; p) satisfies the appropriate regularity conditions/or a ,:ostfunctioll
[t.g., Sfe Shtphard (1970), Hanoch (1970) or Diewert (1971» and
define tire quantity IItctors XO E r,C(uo;pO) and Xl E r,C(ut;p').
Tlren

PO(p°,pl; x'0. Xl) - C(u.; pl)/C(U.; pO),

'.. wlrere u· a (uOul)l and Po ;s defined by tile right-hand side of(2.15).

In contrast to the case of a linear homogeneous aggrcgator function where
.. 'the cost function take, the siinple fOfm C(u;p) = C(P)u, theorem (2.16) is

."
'Th,csc restrictions ensuro the linear homocenelty or C(I4; p} lop.

not an if nnd only if result; that is, the index number Po(pO, p'; xO, Xl) is ex:
for functionnl forms for C(II; p) other thnn the trnnslog. In fuct. theorem (2.
remains true if: (i) we define C as In C(u; p) E «o(u) + L~-' [lX, +£,"(")} In p
i L1-, 11-1 1Ji In PJ In Pi' where L~-'«'" I, V-,a, = 0, y,. = Yi'. n
1JII .. 0, for J .. 1,2, ..., N. nnd h is a montonically increasing function
one variable, and (ii) define the reference utility level u· as the solution to 1
equation 2/r(u·) - h(ul)+h(uO). (In the translos case,/,(u) • In u.]

Thus the same price index Po is exact for more than one functional form (a
reference utility level) for the true cost of living.

We can also provide a justification for the quantity index Qo in the conte
of an aggregator function f which is not necessarily linearly homogeneo'
In order to provide this justification, it is necessary to define the quantity ind
which has been proposed by Malmquist (1953) and Pollak (1971) in the co
text of consumer theory, and by Bergson (1961) and Moorst~en (1961)
the context ofproducer theory.

Given an auregator functionfand an _uregate u !!I f(x), definers distoll
function as D(u; xl • m3x~{k:f(x/k) ~ u}. To use the language of utili
theory. the distanr.c function teUs us by wbat proportion one has to defln
(or inflate) the pven consumption vector x in order to obtain a point on t:
utility surface indexed by u. It can be shown that iffsatisfies certain regulari
conditions, then f is completely characterized by D [see Shephard (I97(
Hanoch (1970) and McFadden (1970)]. In particular, D[u; x] is linear hom
8eneous non.deere&sin. and concave in the vector of variables x and no
increa.in, in II in Hanoch's formulation.

Now define the Mabnquist quantity Index as Q,,(XO, x'; u) II D[u; Xl

D[u; x'!. Note that the index depends on Xo (the base period quantitie!
Xl (the current period quantities) and on the base indifference surface (whi(
is indexed by u) onto which the points XO and Xl are deftated. The followir
theorem relates the transiOi funCtional form to the Malmquist quantity inde.

(2.17) Th.ortm. ut an aflrtgator function f satisfying the Hanoclr (1971

and Diew.rt (1971) ",ultlrity conditions be gilltn suelr that f's distallt
function D Is a ,eneral translo, oftheform

If 11 N

In D[u; xl - «0+ L lX, In x,+! L L YJ" In x,+P In u+cS(ln 14)1
'-1 /-111-1

II

+ L I, In u In x ..'-I
where 'Er-I«' ItS I, "IJ" - 1iJ' r:-11Ji == 0, for J - 1.2, .•., N, an
IT-It:, - O. Suppose tlrat the quantity lItetor XO is a solution to tlr
aggregato, maximization problem max.{f(x):po·x - po.XO}, wltil
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(3.1) r(w) - max,{"" y: g(y) ~ I, Y ~ o..,}.

The translog functional form may be used to provide a second-order appro.
mation to an arbitrary twice-diJrerentiabie factor requirements function. Th

I •

assume that g IS defined (at least over the relevant range ofy's) by

Thus given a factor requirements function g, (3.1) may be used to delinl
unit revenue function. On the other hand, given a unit revenue function rl
which is a positive, linear homogeneous, convex function for w ~ 0.." a fac
requirements function g. consistent with r may be defined for Y ~ 0.., by7

(3.2) g.(y) • min.l{.t: w·y ~ r(w).t for every w '= OM}

- min.l{.t: I ~ r(w).t for every w ~ OM such that \V.y ""

- I/muw{r(w): \V'Y .. I, w ~ O..,}.
I

for r:l 0,

, II II N

Ing(y") • 00+ L a.ln'y"+! L L cJllnY} In.v.,, .-1 J-li-l

I
where

(3.3) .

II II

L a. "" 1, eft - eiJ' L cJi - 0, for J "" 1,2, .•., M,
.-1 i-I

4See Dlewert (1969,1974.), Fisher and Shell (1972) and Samuelson and SWl:my (1974) ,
this topic. .

•Assume, II deftned for , ~ 0." and hu the followl", properties: (i) ,cy) > 0 for 1 );0 (
(ptnItlWly), (Ii) M) - AI(1) for A ~ O. , i= 0 (/iItHr """"""'1,). and (ill) ,(lyl+(J
.1),1) ~ .IN(1)+(l-.Qr()oI)rorO ~ 1 ~ 1,,1 i= 0.".11 ~ O.,(Ct1IWxll,).

'If'..... the 3 propertia llated in footnote 5, then , abo hu those 3 properties.
'The proof'lI anaIoaoas to the proof' or tho SamueJson-Shephard duality theorc.m presenll

in Dlcwerl (Jt74b): .....tmly,..SamuIIIoD and Swamy(1"4).

Jorgenson and Griliches (1972) use the index number formul~ Qo(pO,
xO

, Xl) defined by the right-hand side of (2.12) not only to form In index
real input, but also to form. ~", index IJf real output. Just as the anregat
of inputs into a composite input rests on the duality between unit cost and han
geneous production functions, the a.relation of outputs into a compo~

output can be based on the duality between unit revenue and homogene(
factor requirements functions. 4 We briefly outline this latter duality.

Suppose that a producer is produclnl M outputs, (YI' Y2' •.., YM) e Y, t

the te-;hnolo,y of the producer can be described by n foctor r~qll;r~me

function, g, where g(v) - the minimum amount of aagregate input required
produce the vector of outputs y. S The producer's ""It (nggregnte input) reuel
f"nctio,,' is defined for each price vector w ~ 0.., by

Xl is a; solution to maltA/(x): p' .x - pl. Xl} and uo 'S I(xo), ul
!!!

I(x l ). rlrttr

Qo(pO,P';XO,xl) ... D[u.;xIJ/D[u·;xoJ I!! QM\XU,X:;u4»,

where u· 5! (uOul)l o;,d Qo is defilled in (2.12).

3. Productivity measurement and 'Dhisia' Indexes

Jorgenson and Griliches (1972, pp. 83-84) have advocated the use of the
indexes Po, Qo in the context of productivity measurement. It is perhaps appro~
priate'to review their procedure in the light of the results of the previous section.

First, we note (by a straightforward computation) that it is not :n general
true that 'a discrete Divisia index of discrete Divisia indexes is a discrete Divisia
ind~x of the components' [Jorgenson and Griliches (1972, p. 83»), where the
'Divisia' quantity index is defined to be Qo' In view of the one-to-one' nature
of the index number Qo with the translog functional form for the auregator
function f in the linear homogeneous case, it can be seen that the ]or,enson
Griliches assertion will be true if the producer or consumer is maximizing an
aggregator function I subject to an expenditure constraint, where I is both
a homoaeneous translog function and a translog of micro-translol aaregator
functions. The set of such translog functions is not empty since it contains the
set of Cobb-Dou,las functions. Thus if cost share's are approximately constant
(which corresponds to the Cobb-Douglas case), then the Jorgenson-Griliches
assertion will be approximately true.

