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TABLE 7

ACTUAL GROSS PRIVATE DOMESTIC CAPITAL INPUT, 1929-1967 (constant prices of 1958)

1. Corporate 2. Corporate 3. Non-Corporate | 4. Non-Corporate i) Private ‘:) Private 7. Index of
Year Capital Input, | Capital Input, Capital Input, Capital Input, Ca pi‘:m::::u ; Capi(:almelsr:::u ) Relative
Quantity Index Price Index Quantity Index Price Index Quantity Index Price Index Utilization
1929 337 0.542 25.2 0.592 20.4 0.518 0.775
1930 321 0471 25.1 0411 89.1 0.431 0.697
1931 29.6 0.353 24.5 0.386 85.3 0.397 0.615
1932 25.4 0.267 23.7 0.257 79.6 0.308 0.523
1933 25.7 0.239 24.0 0272 718 0.314 0.569
1934 26.3 0.343 244 0.314 710 0.323 0.626
1935 27.6 0.384 253 0.375 78.3 0.393 0.698
1936 28.7 0.444 26.2 0.417 80.2 0.418 0.756
1937 28.6 0.487 26.3 0.433 80.7 0.444 0.739
1938 26.3 0.452 259 0.408 78.3 0.408 0.627
1939 29.0 0.460 271.2 0.425 82.3 0.438 0.738
1940 322 0.518 28.8 0.438 87.8 0.461 0.853
1941 37.5 0.602 309 0.521 96.8 0.525 1.021
1942 424 0.671 32.7 0.619 1053 0.586 1.132
1943 46.5 0.702 34.1 0.667 110.6 0.653 1.333
1944 45.9 0.710 338 0.790 108.6 0.683 1.349
1945 42.2 0.671 328 0.855 102.6 0.700 1.224
1946 389 0.664 31.8 0.867 97.7 0.771 1.083
1947 439 0.764 330 0.805 106.4 0.802 1.138
1948 46.8 0.900 33.7 0.848 113.3 0.827 1.116




TABLE 7—continued
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1. Corporate 2. Corporate 3. Non-Corporate 4. Non-Corporate i) Private ‘;) Private 7. Index of
Year | Capital Input, | Capital Input, Capital Input, Capital Input, C .‘:";‘I’"C o | ca .‘:“"l";‘"c ) Relative
Quantity Index Price Index Quantity Index Price Index Q::’:‘ t‘ilty ?::e;( P:)ilce In?i‘::: , Utilization
1949 45.8 0.896 34.1 0.798 115.5 0.801 0.991
1950 49.8 0.974 36.0 0.867 124.7 0.905 1.075
1951 533 1.032 380 0.990 134.8 0.965 1.095
1952 55.2 0.976 38.5 0.946 139.9 0.959 1.048
1953 594 0.938 39.8 0.903 147.5 0.932 1.098
1954 58.4 0.958 393 0.920 149.0 0.955 1.019
1955 63.5 1.061 41.2 0.896 158.8 0.996 1.104
1956 66.8 1.020 422 0.825 167.6 0.970 1.109
1957 68.4 1.026 41.9 0.883 172.1 0.983 1.066
1958 67.8 1.000 41.2 1.000 173.3 1.000 1.000
1959 73.6 1.077 41,5 0.886 182.7 1.028 1.092
1960 76.5 1.038 44.2 0.849 189.4 1.023 1.101
1961 78.1 1.043 444 0.903 194.1 1.043 1.083
1962 83.0 1.096 46.0 0.962 202.5 1.091 1.138
1963 87.1 1.114 413 0.961 211.0 1.110 1.157
1964 94.0 1.133 49.7 0.935 224.1 1.116 1.224
1965 99.1 1.212 51.0 1.003 235.0 1.183 1.236
1966 105.9 1.248 52.8 1.042 249.1 1.219 1.252
1967 113.7 1.176 54.2 1.020 263.7 1.171 1.250




utilization. This utilization adjustment reflects both cyclical and secular changes
in utilization; the adjustment employed by Jorgenson and Griliches reflects only
secular changes. :

As a final step we multiply the index of relative utilization by the index of
potential capital services to obtain an index of actual capital services for non-
residential structures and producers’ durables in the corporate and non-corporate
sectors. We then divide the price of potential capital services by the index of
relative utilization. The value of the capital service flow as we have measured it is
independent of the rate of utilization; we define a price and quantity index of
actual capital services as price and quantity indexes of potential capital services,
divided and multiplied, respectively, by our index of relative utilization. Price and
quantity indexes of actual capital services for corporate and non-corporate
sectors and price and quantity indexes of actual capital services for the private
domestic economy for 1929-1967 are presented in Table 7. The index of relative
utilization is also given in Table 7.

7. SUMMARY AND CONCLUSIONS

In this paper we have attempted to provide a conceptual basis for measuring
real capital input. We have constructed estimates of real capital input for cor-
porate business, non-corporate business, and households and non-profit institu-
tions in the United States for the period 1929-1967. Fully satisfactory estimates of
real capital input will require much further research. Additional research on land
and inventory components of the capital stock, paralleling the OBE Capital Stock
Study [16] for depreciable assets, would be valuable. Goldsmith’s allocation of
assets and investment by legal form of organization should be updated and
extended.

Further improvement of investment goods price indexes, as in the “constant
cost 2" price index for non-residential structures for the Capital Stock Study, is
essential for the accurate measurement of investment goods output entering
our perpetual inventory estimates of capital stock. The relative utilization
adjustment for capital we have employed should be estimated separately for each
of the components of capital stock from data similar to that compiled by Foss [9].
Finally, it would be useful to compile data on capital stock by detailed asset class,
legal form of organization, and industry in order to incorporate additional aspects
of capital quality into the measurement of capital input.
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The paper rationalizes certain functional forms for index numbers with functional forms for

the underlying aggregator function. An aggregtor functional form is said to be ‘flexible’ if it

can provide a second order approximation to an arbitrary twice differentiable linearly homo- .

geneous function. An index number functional form is said to be ‘superlative’ if it is exact o
(i.c., consistent with) for a ‘flexible’ aggregator functional form. The paper shows that a o
certain family of index number formulae is exact for the ‘Sexible’ quadratic mean of order r

aggregator function, (X.Z,a,,x,3x,1)", defined by Denny and others. For r equals 2, the

resulting quantity index is Irving Fisher’s ideal index. The paper also utilizes the Malmquist Py
quaatity index in order to ratonalize the T8raqvist-Theil quantity index in the nonhomothetic .

i
a

!

- case. Finally, the paper attempts to justify the Jorgeason-Griliches productivity measurement A
é’,; technique for the case of discrete (as opposed to condguous) data, c 3
. -‘—!‘ I. Introduction ‘ o ig‘ ,
= One of the most troublesome problems facing national income.accountants RN
=H and econometricians who are forced to construct some data series, is the question '

of which functional form for an index number should be used. In the present
paper, we consider ¢inis question aad (elate fuscticaal forms “or the undesiying
production or utility function (or aggegator function, to use a neutral termi-
nology). .