It can be similarly shown that in general, it is not true that a discrete 'Divisia'
price index of discrete 'Divisia' indexes is a discrete 'Divisia' price index of the
components, where the 'Divisia', price index is defined to be Po: the fil"St method
of constructinl a price index is justified if the aure.ator function has a unit
cost function dual of the form e[c1(p1), C2(P2), •••, C1(pl»), where (pi, p2, •.•,
pI) r~presentsa partition of the price vector p and the functions c, c', -:2, ' , ., ,1
are all translo, unit cost functions, while the second method of constructin. a
price index is justified if the aggregator function has a unit tost fuuetion dual,

, C(P),w~h is tran,lol. '

As was the case with the price index Po, the quantity index Q" is equal
to Malquist quantity indexes which are defined by non-translog di5tance
functions; i.e., theorem (2.17) is not an irand cnly if result.

However, theorems (2.16) and (2.1'7) do provide a rntllcr strong justifil;l1tiol\
for the use of Po or Qo since the trnnslog functional ferm provides a sccond
ordcr approximation to a general cost or distance function (which in turn arc
dual to a general non-11omothetic aggregator Cunction), '

Finally, note that theorems (2.16) and (2.17) have a 'global' character to
them in contrast to the Theil-Klock 'local' results.
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'"(3.8) (I +f)'" n [y~/y:)uw,"","'fw,.,I+w'"°1..ofwo.,oJ
Ill-I

Ifi (x~/X:)H, .. I.... I/,I,xl+,..O....O/,O'1COJ
,,-I

where I1-llli - 1, 'fJi - 1iJ and I1-IYJi - 0, for J - 1,2, •.., K; i.e., tis
translog transformation function over the set S.

Suppose that'y E! (yt, h, ...,YJI) ~ 0Jl (output vectors), x'!!!! (xl, x1
•••,~) ~ ON (input vectors), w ~ 0Jl (output price vectors), p~ ~ ON (inpu

'For 1\ more detailed discussion of Jransformatlon functions and their properties, Ie
Dlcwert (1973.).

Thus we have g(y0) _ l(xO) and g(yl) "'" (I + f)f(x l). It is easy to see th;
y J> OM is a solution to the aggregate input minimizntion problem min,{g(y
111'. y ... w·y, y ~ OM}' for r ... 0, 1, nnd thus (3.4) holds. Similarly, .'(' ~ (
is a solutioll to the aggregator maximization problem max..{J(x):p'·x = p'.),
X f: O",}, for r - 0, I, and thus (2.12) holds. Substitution or (2.12) and (3.
into the identity g(y')fg(y°) - (I +f}f(x')lf(xo) yields the following expressic
for (I +f) in terms ofobservable priccs and quantities:

K K
In I(Z) • 110+ L In Zi+} L 1J.ln zJ In z..

. i-I J-I
(3.9)

Thus the Jorgenson-Oriliches method of measuring technical progress CD

be justified if: (I) the economy's production possibilities set can be rcprescntt
by a I.ptlrobl, transformation surface defined by r(y) - f(x), where the inp'
aure,ator function I and the output aureaator function g are both hom<
FDCOUS transloa functions, (li) produce" are maximizin, profits and (ii
technical propelS takes place in the ·".ulrol' manner postulated above.

Since the separability assumption r(y) - I(x) is somewhat re'trictive froJ
an a priori theoretical point of view, it would be of lome interest to devise
measure of tecImical proJreIS which did not depend on this septarability a:
sumption. This can be done, but only at a cost as we shall see below.

Suppcse that technoiolY can be represented by a transformation function,
where YI - 1(Y2' Y:t, •••, Y",; x" X2, •••, XII) II 1(1; x) II I(z) is the maximul
amount of output one that can be produced, Jiven that the vector of oth(
outputs, -' (,2' Y3' ••., YII) is to be produced by the vector of inputs x •
(x" x2, •• •, XIf). Auume that (' is a positive, linear homogeneous, conca\'
function over a convex Mt of the non-oeptive orthant S in K s M - 1+J

dimensional space. Assume also that t(J; x) is non-increuing in the component
of the other outputs vector , and non-decreasina i!l the components of th
input vector x. Suppose that the transformation function I is defined for
belonaing to S by

(3.7) max"x{wl,y-l·x:g(y) -= (l+f}f(X)}.

where g is the homogeneous translog factor requirements function dejned by
(3.3), and/is the homogeneous translog production function defined in section
2. Let III' J> 0"" P' • 0"" r = 0, I be vectors of output and input prices during
periods °and 1, and assume that yO J> 0", and XO J> 0", !s a solutio.l to the
period°profit maximization problem,

= Q3(IIIO, 1111; yO, yl).

(3.6) max"x{wo'y-po.x:g(y) =px)}.

Suppose that 'technical progress' occurs between periods °and 1 which we
assume to be a parallel outward shift of the 'isoquants' of the agaregator
function I; i.e., we assume that the equation which defines the efficier.t set of
outputs and inputs in ~riod I is g(y) == (I +f}f(X) where f represo:nts the
amount of 'technical progress' if f > °or 'technical regress' if f < O. Finally,
assum~ that yl t-' 0", and Xl ~ ON is a solution to the period I profit mdximiza
tion problem,

(3.5) --- g(y) '= I(x),

..

Now assume that y t-' 0", is a solution to the aggregate input minir.. ization
problem min,{g(y): w·y os 1II'·y,y ~ OM}, where IV» OM for r -= O. I, and
g is the translog function defined by (3.3). Then the first-order necessary condi
tions for the minimization problems along with the linear homogcne:ty of g
yield the relations lll/III'.l' ... P'g(y')/g(1'), for r = 0, I, and using these two
relations in lemma (2.2) applied to (3.3),

,.
Thus again the T6rnqvist formula can be used to aggregate quantities con

sistently, provided that thc underlying nggregator function is hom<,gcncous
trnnslog.

Similarly if the revenue function r(w) is translog over the relevant range of
data and if the producer is in fnct maximizing revenue, then we can show that
r(IIII)/r(wO) = p.(WO, Wi: yO, yl) = Q3(Y0, yl; wO, Wi), the T6rnqvist price
index.

Using the above material, we may now justify the Jorgenson-Griliches (1972)
method of measuring technical progress. Assume that the production possibili
ties efficient set can be represented as the set of outputs y and inputs x such that

",
(3.4) g(l)/g(yO) = n [y~/y~)HW'"t''"t/",I'''+w,"01'"°/wo.,O]

... -1
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I,
price vectors). and W. y' ""' p' •X. (value of outputs equals value of inputs) for
periods r ... O. 1. Assume that ZO !!! (y~• •..• y~. x1• ...• x:) II (Yo. XO) is a
solution to the following output maximization subject to an expenditure
constraint problem in period 0:

Now substitute (3.12) and (3.16) into the identity (2.1 I). except that t replaces
land' replaces x. and we obtain

Ie
(3.17) t(,I)/I(ZO) - L [zl!':lU...,•• '/. ' .•'+•••••·/.··.·).-1

Combining (3.13). (3.15) and (3.17). we obtain the following equation in t:

- t[pl; (I + f)x11lt(Y°; XO).

"furthermore. we cannot a priori rule out the possibility that eq. (3.18) wlll have either
multiple solutions for , or no .00utlons at aU. The Fisher measure of technical ')rOlress. to be
introduced in .ectlons S. overcomes these dIOicuUIc.. •

4. Quadratic meaos of order r aacl exact Index numbers

For r " O. the (homogeneous) quadratic mean o[ order r aggregalor [unCIIon
is defined by

[
N " ]1/(4.1) /,(x) E!I . L L O,Jxf'2XJ2 ,

'-1 J-l

Ifi [y~/y:)HWIlt" ..'/Y'(W)+WIlt·'Ilt·fY·),
..-2

..
yf/Y1 - fI [(I +t)x~/x:1H,,,I(1 +w)."I/,I(w)+,,,-.,,-/,·).-1

where VO tI - ~.2W:Y: +Flit1':X: - net cost of producing output Y1
InperiodO,and V (t) .. -~.Jw~~+r:.IP:(I+t)x:.

Given data on outputs. inputs and prices, eq. (3.18) can be solved for the
unknown rate of technical pro,rels T. Note that eq. (3.18) is quite different
from the Joraenson-Griliches equation for f defined by (3.8) (except that the
two equations are equivalent when M - 1. i.e.• when there is only one output).

However. it should be pointed out that our more .eneral measure of tech
nical PCotrelS, which is obtained by solviD, (3.18) for t. suffers from some dis
advantaaes: (i) our procedure is computationally more difficult.ll and (ii)
our procedure is not symmetric in the outputs; that is. the first output Y1
is a~'Ymmeta~cally sinaled out in (3.18). Thus different orderings of the outputs
could P'/C rise to dift'erent measures of technical prolress. This is because
each orderin. of the outputs corresponds to a dV/,Tlnt translog usumption
about the underlyin. tecImoloJ)' and thus dift'erent measures of f can be ob
tained. However, aU ofthae measures should be dose in empirical applications
since the dift'erent transloa (unctions are all approximating the same technology
to the second.order.

(3.18)

(3.15) y} ... t(ZI) - t(jll; (1 +t)xl ).

(3.l3r YI'" t(y2.Y3.···.YJl:(1+t)XI.(I+t)x2•.. ·.(l+t)xN).

Again. the Konyus-Byushgens-Hoteliing lemma applied to the maximization
proble,m (3.14), using the linear homogeneity of I. implies that 10

(3.16) . ql/ql.%I ... rt(:I)/I(:I).

'NotethatqD.,D _ WID"ID> O.slncewD.yD _ pO·xD•
I'We UI\lme that,i.ama'hothat,I.,' _ -lill';'+p"(l +r)x' > O.

Assume that (y~, y~• .• "' Y:'; xt. x~• •..• x1) E (YI: Xl) is a solutiOJl to .~he
period 1 output maximization subject to an expenditure constraint problem
max,....{t(Y; (1 +t)x): -WI.y+pl·X'" -WI.yl+pl'XI ; (ji: (l+t)x) belongs to
S}. Then,l 5 (jI1; (1 + t)xl) is a solution to the following output.maxi~ization

problem:

(3.14) max.{t(z): ql .Z - ql. Zl • z belongs to S}.

where I is the translog function defined by (3.9). ql II (- Wi ;l). and

As before. we assume that 'neutral' input augmenting technical progress takes
place between periods 0 and 1: i.e.• if (y: x) was an efficient vector of outputs
and inputs in period O. then (y: (1 + t)-IX) is on the efficiency surface i" period
I. Thus the efficiency surface in period 1 can be defined as the set of (YI' Y2.
. . .• YAI; XI' X2••• ". XN) which satisfy the following equation:

(3.11) y1= I(ZO).'
",

The first-order conditions for the maximization problem (3.10) imply that
[Konyus-Byushgens (1926) lemma]

(3.12) qO/qo. ZO ... rt(zO)/I(ZO).

(3.10) max,{I(z): qO.z ... qO ·zo. z belongs to S}

where I is the translog transformation function defined by (3.9). qO 55 (-w~.
-w~ • .•.• -w~;p1.p~• •• •• p:) !!! (_,,0; po) and
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[ N ]1"( If J-I /'
L"'I L (xflxr)r/2s~ ~ (xUx~)-"2S:

,-. '-1

Pr(piO, pi; xO, x~) • { I~' (p:MY"(p~x~/P' .x,)} II'

.~I (P:lp~y/2(p:x~/pl·xl)

_ Q,(;c(\,xl;pO,pl).

(4.5)

Thus for any r " 0, Q, may be calculated as a function of observable price
Rnd quantities in two periods. Note that (2, can be expressed os the product 0

a mean of order rUin the square roots ofthe quantity relatives (x,tixr)t (usin
base period cost shire u welahts) times a mean of order - r in thc square root
of the quantity relatives (xl /x~)t (usin, period one cost shares as weights).

It is perhaps of lome interest to notc which of Irving Fisher's (1911, 1922
testl are satisfied by the quantity Index Q,. It can be verified that Qr satisfies
(I) Ih, commodityTfwrsal tesl, i.e., the value of the index number docs not chang
if the orderin, of the commodities is chanaed; (Ii) th, Id,ntlty I,sl, i.e., Q,(pt
po; x O

, Xl) • 1 [in ract Q,(pO,pl; xo, Xl) • I, the quantity index equals on
if all quantities remain unchanacdJ; (iii) Ille comm"rsllrobllity Itsl, i.e., Qr(D-IpO
D-Ipl; Dxo, Dx') - Q,(P0,pl;XO,XI) where D is a dia,onal matrix witl
positiv~ elements down the main dialonal; thus thc quantity index remain
invariant to chanlCS in units of measurement; (iv) the d"ermillnltll'ss tesl
i.e., Q,(pO, pi; xO, Xl) docs not become zero, infinite or indeterminate if al
individual price becomes zero for any r " 0 and ar(P ll, p' ; XO, Xl) does no
become zero, infinite or indeterminate if an individual quantity becomes zerc
if 0 < r :l 2;14 (v) the proporliollallty tesI, i.c., Q,(pO, l; xo, Axo) = ). fo.
every .t > 0; and (vi) "Ie time or point rewrsal lest, Le., Q,(pO, pi; xO, Xl.
Qr(pl, po; Xl, x') II! 1.

Define the quadratic mean oforder r price Ind,x P, for p0 ~ ON' pi ~ ON, XO > 0,.,
Xl > 0", for r rI: 0, as

It is easy to see that P, will also satisfy Fisher's tests (i) to (vi). The only
Fisher tests not satisfied by the indexes P, and Q, are: (vii) IIr, circularity 'tSI,
i.e., Pr(pO, pi; xO, xl)P,(pl, p2; x· ,x2) " P(pO, p2 ; x O, x 2); and (viii) Ihe factor
reversal I,st, I.e., Pr(pO,l;xO,xl)Q,(pO,p'; xO, Xl) rlJp'.x'/po.xo, except
that P2 and Q% (tne cideal' price and quantity index) "tisfy the factor reversal
test.

'-.
I JOrdlnary, IS opposed to quadnllc means of order r, were defined by Hardy. Uttlewood

Ind Pol,. (1'34).
14Thus the quantity Indica art for 0 < , :s 2, are somewhat more sltlsractory than the

TOrnq~t-ThcIllndex a. dcftncd by (2.12).

1

"

b,} .. b}It r r/< O.

where o,} = o};, I =! i,l ~ N, are paramdcrs, and the dnmn::l of l ~fi"iti:>n of
/, is restricted to x !! (XI' X2' •••, XN) ~ ON sueh that L.'Ea'jx'jf2xJ·2 > 0, nnd
/, is concave. The abov~ functional form is due to McCalrthy (1967), Kadiyala
(1971-2), Denny (1972, 1974) and Hasenkamp (1973). Denny elso defined
I!le quodralic meoll oforder r 111111 coslfimctloll,

[
N N ]1/

(4.2) cr(p) ELL b/Jp',/2prp ,
,-I }-I .

Denny noted that if r - I, then (4.1) reduces to the generalized ~/lIear func
tional form [Diewert (1969, 1971)1. (4.2) rcduces to the generalized Leonllef
functional form [Diewcrt (1969. 1971)]. and if all a,} - 0 for I rI: j. then (4.1)
reduces to the C.B:S. functional form [Arrow, Chenery, Minhas and Solow
(1961)1, while if all b,) - 0 for I rI: J. then (4.2) reduces to the C.B.S. unit cost
function.

We may also note that when r - 2, (4.1) reduces to the Konyus-Byushgens
(1926) homoleneous quadmtic production or utility function, while (4.2)
reduces to the Konyus-Byushacns unit cost function. This functional form has
also been considered by Afriat (1972, p. 72) and Pollak (1971) in the context of
utility functions and by Diewert (1969. 1974a) in the context of revenue and
factor requirements functions.

Lau (1973) has shown that thc limit as r tends to zero of thc quedratic mcan
of order r aarc,ator function (4.1) is thc homoaeneous translol a_reaator
function and similarly that tbe limit as r tcnds to zero of (4.2) is the translog
unit cost function.