First, define a quantity index between periods 0 and 1, Q(p°, p'; x°, x!), as a
function of the prices in periods 0 and 1, p° > 0y and p* > 0, (where Oy is an
N-dimeunsional vector of zeroes), and the corresponding quantity vectors,
x% > 0y and x* > O, while a price index between periods 0 and I, P(p°, p*;
x° x'), is a function of the same price and quantity vectors. Given either a
price index or a qQuaatity index, the other function can be defined implicitly
by the following equation [Fisher’s {1922) weak factor reversal test]:

(1.1)  P(p° p'; x% x*) 0%, pt; X%, x') = pl-x'[p°-x°,

_ i.e., the product of the price index times the quantity index should yield the
2 *This research was partially supported by National Science Foundation Grant GS-3269-A2

om0y Jopcad o 2 e

Bz S trigb A Y e e b g, g ;

o at the Institute for Mathematical Studies in the Social Sciences at Stanford University, and
: by the Canada Council. A preliminary version of this paper was presented at Stanford in
- August 1973, and the author is indebted to LJ. Lau, D. Aigner, K.J. Arrow, E.R. Berndt,

C. Blackorby, L.R. Christensen and K. Lovell for helpful comments.
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expenditure ratio bctwccn the two periods. (We indicate thc inner product of
two vectors as p-x or p'x.)
Examples of price indices are

P(p® p'i x% x*) = p' x%p° x° [Laspeyres price index],
Pe(p®, p's X% x') = p' - x![p° - x! [Paasche price index].

The geometric mean of the Paasche and Laspeyres indices has been suggested
as a price index by Bowley and Pigou (1920, p. 84), but it is Yiving Fisher {1922)
who termed the resulting index ideal:

(1) Pu(p%p'; X0 x1) = [p- X%t x p0.x%p0 x')E,

The Laspeyres, Pansche and ideal quantity indices are defined in o similar
manncr - quantities and prices arc interchanged in the above formulac, In
particular, the idcal quantity index is defined as

(13)  Qu(° p's x% x') = [p'-x'p® x'p' - x%°. x°}F.

Notice that Py,Qq = p'-x'/p°-x°; i.c., the ideal price and quant:ty indexes
satisfy the ‘adding up® property (1.1). The following theorem shows that the
ideal quantity index may be used to compute the quantity aggregates f{x7).

(1.4) Theorem [Byushgens (1925), Konyus and Byushgens -(1926),
Frisch (1936, p. 30), Wald (1939, p. 331), Afriat (1972, n. 45) and
Pollak (1971)]. Let p" » Oy for periods r =0,1,2,..., R, and
suppose that x > Oy is a solution to max.{f(x): p xgv-xX,xg
Ox}, where f(x) = (x"Ax)t = (U)o, Y¥ai xjapx)t, ap = ay, and
the maximization takes place over a region where f(x) is concave and
positive (which means A must have N—1 zero or negative eigenvalues
and one positive eigenvalue). Then '

(1'5) f(x')”(xo) = Qld(po’ P'; x°| X’), r= l| 2a ey R

Thus given the base period normalization f(x°) = 1, the ideal quantity index
may be used to calculate the aggregate f(x) = (¥TAX) forr =1,2,.. ., R
and we do not have to estimate the unknown coefficients in the A maitrix. This
is the major advantage of this method for determining the aggregates f(x)
[as opposed to the econometric methods suggested by Arrow (1972)), and it is
particularly important when N (the number of goods to be aggregated) is
large oompared to R (the number of observations in addition to the base period
observition p°, x°). ’

‘
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If a quantity index Q(p°, p"; x°, X) and a functional form for the aggregator
function f satisfy eq, (1.5) then we say that Q is exact for f. Konyus and Byush.
gens (1926) show that the geometric quantity index [i.,(x}/x{)* (where
s, = pf-xPp® x°) is exact for a Cobb-Douglas aggregator function, while
Afriat (1972), Pollak (1971) and Samuelson-Swamy (1974) present other
exnmples of cxact index numbers Howeveg_n appears that out of all the exact

an arbitrary twice-dilferentiable ]mear}omogencous I'uncuon For a proo(‘
that The Tunchioma! fomir (x 7 x)¥ "Cani provide such a second-order approxi-
mation, sce Diewert (1974a).

Let us call a quantity index Q ‘superlative’ [see Fisher (1922, p. 247) for an
undcfined notion of a superlative index number} if it is exact for an f which can
provide a second-order approximation to a linear homogencous function.

In the following scction, we show that the T8rnqvist (1936), Theil (1965,
1967) and Klock (1966, 1967) quantity index [which has been used by Christen-
sen and Jorgenson (1970), Star (1974), Jorgenson and Griliches (1972, p. 83),
Star and Hall (1973) as a discrete approximation to the Divisia (1926) index]
is also a superlative index number. In section 3, we use the results of section 2
to provide a rigorous interpretation of the Jorgenson-Griliches method of
measuring technical progress for discrete data.

In section 4, we introduce an entire family of superlative index numbers.
Section 5 presents some conclusions which tend to support the use of Fisher's
ideal quantity index in empirical applicaiions and the Tinal seciion is an appendix
‘which sketches the proofs of various thecorems developed in the following
sections.

tional form for / which s capable of pfovudmg a second-order approximation to

{
2. The T3mqvist—Thell ‘Divisia’ index and the translog function

Before stating our main results, it will be necessary to state a preliminary
result which is extremely useful in its own right. Let z be an N-dimensional
vector and define the quadratic function f(z) as

Q2.1  f(z) = ap+a"z+4:742

N o N N
ap+ Z;+
= 4ay J-Zl az; ‘Z:’ /En ayzz;,

where the a;, a;; are constants and a;; = aforalli, j.
The following lemma is a global version of the Theil (1967, pp. 222-223) and
Kloek (1966) local result.
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2.2) Quudratic approximation lemma. If and only if the qdadratic Junction
[is defined by (2.1), then,

23) S ~f°) = 4IPS +PSEON (' -2,

where Vf(2") is the gradient vector of fevaluated at 2’

The above result should be contrasted with the usual Taylor serics expansion
for a quadratic function,

S 1% = PIEO (@ —2°)+4(2" =207 1 (%) ~2°),
where P2f(z°) is the matrix of second-order partial derivatives of f evaluated
at an initial point z°. In the expansion (2.3), a knowledge of P2/(z°) is not
required, but a knowlemﬁm Tt must be emphasized that
-3y holds as Iity forall z¥; 2° belonging to an open set if and only if /
is a quadratic function. X

Actually, the quadratic approximation lemma (2.2) is closely related to the
following result which we will prove as a corollary to (2.2): !

(24)  Lemma [Bowley (1928, pp. 224-225)). If a consumer's preferences
can be represented by a quadratic function f, defined by (2.1); x> Oy
is a solution to the utility maximization problem

2.5) max,{f(z): p'-z = Y,z 2 Oy}, where p' Oy, Y* = p'-x', the inner
product of p' and x'; x° » Oy (i.c., each component of x° is positive)
is a solution to the utility maximization problem

(26) max,{f(z): p®-z = Y° z320,), where p° » Oy and Y° = p°-x%;
then the change in utility between periods Oand 1 is

Q27 SO =S = AL +A8p%) - (x' —x°), where AP is the marginal
utility of income in period / for { = 0, 1; i.e., A} is the optimal value
of the Lagrange multiplier for the maximization problem (2.5), and
A3 is the Lagrange multiplicr for (2.6).

Bowley's lemma is frequently used in applied welfare cconomics and cost-
benefit analysis, while the quadratic approximation icmma is frequently used

;{nlindcx number theory, which indicates the close connection between the two
elds.

Suppose that we are given a homogeneous translog aggregator function
[Christensen, Jorgenson and Lau (1971)] defined by

N N N
Inf(x) =ap+ Y a,Inx,+4Y Y yplnx inx,
s J=1 k=1

where Y Voo, = L,y =y and Y3,y = 0forj = 1,2,...N.
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Jorgenson and Lau have shown that the homogencous translog function can
provide a ‘second-order approximation to an arbitrary twice-continuously-
differentiable linear homogeneous function. Let us use the parameters which
occur in the translog functional form in order to define the following function,

TAs
N N N
(2.8) f‘(l) - Z a,z,+§ Z z Y22y
J=1 {ml j=1

Since the function f* is quadratic, we can apply the quadratic approximation
femma (2.2), and we obtain

@9) 411G = HLE)+PIEN (-0,
Now we relatef* to the translog function /. We have
@ ¥ *(2)/0z) = 3 In f(x)/0 In x; = [3f(x))dx,}{x}f(x)].