This completcs our discussion of special cases of the above family of func
tional forms. The following theorem shows that the functional form is 'flexible'.

(4.3) 'Theorem. LeI f be any linear homogeneous, Iwice-rontinuously
df/fertnliable,posiliwfunclion defined over an open subset qfthe posilive
orlhant III N-dimensional space. Then for any r " 0,[, defined by (4.1)
can provid, a second-order differential approximation 10f.

By a second-order differential approximation tl) I at a poiut x· p. ON,I2

we mean that there exists a set of a,} parameters for /, defined by (4.1), such
that J,(x·) .. f{x·), J'/,(x·) - Pf(x·), and p 2/,(x·) ... p 2J,(x·); i.e., the values
off, andland their first- and second-order partial derivatives at x· all coincide.

Define the quadralic mtall of order r quantily index Q, for Xo ~ 0", Xl ~ ON'
pO > O",p' > ON' for, rI: 0, as

{
f (xl Ix~)r'2(p~xrIp ') .XO)} Jj,

(4.~) .Q,(pO, pi; XO, Xl) Ei! 'il .
r. (x:IX:y/2(P:XUp"xl)
a-I

"
liThIa termlnoJoay follows !Au 0'74).
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_ /,(x 2)//,(XO)

_ Q,(p0,pz;XO,x1).

Q,(pO,pi i x O, Xl) Q,(", p2; Xl, x 2) .,. f,(xl>t(.(XO)r1/,(x1):/,(xl)rI

(4.7) a,(p°,p'; xO, Xl) !! pl'XI/(P0 ·xoP,(pO,pl; xO, Xl)].

{4.10) Theor~m [Genemli7.lltion of Byushgens (1925), Konyus llnd Byush
Jenl (1926)). ul S btl ai' open subset of the posilive orthant in R1

which Is also a conHX con,. Suppose f is deftn'd over S a"d is (i
posltlH, (Ii) one'-tlIff~rentitlblt', (iii) Iln,or homoreneous, and (iv
concave. SIiPPOJl that f is ,xact for the quanrity index Q, d,fined b.
(4.4) for r" 0 (I.,., if x' Is a lolutlon to max..{/(x):p'·x ~ p'.x',:
Nlon,s tCl S) lor J - 0, I, tl,e" Q,(pO, pi ; xO, Xl) .. f(x')If(."'O)]
Th,n I is a qlla:/rc;tic m~ail of order r d'fin,d by (4.1) for some a,}
1 =- 1=-1 ;:lii N.

We notc that the functional form Ir defined by (4.1) may also be used as I

factor requirements function, and that the quantity index Q, defined by (4.4,
will stiJI be exact for /,; i.e., theorems (4.8) and (4.10) will still hold except thai
the maximization problems max..{/,(x):p',x:il p'.x', x belongs to S} an
replaced by, the minimization problems min.(/,(x): p'. x ~ p" x', x belong~

to S} for 1 - 0, I, and condition (iv) is chanced from concavity to convexity
Thus the quadratic mean of order r quantity indexes Q, can be used to aggre,
gate either inputs or outputs provided that the functional form for the aggre
gator fUl'lction is a quadratic mean oforder r.

The above theorems have their counterparts in the dual space.

an economic agent Is maximizing f,(x) subject to an expenditure constrainl
Thus violations of the circulirity test could mean either that the economi
alent was not enga,ing in maxlmizin, behavior or that his aglregator functio}
was not/,(x).

We note that theorem (4.8) did not require that all prices be non-negative
only that quantities be positive. /, can also be a transformation function (recal
section 2) which is non-decreasinl in inputs and non-increasing in output~

Theorem (4.8) will still hold except that prices of other outputs must be indexcl
neptively white prices of inputs are taken to be positive. The quantity inde,
Q, may be used In the context of productivity meuurement just as we used th·
Index Qo In acetion 3. We will return to this topic in acetion 5.

Theorem (4.8) tells us thatl, defined by (4.1) il exact for Q, defined by (4.4)
However, could there exist a linear homoaeneoul functional form f difTercll
from/, which is also exact for Q,? The answer is no, as the following theorcn
shows:

f,(xl)/f,(XO) "" Q,(p0, pi; xO, Xl).

Theorem. Suppose Ihot (i) f,(x) Is dejilled by (4.1), where r r/: 0;
(ii) XO » ON is a Solullon 10 Ihe maxlmlzalloll problem max..{f,(x):
pO. X :!! pO. xO, x belollgs to S}. where S is a COIIUU lubstt of IlIe
non-llegalivc orthant I" RIf,I,(xo) > 0 a"d I!lc price IMclor pO ts suc;,
that po .xo > 0; alld (iii) Xl » ON Is a solutlOIl to Ihe m('dmlzotion
problem max..{f,(x): pl·X =- p'·xl

, X belongs 10 S}. f,(xl
) > °and

tl'e price uectorpi Is such that p' .Xl > 0; thcn

Thus the quadratic mean of order r quantity index Q, is exact for the quad~

ratic mean of order r aggregator functio:l, which in view of theorem (4~3)

implies that Q, is a superlative indexnumber,'· "
Suppose that x'» ON is a solution to max..{f,(x):p·.x ~ p'·x', X belongs

to S}, wheref,(x) > 0, p'.x' > 0 for s "" 0, 1,2. Then using (4.9) three times,
we find that

For r r/: 0 defihe the Implicit quadratic mcan oforder r price Index P, as

(4.9)

(4.8)

Thus the two pairs of indexes (Q" fl,) and (a" P,) will satisfy the weak
factor reversal test (1. t). .

The following theorem relates the a'8regator function I, to the quantity,
index Q,: ~'

and define the implicit quadratic mean of~rder r quantity index 0, as

(4.6) P,(p0,pl; x O, Xl) e pl'XI/[P0.xOQ,(p0, pi; xO
, Xl)],

Thus under the assumption that the producer or consumer is maximizing
f,(x) subject to an expenditure constraint each period, we find that Q, will
satisfy the circularity test in addition to the other Fisher tests which it satisfies.
A similar proposition is true for any exact index number, a fact which was first
noted by Samuelson and Swamy (1974). Since the circularity test Is capable of
empirical reCutation, we sec that we can empirically refute the hypOthesis that

(4.11)

c

Theorem. Suppose that (i) e,(p) !!! [E,EjJ'JP~/2PJ/2]1(', where b,} ..
b'lfor 0111,1, r +0 and (Plt P2' •• •,PN). p Iwlongs to S where S is
on op,n" convex cone ...·hich Is a subset of the positive orthant ill RN ;

(ii) c,(p) is positive, linear homoleneous and concave ouer S; (iii)
xO/po ·xo - Pc,(po)/c,(P), wh~re po » ON so that [uslnl tire corollary
(2.14) to Sh,plrord's I,mma] XO Is a loilition to th, 0ll",a(or maxi-
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I

mization probltm maxJl{],(x):po.x ~ pO.xo, x ~ ON}' whtrt 1,15 Is
tl,e direct aggregatorJunction w/rich Is dual to c,(p): atld (ivl Xl!pl •Xl IS

"c,(,a)/C,(pl), pi » ON ,ro ,hal Xl Is a ,oluli.:m to ,111.:;zzreg::tor maxl
mizatiotl problem maxJl{],(x): pl·X ~ pl'XI

, X ~ ON}' 77lfm

(4.12) c,(PI)/c,(p°) _ P,(pO,pl; xO, Xl),

where P, is tl,e quadratic mean ofordtr r prlct Index dtfinedby (4.5).

The proof oftheorem (4.11) is ana1olou, to the proof ortheorem (4.1), e:tcept
that p replaces X, c, replaces!,., and corollary (2.14) is used instead ofth6 Kt'nyus
Byushgens-Hotellinglemma.

Thus the quadratic mean of order r unit cost function c, is exact for the price
index P,. Since by th~orem (4.3), c, can provide a second-order approximation
to an arbitrary twice-differentiable unit cost function, we sec that P, is a super
lative price index for each r :;& O. We note nlso that Utero is 1m nnniogue to
theorem (4.10) for P,; i.e., c, is essentially the only functional form which is
exact for the price index function P,.