/(@) = ln f{x),

: :;-lnx;, for r=0,1 and j=12,..., N —

If we substitute relation (2.10) into (2.9), we obtain .

@1)  Inf)-Inf(x%) = % [x' ‘;f(i’f;)u" ‘}f(i’f,;)]- [In x* —In x°),

where Inx' = {Inx}, Inxd, .., Inxh), Inx® = (Inxd, nxd, ... Inx3), &' =
the vector x!' diagonalized into a matrix, and £° = the vector x° diagonalized
into a matrx, '

Assume hat X’ » Oy is a solution to the aggregator maximization problem
max,{f(x): p'-x = p’-X, x & Oy}, where p' » Oy for r =0, 1, and f is the
homogeneous translog function. The first-order conditions for the two maxi-
mization pooblems, after elimination of the Lagrange multipliers [Konyus
and Byushsens (192G, p. 155), Hotelling (1935, pp. 71-74), Wold (1944, pp.
69-71) and Pearce (1964, p. 59) lemma), yield the relations p"/p" - x" = 7f(x")/
¥ -Pf(x) for r-= 0, 1, Since f is linear homogeneous, x"- V/(x") may be replaced
by f(x’) in the above, and substitution of these last two relations into (2.11)
yields

1.1 0,0
In /GOS0 = 4 [5},’;1 " ;,,”;6] fin ' —In x°)

= 5 45t (xlfa2)
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or
(212) SO0 = ["] [x} xQEt"+4 = Qo(p°, p'; X%, x'),
nwl

where s = plxl/p"- X', the nth share of cost in period .

The right-hand side of (2.12) is the quantity index which corresponds to
_Irving Fisher's (1922) price index number 124, using (1.1). It has also been
advocated as a quantity index by Tdrnqvist (1936) and Theil (1965, 1967,
1968). It has been utilized empirically by Christensen and Jorgenson (1969,
1970) as a discrete approximation to the Divisia (1926) index and by Star (1974)
and Star and Hall (1973) in the context of producuvuy mcasurcment. The above
argument shows that this quanmy index is exact for a homogeneoue translog
aggregator function, and in view of the second-order approximation property
of the homogencous translog function, we sec that the right-hand side of (2.12)
is a superlative quantity index,

It can also be seen [using the if and only if nature of the quadratic approxi-
mation lemma (2.2)] that the homogeneous transiog function is the only dif-
ferentiable lincar homogeneous function which is exact for the T8rnqvist-
Theil quantity index,

The above argument can be repeated (with some changes in notation) if

the unit cost function for the aggregator function is the translog unit cost
function defined by

. N N N
Inc(p) = af + Z; atlinp,+1Y Y yhlnp,lnp,
J- J=1x=1

where 30 _jaf =1, y =y and Y3 oy =0for j=1,2,..,N. We also
need the following results.

(2.13)  Lemma ([Shephard (1953, p. 11), Samuelson (1947)). If f is positive,
linearly homogeneous and concave; if

X = minfp-x:f(x) 2 f(X)} = (pY ), Jor =01,
and if the unlt cost function ¢ is differentiable at p’, then
X = Pe(p Y (xX), ‘ for r=0,1,
@.14)  Corollary! X[p"-x = Ve(p')e(p), for r=0,1.

Now under the assumption of cost-minimizing behzvior in perioas 0 and 1|
[which implics (2.14)], we have upon applying the quadratic approx:mauon
“lemma (2.2) to the translog unit function, .

'Proo[: divide (2.13) by p"x’ = o(p"Y(x).
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Pe(p')
o)

-i[ﬁ‘-—i— P° —— ] [lnp'—Inp°]
(using 2.14)

Pep®)

+H° o .-,,]-nnp'—lnm

In o(p" )~ o(p®) = i[ﬂ‘

N
= Z (st +s31n [p} /P21,

or
o
@15)  ctpe(p) = I tealpf1t"++7,

where s; = pixi/p"-x* (the nth share of cost in period r), p" » Oy (period r
prices, r = 0, 1), X" & Oy (period / quantities, { = 0, 1), and ¢(p) = the translog
unit cost function. ?

The right-hand side of (2.15) corresponds to Irving Fisher's (1922) price index
123. The above argument shows that this price index is exact for a translog
unit cost function, and that this is the only differentiable unit cost function
which is exact for this price index.

Let us denote the right-hand side of (2.15) as the price index function Py(p°,
p':x% x'), and denote the right-hand side of (2.12) as the quantity index
Qo(P° p'; x°, x'). It can be verified that Py(p° p'; x° x")Qo(p% p'; x°, x')
¥ p'-x'[p®.x° in general; i.c., the price index P, and the quantity index
Qo do not satisfy the weak factor reversal test (1.1). This is perfectly reasonable,
since the quantity index Q, is consistent with a homogeneous translog (direct)
aggregator function, while the price index P, is consistent with an aggregator
function which is dual to the translog unit cost function, and the 110 aggregator
Junctions do not in general coincide; i.c., they correspond to different (aggre-
gation) technologies. Thus, given Q,, the corresponding price index, which
satisfies (1.1), is defined by Po(p® p'; x% x') = p'-x!/[p°- x°Q°°, p';
gcf, x")]. The quantity index Q, and the corresponding (implicit) price index
Pq were used by Christensen and Jorgenson (1969, 1970) in order to measure
U.S. real input and output. On the other hand, given P, the corrcspondmg
(lmphclt) quantity mdex, which satisfies (1.1), is defined by J,(p°, p'; x°, x!) =
p-xt[p°-x°Po(p° p'; x° x')). The price-quantity index pair (P, Qo) was
advocated by Kloek (1967, p. 2) over the pair (P,, Q) on the following grounds:
as we disaggregate more and more, we can expect the individual consumer or
producer to utilize positive amounts of fewer and fawer goods (i.c., as N. grows,
components of the vectors x® and x! will tend to become zero), but the prices
which th: producer or consumer faces are generaliy positive irrespective of

?Note that the validity of (2.15) depends cruclally on the validity of (2.14), which will be

valid if p° and p* belong to an open convex set of prices P, such that the translog o(p) satisfies
the regularity conditions of positivity, §near homogeneity and concavity over 2.
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the degree of disaggrcgation. Since the logarithm of zero is not finite, @, will
tend to be indcterminate as the degree of disaggregation increases, but Py
will still be well defined (provided that all prices are positive).

Theil (1968) and Klock (1967) provided a somewhat different interpretation
of the indices Py and Q,, an interpretation which docs not require the aggre-
gator function to be linecar homogeneous. Let the aggregate v be defined by
u = f(x), where / is a not necessarily homogeneous aggregator function which
satisfies for example the Shephard (1970) or Diewert (1971) regularity conditions
for a production function. For p » Oy, Y > 0, define the total cost function
by C(u;p) = min,{p-x:f(x) 2 u; x 2 Oy} and the indircct utility function
by g(p/Y) = max,{f(x): p-x £ Y, x S Oy}. The true cost of living price index
evaluated at ‘utility’ level u is defined as P(p°, p'; v) = C(u; p')/C(u; p°) and
the Theil index of quantity (or ‘real income’) evaluated at prices p 1s defined as
Qr(p; 1° u') = C(u'; p)/C(u°; p). The Theil-Klock results are thau: (i) Po(p®,
P': x° x') is a sccond-order approximation to P(p°, p'; g(v*)), where the nth
component of v* is v? = (p%p! p®-x%"-x"), for n=1,2,..., N, and (ii)
Qo(p° p's x° x!) is a sccond-order approximation io Gyip*; #(p%F° x%,
g(p'/p'-x")), where the nth component of p* is p¥ = (p%pl)*.

In view of the Theil-Kloek approximation results, we might be led to ask
whether the index number P, is exact for any general (non-homothetic) func-

tional forms for the cost function C(u; p). The following theorem answers this
question in the affirmative:

(2.16)  Theorem, Let the functional form for the cost functicn he "q general
translog of the form

N N N
In C(u; p) = a3+ Zl o Inp,+} Zl ):)l YiInp,iInp,
(] J=l ke
N
+p*Inu+6*(nuw)?+ Y eflnulnp,
k=1

where Y Il ol = 1, v = vy Zf_,y{‘,, =0,forf=1,2..,N, and
YL i8] = 0.% Let (u%; p°) and (u'; p') belong to a (u; p) region where
C(u; p) satisfies the appropriate regularity conditions for a cost function
{e.g., see Shephard (1970), Hanoch (1970) or Diewert (1971)] and
define the quantity vectors x° = V,C(u°; p°) and x' = V,C(u'; p").
Then |

© Po(p P 20 x1) = Clut PC(: ), -
. where u* = (u®u') and P, is defined by the right-hand side of (2.15).

~

In contrast to the case of a linear homogencous aggregator function where
- ‘the cost function takes the simple form C(u;p) = co(p)u, theorem (2.16) is

3These restrictions ensure the linear homogenelity of C(w; p)in p.
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not an if and only if result; that is, the index number Po(p®, p'; x°, x') is cx:
for functional forms for C(u; p) other than the translog. In fact, thcorem (2.
remains true if: (i) we define C as In C(i; p) = ag(u)+Y 1o [o;+e(t)}In p.
YV X vnInp;Inp,, where Yi a, =1, Yt =0, v =ny X4
Ya=0 forj=1,2,..,, N, and / is a montonically incrcasing function
one variable, and (ii) define the reference utility level u* as the solution to 1
equation 2i{u*) = h(u') +Mu®). [In the translog case, /() = In u.]

Thus the same price index P, is exact for more than one functional form (a
refcrence utility level) for the true cost of living.

We can also provide a justification for the quantity index Q, in the conte
of an aggregator function f which is not necessarily lincarly homogeneo
In order to provide this justification, it is necessary to define the quantity ind
which has been proposed by Malmquist (1953) and Pollak (1971) in the co
text of consumer theory, and by Bergson (1961) and Moorstsen (1961)
the context of producer theory.

Given an aggregator function / and an aggregate v = f(x), define s distan
Jiunction as Dlu; x] m max,{k: f(x/k) 2 u}. To usc the language of utili
theory, the distance function tel!s us by what proportion one has to defla
(or inflate) the given consumption vector x in order to obtain a point on t.
utility surface indexed by . It can be shown that if f satisfies certain regulari
conditions, then f is completely characterized by D [see Shephard (197(
Hanoch (1970) and McFadden (1970)). In particular, D[u; x] is linear hom
gcneous non-decreasing and concave in the vector of variables x and no
increasing in u in Hanoch's formulation.

Now define the Malmquist quantity index as Q,(x° x';u) = Diu; x'
Dfu; x°). Note that the index depends on x° (the base period quantitics
x' (the current period quantities) and on the base indifference surface (whic
is indexed by u) onto which the points x° and x! are deflated. The followir
theorem relates the translog functional form to the Malmquist quantity inde:

(2.17)  Theorem. Let an aggregator function f satisfying the Hanoch (197
and Diewert (1971) regularity conditions be given such that fs distan.
Junction D is a general translog of the form

N N N
In D{u; x} = ag+ 21 o Inx,+% Ex Y. tplnx,+ B Inu+d(n u)?
I~ J=1x=1

N
+Y gnuinx,
I=1

where Z"-lal s l, Yix = Np Z!"'yﬂ = 0, forj =1,2,.. o N, an
Yi. 16 = 0. Suppose that the quantity vector x° is a solution to th
aggregaior maximization problem max,{f(x): p°-x = p° x°}, whil
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x! is ai solution to max {f(x): p''x = p'-x'} and u® = f(x°), ' =
S(x*). Then '

Qo(p% p'; x° x') = D[u*; x')/Dlu*; x°] = Quix®, x*; u*),

where u* = (u%u')t and Q, is defined in (2.12).

As was the case with the price index P, the quantity index Q, is equal
to Malquist quantity indexes which are defined by non-translog distance
functions; i.c., theorem (2.17) is not an if and cnly if result.

However, thcorems (2.16) and (2.17) do provide a rathcr strong justification
for the use of Py or O, since the translog functional form provides a sccond-
order approximation to a general cost or distance function (which in turn are
dunl to a general non-homothetic nggregator function). :

Finally, note that theorems (2.16) and (2.17) have a ‘global’ character to
them in contrast to the Theil-Klock ‘local’ resuits.

3. Productivity measurement and ‘Divisia’® indexes

Jorgenson and Griliches (1972, pp. 83-84) have advocated the use of the
indexes P,, Q, in the context of productivity measurement. It is perhaps appro-
priate to review their procedure in the light of the results of the previous section.

First, we note (by a straightforward computation) that it is not in general
true that ‘a discrete Divisia index of discrete Divisia indexes is a discrete Divisia
index of the components’ [Jorgenson and Griliches (1972, p. 83)], where the
‘Divisia’ quantity index is defined to be Q,. In view of the one-to-one nature
of the index number Q, with the translog functional form for the aggregator
function f in the linear homogeneous case, it can be seen that the Jorgenson-—
Griliches assertion will be true if the producer or consumer is maximizing an
aggregator function f subject to an expenditure constraint, where f is both
a homogeneous translog function and a translog of micro-transiog aggregator
functions, The set of such translog functions is not empty since it contains the
set of Cobb-Douglas functions. Thus if cost share’s are approximately constant
(which corresponds to the Cobb-Douglas case), then the Jorgenson-Griliches
assertion will be approximately true.

It can be similarly shown that in general, it is not true that a discrete ‘Divisia’
price index of discrete ‘Divisia’ indexes is a discrete ‘Divisia’ price index of the
components, where the ‘Divisia’ price index is defined to be P, the first method
of constructing a price index is justified if the aggregator function has a unit
cost function dual of the form &[c'(p"), cX(p?), ..., ¢’(p")], where (', p?%,...,
P’) represents a partition of the price vector p and the functions &, ¢!, =%, ..., ¢’
are all translog unit cost functions, while the sccond method of constructing a

_price index is justified if the aggregator function has a unit cost function dual,
" o(p), which is translog. '
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Jorgenson and Griliches (1972) use the index number formule Qu(p°,
x%, x') defined by the right-hand side of (2.12) not only to form an index
real input, but also to form an index of real output, Just as the aggregat
of inputs into a composite input rests on the duality between unit cost and hon
geneous production functions, the aggregation of outputs into a compo:
output can be based on the duality between unit revenue and homogene:
factor requirements functions.* We briefly outline this latter duality.

Suppose that a producer is producing M outputs, (¥, Y2, .. Vi) E Y, ¢
the technology of the producer can be described by a factor requireme
Junction, g, where g(¥) = the minimum amount of aggregate input required

produce the vector of outputs y.* The producer’s unit (aggregate input) reves
Junction® is defined for each price vector w 2 0,, by

@1 r(w) = max {w-y:g() S 1,y 2 0,).