However, if we relax the assumption that the underlying aggregator function
be linear homogeneous, then the index numbers P, and Q, can be exact for
a number of true cost of liviD, price indexes and Malmquist quantity indexes,'
respectively; i.e., analo,ues to theorems (2.16) and (2.17) hold.

We have obtained two families of price and quantity indexes: P", a, and
Pro Q, defined by (4.6) and (4.4) for any r " O. The first price-quantity family
corresponds to an aggregator function I, which has the unit cost function c,
defined (4.2) as its dual, and the second price-quantity family corresponds to
an aure,ator function /, defined by (4.1). Recall also that the price-quantity
indexes Po, ao correspond to a translog unit cost function, while Po, Q0

correspond to a homogeneous translog aggregator function.
For various values of r, some of the indexes P, or P, have been considered in

the literature. For r - 2, P2 II P2 becomes the Pigou (1920) and Fisher (1922)
idtal price index which corresponds to the Konyus-Byushgens (1926) homo
geneous quadratic auregator function f2(X) !!! (xTAx]t, where' A ... AT is a
symmetric matrix of coefficients and it also corresponds to the unit cost function
cz(p) B [pTBp]t, where B - BT is a symmetric matrix of coefficients. If A-I
exists, then it is easy to show that the unit cost function which is dual to f2
is '2(P) .,. (pTA-Ip)t (at least for a range of prices)..However, iT f2(X) ==
txToaTx]i ... aTx, where a » ON is a vector of coefficients (fineor loggregotor
function), thenlz(p) leO lZ(P.,.D21' ",PN)!l! min,{pJo.:i = 1,2, . ..,N} which
is not a member of the family of unit cost functions defined by C2(P) E!

[pTBp)l. On the other hand, if C2(P) leO (pTbbTp)l = bTp, ....hc:-:: ~ », 0" is e.
vector of coefficients (Ltontitf unit cost function), then the dual nggregator
function is Iz(xI' X2' •••, XN) - min,{x./b,: i-I, 2, ..., N}, which is. a

"Deftne/~x). I/max,{w}:p·x. l,pbelcnptoS},whereSistheclosurcofS.

uontlefallrelatorfunction. Thus P2 is exact for a Leontief aggregator function
(n fact which was no!,." hy Pa!bk (971)) and since Pz II '2' it is also exact
for a linear :lUrcptvl function. This is aR extremely \IReful property for an
index number formula, dnce the two types of aggccptor function correspond
to ZlrO .ubatitutability between the commodities to be a"regated and illfinite
.ubstitutabiUty respectively.

For r - I, the price index PI has been recommended by Walsh (1901, p. lOS).
p. is exact for the unit cost function c.. whose dual/, is the gellero/ized Leonlief
oggregator /unclloII, which 1101 :he Lcontief a,gregator function as a special
case. Walsh also ret:ommended the price index 1'.. which is exact for the gel/eml
ized fillear a"reptor function la, which of course has the linear aggregator
function as a lpecial case.

Jf, in fact, a producer or consumer was maximizing a linear homogencous
function .ubject to an expenditure constraint for a number of timc periods,
we would expect (in view of the approximation theorem (4.3)] thnt the price

Table J
Comparison or some index numbers tabulated by Fisher.

Prlco Fisher
inclcx number 1913 J9J4 J9JS 1916 J917 1918

p,. 54 100 100.3 100.1 JJ4.4 161.1 177.4
PL. S3 100 99.9 99.7 au 162.1 177.9
P, J23 100 ,100.1 99.9 IIl.S J62.1 J77.8
Po J24 100 .100.16 99.as JJ4.2S 16J.74 J78.16
PI IIS3 100 100.13 99.89 J14.20 161.70 177.83
PI 1IS4 100 JOO.J2 99.90 J14.24 J61.73 177.76
Pa 353 100 JOO.J2 99.S9 lJ4.21 J6J.S6 177.65

indexes P, and P, should more or Jess coincide, particularly if the variation
in relative prices were small. However, since real world data is not necessarily
consistent with this maximization hypothesis, let us consider some empirical
evidence on this point.

Irving Fisher (1922, p. 489) tabled the wholesale prices and the quantities
marketed for 36 primary commodities in the U.S. during the war years 1913
1918, a time of very rapid price and quantity changes. Fisher calc•• lated and
compared 134 different price indexes using this data. Table I reproduces
Fisher's (1922, pp. 244-247) computations for the Paaschc and L.,speyl'es price
indexes, Pr, and PLa, as well as for Po, Po, p., p. and P2 II P2 II P 1d . Fisher's
identification number is (liven in column 2 of the table; e.g., P z or the .'ideal'
price index wa, idcntifid &s number 353 by Fisher. All index numbers were
calculated u1inl1913 as a base.

Note that the Paasch and Laspeyres indexes coincide to about two significant
fiJUres, while the last .. indexes mostly lie between the Paasehe and Laspeyres
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(5.1)

indexes and coi~cide to 3 significant figures. Fisher (1922, p. 278) also calculated
p 2 (and some of the other 'very good' index numbers) using differei.t yean as
the bose year Rnd then he compared how the various series differed; that Is,
he tested for ·circularity·. Fisher found that average discrepancy was only about
t percent between any two bases. Thus as far as Fisher's lime series data is
concerned, it appears that anyone of the price indexes P, or P, give. the same
answer to 3 sipificant ft,ures, and that violations of circularity are unly about
t percent so that the choice of base year is not too important.·'

To determine how the price indexes P, compare for different r's in the context
of croll seclion data, one may loolc at RUllle's (1967, pp. 189-190) paper which
compares the consumer price indexes PP•• p.... Po and 1'2 for 19 Latin American
countries for the yea(: 1961. The indexes Po and P2 , using Argentina as a base.
differed by about 1 percent per observation. while Po and P2• using Venezuela
as a base (the relative prices in the two countries differed marked!;'), differed
by about I.S percent per observation. P2 failed the circularity test (comparing
values with Venezuela and Argentina as the base country) by an average of
about 2 percent per observation, while Po failed the circularity test by' about
3 percent per observation.• 1 Thus it appears that the indexes P, differ more and
violate circularity more in the context of cross section analysis than in time
series analysis. However. the a,rcement between Po and P 2 in the cross section
context is still remarkable since the Paasch and Laspeyres indexes differed by
about SO percent per observation.

5. 'Coneludlng remarks

We have obtained two families of superlat;ue price and quantity indexes,
(Pro a,) and (p,. Q,); that is, each of these index numbers is exact for a homo
geneous allreptor function which is capable of providing a second-order
approximation to an arbitrary twice-continuously-differentiable 'lllRptor
function (or its dual unit cost Cunction). Moreover, (P" Or) and (PrJ Q,)satisfy
many of the Irvin, Fisher tests for index numbers in addition to :heir being
consistent with a homoJCDCOus aure,ator function. Note .lso that h prices are
varying proportionately, then the allregtt.tes a, and Q, are consistent with
Hicks' (1946) allrelation theorem.

Although anyone of the index number pairs. (Pr• ar) or (Pr, Q,\ could be

I 'However• as a matter of &eneral principle. It would seem that the chain method of calcu
latinl Index numbers would be preferable. since over Ionpi' periods of time. tt.oS undulylnl
functional Corm for the aurcaator function may Iradually chanle. so that Cor example (\'S)
will only be approximately satisfied. the delree of approximation becomlnl bt,ter as , ap
proachesO.

I'This failure of the circularity test should not be too surprlsina Crom the "lewpoint of
economic theory dace we do not expect the agreptor function for the 270 consumer loods
and... to be ropraentable u a linear homoteneous fWlCtlon; that Is. we do not expect
all 'Income' or upondlture eluticltla to be unitary.

'.

used in empirical applications, we would recommend the use of

(P2, a2) !! (P2' Qz) !!! ([p'·x·p'.xo/po.x'po·XOJ l •

[xl·p'x·.pO/XO.p'.tO.pOJ!).