Thus given a factor requirements function g, (3.1) may be used to definc
unit revenue function. On the other hand, given a unit revenuc function ri
which is a positive, linear homogeneous, convex function for w » 0,,, a fac
requirements function g* consistent with » may be defined for y » 0,, by’

(.2 g*0) =min{d:w.y S r(Wd forevery w 2 0,)

= min,{A: 1 S r(w)A forevery w20, suchthat w-y =
= I/max, {r(W):w-y = 1, w 2 0,}.

T!le translog functional form may be used to provide a second-order appro.
mation to an arbitrary twice-differentiable factor requirements function. Th
assume that g is defined (at least over the relevant range of y's) by

(3. Ing0) mbo+ i:;la,. ln y,,+§1§‘ .}: cplny;In v,

‘ for r=0,
where

M M
"Z-‘a.'. = 1, CJ. = C.I, .El CJ. = 0, for j = l, 2, vy M,

" ;S':epllz'lewert (1969, 1974a), Fisher and Shell (1972) and Samuelson and Swumy (1974) -

*Assumo g is defined for y 2 O, and has the following properties: >0foryd (
(pogislolty), (D) £Gy) = Ag02) for 13 0, y 2 O (linear Inmmlly)?)a{g)(iii)‘ :&;{’4-(1
D) & W|w)+(l "':W" : :)"'“ 03235 1,2 % O, y* & Ou (comvexity).

.’?l‘;\'e‘;tootkml:\:hmt “:i"“o:'}?:::;m%mﬂhommmsprm‘m_

0 L1e Pr uelso d duality ¢
in Diewert (1974b); alternatively, see Samuelson and § ﬂ-ﬂa?,!;:; uality theorem present.
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Now assume that y” 3 0,, is a solution to the aggregate input minirization
problem min {g(;): Wy = Wy, y 2 Oy}, where w » 0, for r = 0. 1, and
g is the translog function dcfined by (3.3). Then the first-order necessary condi-
tions for the minimization problems along with the lincar homogenc:ty of g
yicld the relations w/w.y = Pg(y)/g(y’), for r =0, 1, and using these two
relations in lemma (2.2) applied to (3.3),

ﬁ [Y‘/)’f.]*lm'rm'l\"‘r'+W-°r--°l‘"°"°l
m
1

G4 20"/

= 03(w°, w'; % »h).

Thus again the Tﬁrn'qvist formula can be used to aggregate quantities con-
sistently, provided that the underlying aggregator function is homogencous
translog.

Similarly if the revenue function r(w) is translog over the relevant range of
data and if the producer is in fact maximizing revenue, then we can show that
r(w)/r(w®) = P*(w®, w'; y°, y") = Q30° y'; W% w'), the Td&rnqvist price
index, .

Using the above material, we may now justify the Jorgenson-Griliches (1972)
method of measuring technical progress. Assume that the production possibili-
ties efficient set can be represented as the set of outputs y and inputs x such that

@Q.3) - 80) =s(x),

where g is the homogeneous translog factor requirements function defined by
(3.3), and f is the homogeneous translog production function defined in section
2. Let w » Oy, p" » Oy, r = 0, 1 be vectors of output and input prices during
periods 0 and 1, and assume that y° » 0, and x° » 0, is a solutioa to the
period 0 profit maximization problem,

(.6 max, [w-y—p® x: g0) = S0}

Suppose that ‘technical progress’ occurs between periods 0 and 1 which we
assume to be a parallel outward shift of the ‘isoquants’ of the aggregator
function f; i.e., we assume that the equation which defines the efficient set of
outputs and inputs in period 1 is g(y) = (14 1)f(x) where 7 represents the
amount of ‘technical progress' if t > 0 or ‘technical regress’ if * < 0. Finally,
assume that y' » 0,, and x* » 0, is a solution to the period 1 profit maximiza-
tion problem, '

Q7 max, (w'y-p'-x:1g0) = (l+1)f(k)}.
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Thus we have g(y°) = f(x°) and g()') = (14 1)f(x'). It is casy to sce th:
Y » 0, is a solution to the aggregate input minimization problem min, {g(y
W.y=w-y,y 20}, for r = 0,1, and thus (3.4) hoids, Similarly, ¥ » (
is a solution to the aggregator maximization problem max, {f(x): p"-x = p"-a
x & Oy}, for r = 0, 1, and thus (2.12) holds. Substitution of (2.12) and (3.
into the identity g(»*')/g(»°) = (1 + s)f(x"){f(x°) yields the following expressic
for (1 4+ t) in terms of observable prices and quantities:

09 (147 = [T DLRI=retor smmtration-
1

N
/n lx:/xg]ilr-'x.'/p'-x'+;-°x..'/:°-x°)

a=i

Thus the Jorgenson-Griliches method of measuring technical progress ca
be justified if: (i) the economy's production possibilitics set can be represcnte
by a separable transformation surface defined by g(y) = f(x), where the inp:
aggregator function f and the output aggregator function g are both hom«
geneous translog functions, (ii) producers are maximizing profits and (ii
technical progress takes place in the ‘neutral’ manner postulated above.

Since the separability assumption g(y) = f(x) is somewhat restrictive fro:
an a priori theoretical point of view, it would be of some interest to devise
measure of technical progress which did not depend on this separability a:
sumption. This can be done, but only at a cost as we shall see below. ‘

Suppese that technoiogy can be represented by a transformation function,
where g = 103, Y30+« o Yaed X1y X2y« o Xp) B ((F; X) = 1(2) is the maximu
amount of output one that can be produced, given that the vector of othe
outputs § =/(y,, ys, ..., Yx) is to be produced by the vector of inputs x =
(X1» X304+ ., Xy). Assume that ¢ is a positive, linear homogeneous, concav
function over a convex st of the non-negative orthant S in K = M—1+,
dimensional space. Assume also that 1(§; x) is non-increasing in the componen!
of the other outputs vector § and non-decreasing in the componcnts of th

input vector x. Suppose that the transformation function 7 is defined for
belonging to § by

X X
B9 Inte)= a°+.Z‘ Inni+d Y yulnzing,
. - =1

where 37X a, = 1, v, = y,, and Vit =0, forj=12...,K;ie, tis
translog transformation function over the set S.

Suppose tha't Ve (L Ya 0 Y) P 0y (output vectors), x = (x], x5
+++ X) » Oy (input vectors), w » 0,, (output price vectors), P’ » Oy (inpu

*For & more detailed discussion of transformation functi h
Dlcwert (197900 { unctions and their properties, se
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H
price vectors), and W y = p’-x" (value of outputs equals value of inputs) for
periods r = 0, 1. Assume that z° = 0% . P xh . w XD = (% x%) is 8
solution to the following output maximization subject to an expenditure
constraint problem in period 0:

(3.10)  max,{#(z): g%z = ¢°-2°, 2z belongs to S}

where ¢ is the translog transformation function defined by (3.9), q° = (-w},
=13, ooy =W P PYs o o 0 PR) = (=905 p°) and

G =10
+ _
The first-order conditions for the maximization problem (3.10) imply that
[Konyus-Byushgens (1926) lemma]

(3.12)  ¢°4q°-2° = P1(z")/1(z°).

As before, we assume that ‘ncutral’ input augmenting technical progress takes
place between periods 0 and 1; i.e., if (y; x) was an efficient vector of outputs
and inputs in period 0, then (y; (14 1)7'x) is on the efficiency surface in period
1. Thus the efficiency surface in period 1 can be defined as the set of (3, ¥2,

< v Yo} X1s X2, « « -, Xy) Which satisfy the following equation:

(3'13)_ » = ’(yb Yareen Yus (1 +')xl' (l +t)x2! ren (l +t)xN)'

Assume that (34, 5, .. ., yhs %1, xb, .., x}) = (F'; x') is a solution to the
period 1 output maximization subject to an expenditure constraint problem
max, {1(F; (1+0)x): =% - y+p'-x = —wl.pt4ptxt; (7: (14 1)x) belongs to

S5}. Then 2! = (5'; (1 + 7)x") is a solution to the following output.maximization
problem:

(3.14)  max{1(z):¢'-z = ¢':2', 1z belongsto S},
where ¢ is the translog function defined by (3.9),¢' = (—#'; p'), and
(G.15)  yb =) = 1 (1.

Again, the Konyus-Byushgens-Hotelling lemma applied to the maximization
problem (3.14), using the lincar homogencity of £, implics that !

(3.16) - ¢'/q"-1' = Pu(z")]e(z").

Note thatg°-2° = w;%-y,° > 0,since w®.y° = p%.x°,
19\We agsume that ris smaliso thatgl 2! m —#t-54pte(l+0)x' > 0,

\) '
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Now substitute (3.12) and (3.16) into the identity (2.11), except that ¢ replaces
Jand z replaces x, and we obtain

3.17) 1(2Y)/1(z°) = 2‘: [z} /zgli(u'u'/c'-l'ﬂ-'n‘lc‘--')
| 0%

w 1[5 (14 O Yey°; x°).

Combining (3.13), (3.15) and (3.17), we obtain the foilowing cquation in t:

(18) At = TT [+ ujag et imiriorsrintivs

wee l

M
/ H [)'.'. /y: ]ku'y.-'ly'(v)+V-’r-'IV')'

me=2

where Voo —Y M w2p24 TN, p0x% = net cost of producing output y,
in period 0,and F'(r) = — “:' Wi+ YN o (1 +)x).

Given data on outputs, inputs and prices, eq. (3.18) can be solved for the
unknown rate of technical progress 1. Note that eq. (3.18) is quite different
from the 'Jorgenson-Griliches equation for t defined by (3.8) (except that the
two cquations are equivalent when M = 1, i.c., when there is only onc output).

However, it should be pointed out that our more general measure of tech-
nical progress, which is obtained by solving (3.18) for t, suffers from some dis-
advantages: (i) our procedure is computationally more difficult,'' and (ii)
our procedure is not symmetric in the outputs; that is, the first output y,
is asymx.nehically singled out in (3.18). Thus different orderings of the outputs
could grfe.risje to different measures of technical progress. This is because
cach ordering of the outputs corresponds to a different translog assumption
about the underlying technology and thus different measures of t can be ob-
L.nined._Ho'wever, all of these measures should be close in empirical applications
since the different translog functions are all approximating the same technology

to the second order,
4. Quadratic means of order r and exact index numbers

' For r # 0, the (homogeneous) quadratic mean of order r aggregator function
is defined by

N N tfr
@n see[ L T ax],
f=i Jw=i

"Furlhermpre, we cannot a priori rule out the possibility that eq. (3.18) will have either
multiple solutions for 1 or no solutions at all. The Fisher measure of technical >rogress, to be
introduced in sections $, overcomes these difficultics. )
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where gy = a,;, 1 S 1,j & N, are parametcrs, and the domain of t":l‘mi'.ion of
f, is restricted to x = (X;, X3, . . -, Xy) » Oy such that Ty a,.x/ ’ij L 0, and
£, is concave. The abovs functional form is due to McCurthy (1967), Kadiyala
(1971-2), Denny (1972, 1974) and Hasenkamp (1973). Denny slso dcfincd
the quadratic mean of order r unit cost function,

I=1 =1

N N tr
4.2) ¢(p) = [Z Z bqunP}n] ’ by = by, r#0.

Denny noted that if 7 = 1, then (4.1) reduces to the generalized 'inear func-
tional form [Diewert (1969, 1971)}, (4.2) rcduces to the generalized Leonticf
functional form [Diewert (1969, 1971)), and if all a;, = O for { ¥ j, then (4.1)
reduces to the C.B:S. functional form [Arrow, Chenery, Minhas and Solow
(1961)}, while if all b;, = 0 for i # j, then (4.2) reduces to the C.E.S. unit cost
function.

We may also note that when r = 2, (4.1) reduces to the Konyus-Byushgens
(1926) homogeneous quadratic production or utility function, while (4.2)
reduces to the Konyus-Byushgens unit cost function. This functional form has
also been considered by Afriat (1972, p. 72) and Pollak (1971) in the context of
utility functions and by Diewert (1969, 1974a) in the context of revenue and
factor requirements functions.

Lau (1973) has shown that the limit as r tends to zero of the quadratic mean
of order r aggregator function (4.1) is the homogeneous translog aggregator
function and similarly that the limit as r tends to zero of (4.2) is the translog
unit cost function,

This completes our discussion of special cases of the above family of func-
tional forms. The following theorem shows that the functional form is ‘flexible’,

(4.3) Theorem. Let f be any linear homogeneous, (wice-rontinuously-
differentiable, positive function defined over an open subset of the positive
orthant in N-dimensional space. Then for any r % 0, f, defired by (4.1)
can provide a second-order differential approximation to f.

By a second-order differential approximation to f at a poiut x* > Jp,'2
we mean that there exists a set of a;, parameters for f, defined by (4.1), such
that f;(x*) = f(x*), Pf(x*) = Pf(x*), and V3f,(x*) = P3f(x*); i.c., the values
of f; and f and their first- and second-order partial derivatives at x* all coincide,

Define the quadratic mean of order r quantity index Q, for x° » Oy, x* » Oy,
p° > 0y, p' > Oy, forr # 0,as '
N ) 1r
: Y. Oy (pPxdlp? x%)
@3 Q%% Xy = I :

L G datlpt )

+3This terminology follows Lau (1974).
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Thus for any r # 0, Q, may be calculated as a function of obscrvable price
and quantities in two periods. Note that Q, can be cxpressed as the product o
a mean of order  !* in the square roots of the quantity relatives (x!/x°)* (usin
base period cost share as weights) times a mean of order —r in the square root
of the quantity relatives (x/ /x{)* (using period one cost sharcs as weights).

It is perhaps of some interest to note which of Irving Fisher's (1911, 1922
fests are satisfied by the quantity index Q,. It can be verified that Q, satisfics
.(i) the commodity reversal test, i.e., the value of the index number does not chang
if the ordering of the commodities is changed; (ii) the identity test, i.c., Q,(p°
1':°; x% x°) = 1 [in fact Q(p% p'; x° x°) m 1, the quantity index equals on
if all quantities remain unchanged); (iii) the commensurability test,i.c., Q,(D~'p°
D-fl’.'? Dx°, Dx') = Q(p% p'; x° x') where D is a diagonal matrix witl
positive elements down the main diagonal; thus the quantity index remain
!nvariant to changes in units of measurement; (iv) the determinateness test
i.c., @(p° p'; x° x') does not become zero, infinite or indeterminate if ar
individual price becomes zero for any r ¥ 0 and Q,(p% p'; x°, x') does no
Pecome zero, infinite or indeterminate if an individual quantiry becomes zerc
if 0 <75 2;' (v) the proportionality test, i, Q,(p° P x% Ax%) = ) fo:
cvery 1 > 0; and (vi) the time or point reversal test, i.e., Q,(p° p';x° x*
Q.(p", p% x', x% = 1. ' T

Define the guadratic mean of order r price index P, forp®» 0y, p* » Oy, x° > 0,

x' > 0y, forr # 0,as

. N r
' T, Gty ptaio® x|

(4.5) P.(p"’. Plix x) =
L (PllpY*(pixifp!-x')

' = (=, x*; p° p").