Irving Fisher's (1922) ideal· index numbers. as the preferred pair of ind,
numbers. There are at least three reasons for this selection.

(i) The functional form for the Fisher-Konyus-Byushgens ideal index nur
ber is parlicularly simple and this leads to certain simplifications in application
For example. recall eq. (3.18) which we used in order to measure technic
progress, (I + f). in an economy whose transformation function could t
represented by a (non-separable) homogeneous translog transformation funl
lion I. If we assume 1(%) -/2(%)' where 12 is defined by (4.1) for r - 2. the
the analogue to (3. I8) is

y: (-lV·.,. +p'.(1 +T)X·)( _\l$0. y' +po·(1 +T)XI)!
Yf - (_~V" yO +pl .XO)( _ wo.yO +po .xo) .

If we square both sides of (5.1). the resulting quadratic equation in (I +t) ca
easily be solved, liven market data.

(ii) The indexes P2(p°.P·; xO, x·) and o'2(pO,p'; xO, x·) are functions c
po .x·/po ·x~ ana pl'XU/p"XI, which ftre 'sufficient statistics' for reveale,
preference theory," and moreover a2 is cons;sle"t wi'" reuealed preltrenc
Iheory in the followinl sense: (a) if pO. x· < pO. XO and p• .XO ~ p• .x· (i.e., x
revealed preferred to x·), then .Q2(P°,P·;xo,x·) < I; (b) if pO·xl ii:; po.x
and pI ·xo < p··xl (i.e., x· .revealed preferred to XO). then Qz(p°. p.; xO, x.) >
1 (I.e., the quantity inde;i indicates an increase in the allreaate); and (c) i
p

O
•xl. - p°~ x°and pl. X

O
- pl. x· (i.e., XO and Xl revealed to be equivalent 0

indifferent), then 1J2(PO.P·; ,l0, x·) .. I (i.e.• the quantity index remain
unchanaed),i Thus even if the true aare,ator function 1 is non-homothelic
the quantity index a2 will correctly indicate the direction ofchange in the aggre
gate when revealed preCerence theory tells us that the aggregate is decreasing
increasing or remaining constant.

(iii) The index number pair (P2• Q2) is consistent with both a linear Ql.grega,OI

I 'See Samuelson (1947). Houthaltltcr (l9SO) and Atriat (1967). We should also menlior
the nt11t-por.",.",c ,.,Itod of price and quantity Index number determination pioneered b)
Afriat (1t61} which depends only on the Itl Inner products or tho ,th price vector ,. and the
Ith quantity ~or 1C',,'·1C'.lrlheR are It obIcnations. See Diewcrt (1t73b. p. "24, footnole
2) ror an altorllhm wIaIch would mabie one to calculate a polyhedral approximation I(x)
to tho 'tru,'linear homcpneous aacreptor ruaetlonf(x).
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i
lunction (infinite substitutability between the goods to be aggregated) and a
Ltonliel aggregalor IUllelion (zero substitutability between the commodities
to be aggregated). No other (P" a,) or (p" Q,) has this very useful property.

6. Proofs of theorems

Proofof(2.2)

In C(lI.; pl)-In C(1I.; pO) = ! [pIV, C(lIt
; pi)+poV, qll·; pO)J

C(u. ; p') qllt; pO)

.[Inp'-Inpo)

_ ! ['1 V, C(II:; P:)+,0V, C~lt°;pO)J
C(U ; p ) q ..,o; po)

. [Inpi-In pi]

17/(xO) ... A:po; Po'Xo .. yo.

(6.1) 17f(.xl) .. Arpl; pl'XI ... yl.

I(ZI)_f(zO) .. aTzl +!ZITAzl-aTzO_!ZOTAzO

_ aT(zl_z~+!zITA(ZI_Z~+!ZOTA(ZI_Z~
~.

J - 1,2, ••., N,
. IN

p1;pO. XO -II-x~ a~1 x:.r.(XO),

p]lpl'XI .. fl-xl )! f xy"'(xl), J ell 1,2, .• "N.
a-I

and

(6.2) 17.D[uO; XO] = pO/po .xo and V.D[u'; Xl) _ pl/p'.X' •

BD[ul ; x I Jl8xJ _II-Xl)! f x:.r.(xl), J - 1,2, •. t, N..' '-I
Furthermore, the ftnt-orcier condition. for the two aurelator maximizatioJ
problems after elimination ofthe La....nJC multipliers yield the relations

.. In Po(pO, pi; xO, Xl)

(using the deftnitions ofxO, Xl 'and P.).

Prool q( (2.17). It I. first neccuaty to express tho partial derivatives of 1
with respect to the comronents of .Y, F".D(:l; x'). r" 0, I, in terms of tit
partial derivatives of /. We havo D[u': x') • max.{k:/(x'/k) ~ u'} .. I, Co
r .. 0, I, siD<lC each x' il on the II' 'utility' lurface. To find out how the distanc
D[uO; XO) chanaes u the components of XO chan,e, apply tho implicit functioJ
theorem to the equationf(xo/k) .. UO (where k - I initially). We find that

ak/ax} • aD[uO; x°]JaxJ -II-XO)! f x:.r.(xo), J - 1,2, ..., N.
'-1

Similarly

Upon noting that ,the rllht-hand sides of the last set of relations are identica
to the right-hand sides ofthe earlier relations, we obtain

(where the equRlity f~llcw~ upon "valuating the derivatives of C and notin
th3t 21n u· - In ul +in u~

since .Ii .. AT.. }[a+Azl +a+AzO]T(zl_z~,

_ ![pf(,I)+F"f(,o)jT(zl - ZO).

Similarly, A3 and XO will satisfy the first-order conditions for the constrained
maximization problem (2.6),

p'roof of (2.16). For a fixed u·, In C(u·; p) is quadratic in the vector of v~ri

. ables lnp and we may ..apply the quadratic approximation lemma (2.2) to
obtain

Proofof (2.4). At and Xl will satisfy the first-order necessary condiUonsfor an
interior maximum for the maximization problem (2.S),

Now substitute tho first parts of (6.1) into the right-hand side of the identity
(2.3),. and obtain (2.7).

Assume I il thrice-differentiable and latisfies the fUMtiollal equation f(;~)

!(Y) .. ![F"!(x)+F"f(y)]T(X-y), for aU x and y, in an open nci,hbourhood.
We wi.h to find the function that i. characterized by the fact that its averale
slope between any two points equals the averale of the' endpoint slopes in
the direction defined by the difference between the two points. IfI is II. function
of one variable, the functional equation becomes f(x)-f(y) .. ![f.'(."f)+I'(Y)]
(x - y). If we differentiate this last equation twice with respect to x, we obtain
the-differential equation !f-(x)(x-y) - 0, which implies that I(x) il a poly
nomial of delree two. The aeneral case follows in an analogous manne'r using
the directional derivative concept.
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Now for a fixea II·, In D[uf : x) is qundratic in the ~'ectol' .,f \'(uir .,Ies In x
nnd we may again apply the quadmtic npproxilllution Icmma (2.~) II) obtuin
the rollowingequnlity.

(6.6) I'~ _ l-r "*'f*.L! .•II- r ) ,. f,·,1-1 .f,,1-'
II. y• . , J • 2 ) (t'ix, .'1;, J ' If!i<j~N.

In D[uf : x') -In D(uf : xo) _ i [.t' 17", D(U:; x: )+.toPJl D[u
f

:_ X
O
)]

D(u : x ) D(uf
; X1j

The system of eq. (6.6) is equivalent to (6.S) if we also make use or (6.4)
Now define af, - ay, for I '" J, and then a~ is defined as the solution to tit
followin, equation:

. [In x' -In xo)

_ In Qo(pO,p';xo,x'),
(6.7)

N
~ t .r,I.. .r,1 .('-r) Jit
L. a'lX' Xl Y - I'J-' / - 1,2, . ..,N.

where the equality follows upon evaluating the derivatives of D, notlns that
21n u. _ In II' +In ,,0, using (6.2), the equalities D(u'; Xl] - I, D[II°; XO) - 1
and the definition of Qo'

Proof of (4.3). Since both f and /, are twice continuously differentiable, their
Hessian matrices evaluated at x f , p3f(x·) and p3/,(X f ), are both symmetric.
Thus we need only show that a3f(x·)/iJx.axJ - a2/'(xf)/a.l.aXJ' for 1 :i I fa J :i!
N. Furthermore, by Euler's theorem on linear homogeneous functions,f(x f ) 

XfTpf(x·) and /,(xt ) _ xtTP/,(xt ). Since the partial derivative functions
iJf(x)/8x, are homogeneous of degree zero, application of Euler's thl'!orem on
homogeneous functions yields, for I - 1,2, ..., N,

Now deRne.fr(x) • 01-1 L'J_la!jX,/2xJ'2l'fr, and it can be verilied rcadil:
that eql. (6.4) and (6.5) are .atisfied byIr as denned.

Proofof(4.8). Uslna assumptions (ii) and (iii) of(4.8) yields

(6.8) VO.. pO/po·xo - P/,(x~U',(x~,

(6.9) Vi • pl/pl'Xl _ P/,(Xl)U',(XI).

Upon dift'erentiatin• .fr(xO), the Itb equation in (6.8) becomes

(6.3)
N K
L xj82f(xf)/ax.axJ - 0 - L x1a3/,(xf)/ax.axJ'

J-l J-l

N INNo 0, 0 ° '( 0)(-,1).' ~ Or,l 't' ~ or,. 0-,1
V, • PdP ·x - x, L, a'rJ L. L. a,,,,x, x.. ,

. J-l '-1 ..-1

Thus the above material implies that /,(x f ) - f(xf ), P/,(xf ) - p/(xf ) and
p2/,(Xf ) _ p2f(xf ) will be satisfied under our present hypothesis if and only if

(6.10) • ~ lr,1 0 o'·r,1 't' ~ lr,l or,.!'t' 't' Or,. Cor,1
•• L. x, V, x, - L. L. x, a'JxJ L. L. a,..x, x.. •'-I ,' .. J , ..

Thus we need to choose the N(N + 1)/2 independent param~ters a'J~1 ~ I ~
j ~ N), so that the N + N(N-1)/2 =, N(N+i)/2 eqs. (6.4) and (6.5) l".re .atisfied.
Reca1J. that x· !! (xt, xt, ..., x~) ~ 0./ and that y. !!5 :::.7 Vf(xCl) _/(.,f) > 0,
sin'.:e 1 is assumed to be positive over its domain of definition. Thus since
y. > 0, xr > 0 and r '" 0, the numbo" a~, for 1 ~ I < J fa N, can lie defined
by solvin, the followinl equations for a,i: .

Simi~arly, usin,eq. (6.9), we obtain

Take the rth root ofboth .ides of (6. I2) and obtain (4.9).

N' I't'~ or,l 1··,,1 't' ~ tr,l "/1 't' 't' ,r:1 ,r,.
L. x, V, - L. L. x, arrJ L. L. 0h'X, .Y.. •
•• 1 " I , III

Upon notin, that a'J - aJ" take the ratio of(6.10) to (6.11),

~ . 11 o)r'l 0 0 ~ ~ 1-'. ,r,1
I.. tx, x, 11, X, 'oi L. a•...x, x.. [!.(X I»)r, l .. r
--Ji. I r,! I I - . ;S;,J 0-,1 = ri':O\ •
) (Xl/XJ) I1J'~J L! atlllX' x.. /,(.l )J ...

(6.11)

(6.12)

for I - 1,2, ..•, ,N,
a/,(xt )/8x, _/,f IS 8f(x*)/8x"

82/,(xt)J8x.axJ - /,1. a21(x·)/8x.axJ'

for l:i! I <J:i! N.

(6.4)

(6.S)



t42 W.E. D{e!Verl, £:</1('1 ontlsllperlo'{1J(! (lldu numbrrs t JY.E. DI,~r" ExO('1 tlntl IUPt,ltI"1J(! Intlu nllmb,,, t4~

Proolol(4.IO). Let x,y be any two points belonging to S such that

(6.13) I fa f(x) == fey) == x· Pf(x) == y. Pf(y) ,

N N ,N N
~ ."2 ~ ,A x'.'" == ~ xJ2 ~ A .mlJ}'If lJ .} J lJ. lJ .J)'.'
... 1 J-I .-1 I-I

where the last two equalities follow from the linear homogeneity of f. Since
f is a concave function over S, for every % belonging to S,f(%) ~ I(x)+YI(x)'
(z-x) == f(x) + YI(x)·z-/(x) - PI(x),%, and similarly I(z) ~ Yf(y)·%· Thus x
is II solution to max.{f(z): PI(x)·z ~ Pf(x),x, z belongs to S}, and y is a
solution to mnx.{f(z): Pf(y)·z :i Pf(y)· y, % belongs to S}. Sincef is exnct for
Q, for some r 01< 0 by assumption, we must have, using (6.13),

or

Now take.x:'J times (6.15) and sum over n,

Since (6.17) is true Cor every x, y, such thatf(x) - 1 - fCY), we must have

for 1 ~ n, J ~ N.A.J - A.J,(6.18)

(6.17) ITYPA.~2 - I: I: x',,''',A.ly/2.
~jr • J

.',
Q,(Pf(x), Pf/.Y); x, y) - f(y)U(x) - I,

or
N N
I: (x,/y,),,211.Y)yJPf(y).y - I: (YJx.y'''f,,(x)x./Pf(x)·x,
'-I II-I

N N N

I: x.'''f,,(x)X:- rI2 - 1: L A.lx'/J~j2 - I,
.-1 .-1.-1

where f,,(y) !!! 81(Y}/oy,., f,,(x) II of(x)/ox,., and x· Pf(x) == 1 - y. PI(Y)· Re
place the vector y B (Ylt y", •.., YN), which occurs in (6.14) with t!~e vector
,. belonging to S, where I<Y') - I, for 11 - 1,2, ..., N. Regard the :csuit;n,
system ofN equations as N linear equations in the N unknown:J,

or

(6.14)
N NI: y,/'(f,,(x)x: -'/2) - I: y! -,/2f,,(Y)K,j" •.-1 .-1

since.r.· J'f(x) - f(x) - 1.
Thus if f(x) - 1, then X satisfies the equation I:.'LA.Jx,f2xp - I, where

A.I - AJ-' Since I il linear homopneous by usumptioD, we must have for X

belonpnl to S,

[

N N Jl/r
(6.19) f(x) - 1: E ~,.jX'PXJ2 •

.-1.-1 _

Ji{) 1-,/2!:() 1-'/2 I'() 1-'/2I X XI ." X X2 ••• ·,IN X XN •

for some constants, AI/, 1 ~ i,) ~ N. Eq. (6.15) is valid for any X belonging to
S, such thatf(x) - 1; in particular, (6.15) is true for x - y,

Now substitutinl (6.15) into the left-hand side of (6.14) and (6.16) into the
riaht-hand side of(6.14), we obtain

and sinee we can choose the vectors". y2• •••• yN to be such that the coefficient
matrix on the left-hand side of the system of N equations is non-sin~lar, we
may invert the coefficient matrix and obtain the solution
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Our complete accounting system incorporates a new concept of the standard
of living, defined as the ratio of the quantity index of gross private national
expenditures to the quantity index of gross private national consumer receipts.
Our concept of the standard of living is similar but not identical to our concept
of total factor productivity. Changes in the private standard of living refiect
both changes in total factor productivity and changes in the proportion of the
total product consumed in the public sector.

2. INCOME AND EXPENDITURE

2.1. IJ1Iroductio/1

The income and expenditure account includes data on the value of income
from factor services and transfer payments, the value of consumer outlays and
saving. The value of consumer receipts is eqyal to consumer outlaYs plus saving.
The two sides of the receipts and expenditure account are linked through property
compensation and saving. Saving results in the accumulation of tangible assets
and financial claims; accumulated assets generate future property income. Saving
must be defined in a way that is consistent with property compensation. Income
must include all payments for factor services that result in consumption expendi
tures or in the accumulation of assets that result in future income.