.It is easy to see.that P, will also satisfy Fisher's tests (i) to (vi). The only
flshcr tc:ts lm)t :au'sﬁed by the indexes P, and Q, are: (vii) the circularity fest,
i.e., P(p% p"s x°, x")P(p', p*; X', x*) & P(p® p?; x°, x?); and (viii) the factor
reversal test, ic., P(p° p';x% x")Qup% p'; x° x') # p' - x'[p® x°, except

:hatt P, and Q; (tne ‘ideal’ price and quantity index) satisly the factor reversal
test. '

30rdinary, as opp;ed to quadratic mea
and Polyat1334) q ic ns of order r, were defined by Hardy, Littlewood

$4Thus the quantity indices Q,, for 0 < are ha i .
Toroqviat-Thell indes Q. by .12, rs?, somewhat more satisfactory than the
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Forr#£ 0 deﬁhg the implicit quadratic mean of order r price index P,as
(4.6) PO p'ix% x') = pt X! [p°-x°Q,(p° p's X%, X)),
and define the implicit quadratic mean of order 7 quantity index d,as
@n  G0%p'x% x") = pt-x[p®-xP(p° p'; x°, X)),

Thus the two pairs of indexes (Q,, P,) and ({,, P,) will satisfy the weak
factor reversal test (1.1).

The following theorem relates the aggregator function f, to the quantity,
index Q,:

(4.8) Theorem Suppose that (i) f(x) Is defined by (4.1), where r # 0;
(u) x°> 0,, is a solution to the maximization problem max,{f (x):
p°-x & p°-x° x belongs to S} where S is a convex subset of the
non-ncgatlve orllmnl in R¥, f (x°) > O and the price vector p° is suci
that p°.x° > 0; and (m) x! > 0" is a solution to the meximization
problem max,{f (x): p''x 8 p x x belongs to S}, fi(x*) > 0 and
the price vector p* is such that p' - x* > 0; then

49 LMD = 0.00°% P x°, XY,

Thus the quadratic mean of order r quantity index (, is exact for the quad-
ratic mean of order r aggregator function, which in view of theorem (4 J)
implies that Q, isa superla!me index number.

Suppose that x* » O is a solution to max{f(x): p>-x S p'-¥, x belongs
to S}, where f;(x) > 0, p*-x* > 0 for s = 0, 1, 2. Then using (4.9) three times,
we find that

0.(p% p'; x°, x") Q.(p', p?; x*, x?) = LU AT
= fix)f(x")
= Qr(Polpz; xov xz)'

Thus under the assumption that the producer or consumer is maximizing
J/(x) subject to an expenditure constraint each period, we find that Q, will
satisfly the circularity test in addition to the other Fisher tests which it satisfies.
A similar proposition is true for any exact index numtber, a fact which was first
noted by Samuelson and Swamy (1974). Since the circularity test is capable of
empmul refutation, we scc that we can empirically refute the hypothesns that
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an economic agent is maximizing f,(x) subject to an expenditure constraint
Thus violations of the circulanty test could mean cither that the cconomi
agent was not engaging in maximizing behavior or that his aggregator functio:
was not f,(x).

We note that theorem (4.8) did not require that all prices be non-negative
only that quantities be positive. 7, can also be a transformation function (recal
section 2) which is non-decreasing in inputs and non-increasing in outputs
Theorem (4.8) will still hold except that prices of other outputs must be indexe:
negatively while prices of inputs are taken to be positive. The quantity inde.
Q, may be used in the context of productivity measurement just as we used th.
index Qg in section 3. We will return to this topic in section 5.

- Theorem (4.8) tells us that f, defined by (4.1) is exact for Q, defincd by (4.4)
However, could there exist a linear homogencous functional form / dilferen

from £, which is also exact for Q,? The answer is no, as the following theoren
shows:

(4,10) Theorem [Generslization of Byushgens (1925), Konyus and Byush
gens (1926)). Lei S be air open subset of the positive orthant in R’
which is also a convex cone. Suppose [ is defined over S and is (i
positive, (i) once-differentiable, (iii) finear homogeneous, and (iv
concave. Suppose that f is exact for the quantity index Q, defined b,
(4.4) for r + O [l.e., if ' is a solution to max,{f(x):p’" x & p'- X', :
belongs to S} for s =0, 1, thea Q(p° p'; x° x') = f(x")/f(x°)]
Then [ is a qvadrctic mean of order r defined by (4.1) for some a,,
Isisg/sn

We note that the functional form f, defined by (4.1) may also be used as ¢
factor requiréments function, and that the quantity index Q, defined by (4.4
will still be exact for £;; i.c., theorems (4.8) and (4.10) will still hold except tha'
the maximization problems max,{f,(x): p*-x S p'-¥’, x belongs to S} ar
replaced by the minimization problems min,{f,(x):p*-x 2 p*-x’, x belong:
to S} for s = 0, 1, and condition (iv) is changed from concavity to convexity
Thus the quadratic mean of order r quantity indexes Q, can be used to aggre-
gate either inputs or outputs provided that the functional form for the nggre-
gator function is a quadratic mean of order r.

The above theorems have their counterparts in the dual space.

(4.11)  Theorem. Suppose that (i) ¢,(p) = [Z,Z;b,p}'*p}?)'!, where b, =

byforalli,j,r + 0and(py,ps,....Pn) = p belong: to S where S is
an open,.convex cone which is a subset of the positive orthant in R";
(i) c,(p) Is positive, linear homogeneous and concave over S; (iii)
x°/p®-x° = Pc(p)/c(p), where p® » Oy so that [using the corollary
(2.14) to Shephard's lemma) x° is a solution to the aggregator maxi-
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mization problem max {J,(x): p®-x S p°-x° x < Oy}, where J, 13 Is
the direct aggregator function which is dual to c(p): and (iv) x'/p' . x' =
Pe,(p")fcp'), p* P Oy s0 that x' is a solution 10 the cgzregzror maxi-
mization problem max, {f(x): p'-x S p'-x', x & Oy} Then

(4.12) e (PVe,(p®) = PAp% p'; x°, x'), .
where P, is the quadratic mean of order r price index defined by (4.5).

The proof of theorem (4.11) is analogous to the proof of theorem (4.7), exxcept
that p replaces x, ¢, replaces f;, and corollary (2.14) is used instead of the Konyus—
Byushgens—Hotelling lemma,

Thus the quadratic mecan of order r unit cost function ¢, is exact for the price
index P,. Since by thdorem (4.3), ¢, can provide a second-order approximation
to an arbitrary twice-differentiable unit cost function, we sce that P, is a super-
lative price index for cach r # 0. We note also that thero is an analogue to
theorem (4.10) for P,; i.e., ¢, is cssentially the only functional form which is
exact for the price index function P,.

However, if we relax the assumption that the underlying aggregator function
be linear homogeneous, then the index numbers P, and Q, can be exact for

a number of true cost of living price indexes and Malmquist quantity indexcs,

respectively; i.¢., analogues to theorems (2.16) and (2.17) hold.

We have obtained two families of price and quantity indexes: P, {, and
P,, O, defined by (4.6) and (4.4) for any r # 0. The first price—quantity family
corresponds to an aggregator function f, which has the unit cost function ¢,
defined (4.2) as its dual, and the second price-quantity family corresponds to
an aggregator function f, defined by (4.1). Recall also that the price-quantity
indexes Py, (, correspond to a translog unit cost function, while Py, Q,
correspond to 8 homogeneous translog aggregator function.