Our accounting unit is the private national U.S. economy. We include as
income 811 items which accrue to this sector whether or not they are available
for current consumption. We include gross property income generated in the.
private domestic economy even if it is not completely distributed to individual·:
consumers in the form of dividends and interest. Similarly we include contribu
tions to social insurance in income. Our concept of income differs in several
respects from personal disposable income. but is very similar to the concept of
income implicit in the definition of gross private saving, as employed in the
U.S. national accounts.2 We term our income concept gross private national
income.

2.2. Definition of Income
We define income to include all payments for factor services provided by

U.S. residents and income from financial claims on government and rest of
world sectors by U.S. residents. We consolidate U.S. households, private
businesses, and institutions into a single accounting unit. Financial claims on the
business sector by households and institutions are liabilities of the business
sector; in the consolidated account these assets and liabilities cancel out. We treat
sgci:al insurance funds as girt of the private national economy; contributions to\
social insurance funds are included and benefits paid from social insuranco/
funds are excluded from gross private national income.

We define gross private national income to include property and labor
income generated in the private domestic economy, net of interest paid by con
sumers, plus net property income of U.S. residents and businesses from the

2AII references to dlIta from the U.S. nalional income and product accounts are to The
NalitJ1IIl1 Income allli Product Accounts 0/ the (/Iliud SillieS, 1929-1965, SUUistical Tables.
A Supplement to the Surfle" of Curre", Business. AUlust 1966, henceforward NIP (1966), and
subsequent nalional income issues of the Survey o/Current Business. unless othuwise indicated.
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forei,n sector, plus labor income of U.S. residents from the foreign sector, plus
labor compensation and net interest paid by government, all net of taxes, plus
investmen. income of social insurance funds less transfers to general government
by these funds. Transfer payments to persons other than benefits from social
insurance funds are received by the private national economy from the govern
ment sector without any factor services being rendered. Thus these transfer
payments are not included in our definition of income. Adding these transfers
to gross privlUe national income yields gross private national receipts. Gross
private national income and gross private national receipts are presented for
J958 in Table 1.

TABLE 1

GaOlS PRlVATII NAnoNAL RECElPTI AND ExPINDlTUllES, 1958 (CUJlJlENT PRICES)

kceipts

(
1. Gross private domatic f.ctoc outlay- 419.7
2. + Inc:ome orilinatio. in aeaera.llOvernmeot (Table 1.13>- 42.1
3. + Inc:ome orilinatin. in lovemmeIIt eDtlfl'l'ises (Table 1.13) 4.8
4. + IDcome oriliDatiq ia ... of world (Table 1.13) 2.0
5. + Iaves!meDt income of social illlW'UlCe funds (Table 3.7) 1.8
6. - Transfers to aeoenI IOverDmeDt from social insuranc:e funds (Table 3.7) 0.6
7. + Net interest paid by aovenunent (Tables 3.1 and 3.3) 6.2
8. - Corporate profits tax liability (Table 1.10) 19.0
9. - Buliaess property tauI" 17.4

10. - Persooal tax aDd DODtax paynwmts (Table 2.1) 42.3
11. + Pcnoaal BOlIto paymeatl (Tables 3.1,3.3) 2.3
12. - GrOll privue...uc..l u.o.c 399.5
13. + Governmeot tranII.. paymeDti to persons other than benefits from social

insura.ac:e funds (Table 3.9) 8.1
14. == Gross private national consumer receipts 407.7

.
jUAI£'Y.;I •.,,",*~'"AA."(4."

~.nJ",el

I. Personal consumption expenditures (Table 1.1)
2. - Personal consumption expenditures, durable .oods (Table 1.1)

. 3. + Scrvic:es of consumer durables (our imputation)·
4. + Scrvic:es of institutional duraWa (our imputation)4
5. + Net rent on institutional real _tate (our imputation)-

. 6. - Private national COIJSumpcion expeadlture
7. + Penonal truder paYJMDtl to roMpers (Table 2.1)
8. + Penonal nOlMaX paymeau (Tables 3.1, 3.3)
9. == Private aational consumer outlays

10. + Gross private national savioI'
11. - Private natioaal expenditures

290.1
37.9
40.3
0.3
0.8

293.6
0.6
2.3

296.5
111.2
407.7

.~ and Jor..... (1910, Table 1. p. 23). This series has been revised to include
a 8et rent lm~tatiOll to institutional str1ICt1JrW. AJso our other imputations have been sli.htly
rnecIiIed. See _,.lIICiiture items 3, 4, aDd 5 below.

•AJI table rer....ces are to 17v N J1ft»1IIe fIIId Product AccoulW ofthe United Sllltes,
J92~j, Statistical Tables, A Suppilmem to tM SUnJey 0/ Current Business, August 1966,
henc:eforward NIP, 1966.

'Christensen and Jorpnson (1970, Table I, p. 23, line 6 in factor outlay).
dCbrist.Dsen and Jocaenson (1970, Sec:tioo S).
·We have computed an implicit rental value for institutional structures and land based

on our estimate of the rate of return to owoer-oc:cupied real estale. The net rent fiaure is the
ditrerence between the implic:it rental value and the "space rental value" (NIP, 1966, Table 7.3).
This imputation was suaested to us by Edward F. Denison.

'See below, Table 3, line 5.
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Our definition of private national consumption expenditures differs slightly
from personal consumption expenditures.3 ~ exclude purchases of consumer
gyrab/es and inclyde imputations for servicc;s from consumer durables, institu
tional durables, and the equity return to institutional real estate. We preserve
the usual accounting identity that consumer outlays plus saving equals consumer
receipts. ~e define ~ross private national savini as gross private national
SODSUmcr receipts less private national coosumer outla~. Our estimates of
consumer outlays and saving for 1958 are given in Table 1.

Our definition of income is similar to the widely used concept of personal
disposal income,· but there are several important differences. First, personal
disposable income includes government transfer payments to persons and ex
cludes contributions to social insurance funds. Since we include social insurance
funds in the private national economy, we include contributions to social
insurance in income but exclude benefits from social insurance funds; we treat
otber transfer payments as nonjncom~ receipts. In addition we include the invest
ment income of social insurance funds net of transfers to general government in
gross private national income. These differences between gross private income and
personal disposable income can be summarized as the surplus of social insurance
funds plus government transfers to persons other than social insurance
benefits. The surplus of social insurance funds is included in private saving and
in gross private national income. Similarly wage accruals less disbursements are
included in gross private national income.

SccQQd. we jnciud.e..undistdb_YJed corporate profits, the CQrPQrate jnyentQa
valuation adjustment, capital cQnsumption allowances for corporate, n9D
~te Qwner-occupguod jostitutional tangible assets and tbe statistical
ctilPcpanC)l jn Itg'ss gOyale national iDCOm~. The statistical discrepancy is
included so that the incQme and product accounts balance. The remaining items
are included in income because they are part of gross private national saving.
Third, our imputations for consumer durables, institutiQnal durables, and the
equity return on institutional real estate are included in gross private national
income but nQt in persQnal disposable incQme. These flows Qf services are
included in consumer expenditure and must also be included in incQme, Finally,
~JJu!e net inte.r~st paid by cQn~~JI!S!in order to have a symmetric treatment
Qf interest received and interest paid by consumers. Table 2 contains a reCQn·
ciliation of personal disposable income and our concept Qf gross private natiQnal
income.

There are three differences between gross private national income, as we
define it, and the cQncept of income implicit in the cQncept of gross private
savin, employed in the U.S. national income and product accQunts.s First,
our imputatiQns for services frQm consumer durables and institutional tangible
assets are not included in the U.S. national aCCQunts concept. SecQnd, sQcial
insurance contributions and benefits are treated as in the U.S. national aCCQunts
in the manner described above for pcrsQnal disposable income. Third, the
statistical discrepancy is excluded. Since the underlying incQme concepts are

3IVIP (1966), Table J.1.
'NIP (1966), Table 2. I.
SNIP (1966), Table 5.1.
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