For various values of r, some of the indexes P, or B, have been considered in
the literature. For 7 = 2, P, = P, becornes the Pigou (1920) and Fisher (1922)
ideal price index which corresponds to the Konyus-Byushgens (1926) homo-
geneous quadratic aggregator function f(x) = [xTAx])}, where A = AT is a
symmetric matrix of coefficicnts and it also corresponds to the unit cost function
¢,(p) = [p"Bp]}, where B = BT is a symmetric matrix of coefficients, If A™!
exists, then it is easy to show that the unit cost function which is dual to f,
is ¢,(p) = (pTA"'p)} (at least for a range of prices). However, ii fy(x) =
[xTaa"x]t = a"x, where a » 0y is & vector of coefficients (linear wuggregator
Junction), then 2,(p) = &3(py, 03, - . ., py) = mingpa,:i = 1,2,..., N} which
is not a member of the family of unit cost functions defined by c,(p) =
{pTBp)'. On the other hand, if c,(p) = (pTbb"p)} = b7p, where & » O, is =
vector of coeflicients (Leontief unit cost function), then the dual aggregator
function is fy(x;, X3, ... Xy) = min{x/b:i = 1,2,...,N}, which is a

15Define /{x) = 1/max,{c(p): p-x = 1, p belongs to 5}, where S is the closure of S,
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Leontief aggregator function. Thus P, is exact for a Leontief aggregator function
[n fact which was noted by Pollak (1971)] and since P, = P,, it is also exact
for a lincar aggregaion funclion. This is an extremely vscful property for an
index number formula, since the two types of aggregator function correspond
to zero substitutability between the commodities to be aggregated and infinire
substitutability respectively.

For r = 1, the price index P, has been rccommended by Walsh (1901, p. 105).
P, is exact for the unit cost function ¢,, whose dual f; is the generalized Leonticf
aggregator fur:ction, which has the Leonticf aggregator function as a special
case. Walsh also reccommended the price index ', which is cxact for the general-
ized linear aggregator function f;, which of course has the linear aggregator
function as a special case, .

If, in fact, & producer or consumer was maximizing a lincar homogencous
function subject to an expenditure constraint for a number of time periods,
we would expect [in view of the approximation theorem (4.3)) that the price

Table |
Comparison of some index numbers tabulated by Fisher,

Price Fisher

index number 1913 1914 1915 1916 1917 1918
Py, 54 100 100.3 1001 1144 161.1 17174
Py, 53 100 . 99.9 99.7 114.1 162.1 1719
P, 123 100 .100.1 99.9 113.8 162.1 171.8
b, 124 100 -100.16 99.85 114.28 161.74 178.16
», 1183 100 100.13 99.89 11420 16170  177.83
¥ 1154 100 100.12 99.90 114.24 161.73 177.76
P, 353 100 100.12 99.89 114.21 161.56 177.65

indexes P, and P, should more or less coincide, particularly if the variation
in relative prices were small. However, since real world data is not necessarily
consistent with this maximization hypothesis, let us consider some empirical
cvidence on this point,

Irving Fisher (1922, p. 489) tabled the wholesale prices and the quantitics
marketed for 36 primary commodities in the U.S. during the war years 1913~
1918, a time of very rapid price and quantity changes. Fisher calculated and
compared 134 different price indexes using this data, Table 1 reproduces
Fisher's (1922, pp. 244-247) computations for the Paasche and Laspcyres price
indexes, Py, and P,,, as well as for Py, Po, P,, P, and P, = P, = P,,. Fishcr's
identification number is given in column 2 of the table; e.g., P, or the ‘ideal’
price index was identifizd as number 353 by Fisher. All index numbers were
calculated using 1913 as a base,

Note that the Paasch and Laspeyres indexes coincide to about two significant
figures, while the last 4 indexes mostly lie between the Paasche and Laspeyres
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indexes and coincide to 3 significant figures. Fisher (1922, p. 278) also calculated
P, (and some of the other ‘very good® index numbers) using differe:.t years as
the basc year and then he compared how the various series dif'l'ered; that s,
he tested for ‘circularity’. Fisher found that average discrepancy was only about
1 percent between any two bases. Thus as far as Fisher's time series data is
concerned, it appears that any one of the price indexes P, or P, give« the same
answer to 3 significant figures, and that violations of circularity are only about
1 percent so that the choice of base year is not too important.! ¢

To determine how the price indexes P, compare for different r's in the context
of cross section data, one may look at Ruggle’s (1967, pp. 189-190) paper which
compares the consumer price indexes Py,, Py,, Po and I, for 19 Latin American
countries for the ycar 1961. The indexes P, and P,, using Argentina as a base,
diffcred by about 1 percent per observation, while Py and P,, using Venezuela
as a base (the relative prices in the two countries differed markedl;’), differed
by about 1.5 percent per observation. P, failed the circularity test (comparing
values with Venezuela and Argentina as the base country) by an average of
about 2 percent per observation, while P, failed the circularity test by-about
3 percent per observation.!” Thus it appears that the indexes P, differ more and
violate circularity more in the context of cross section analysis than in time
serics analysis, Howcever, the agreement between Pq and P, in the cross section
context is still remarkable since the Paasch and Laspeyres indexes differed by
about 50 percent per observation,

5. Concluding remarks

We have obtained two families of superlative price and quantity indexes,
(P,, ,) and (P,, Q,); that is, cach of these index numbers is exact for a homo-
geneous aggregator function which is capable of providing a second-order
approximation to an arbitrary twice-continuously-differentiable 1ggregator
function (or its dual unit cost function). Moreover, (P,, J,) and (F,, Q,) satisfy
many of the Irving Fisher tests for index numbers in addition {o :heir being
consistent with a homogeneous aggregator function. Note also that is prices are
varying proportionately, then the aggregetes {J, and G, are consistent with
Hicks’ (1946) aggregation theorem.

Although any one of the index number pairs, (P,, J,) or (P,, Q,), could be

1$However, as a matter of general principle, it would seem that the chain miethod of calecu-
lating index numbers would be preferable, since over longer periods of time, ths underlying
functional form for the aggregator function may gradually change, so that for example (1.5)
will only be approximately salisfied, the degree of approximation becoming beiter as r ap-
proaches 0. '

17This failure of the circularity test should not be too surprising from the -iewpoint of
economic theory since we do not expect the aggregator function for the 270 consumer goods
and services to be representable as a linear homogeneous function; that is, we do not expect
all ‘income’ or expenditure elasticities (o be unitary,
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used in empirical applications, we would recommend the use of

Py, Qz) =2 (Pz- 0)) = ([P"X'I" 'X°/P°'X'p°-x°]*,
[x'p'x'-p%x.p'x%.pJ),

Irving Fisher's (1922) ideal index numbers, as the preferred pair of ind.
numbers. There are at least three reasons for this selection.

(i) The functional form for the Fisher-Konyus-Byushgens idcal index nur
ber is particularly simple and this leads to certain simplifications in application
For example, recall eq. (3.18) which we used in order to measure technic
progress, (I+1), in an cconomy whose transformation function could t
represented by a (non-separable) homogeneous translog transformation fun

tion 1. If we assume 1(z) = f,(z), where £, is defincd by (4.1) for r = 2, the
the analogue to (3.18) is

Gy 2o ERUPE (40X 0054 p® (1 + )t

Y (=w"5°+p" XY= w? yO 4 p%. xO)

If we square both sides of (5.1), the resulting quadratic equation in (14 1) ca
casily be solved, given market data.

(i) The indexes P,(p° p'; x° x') and @,(p° p'; x° x!) are functions ¢
2%-x'[p®-x* ana p'-xV[p'-x*, which are ‘sufficient statistics' for reveale:
preference theory,'® and moreover (J, is consistent with revealed preferenc
theory in the following sense: (a) if p°-x' < p®.x% and p'-x° 2 p'-x! (ie., x
revealed preferred to x'), then J,(p% p'; x° x*) < 1; (b) if p%-x* 2 p°-x
and p'-x® < p'.x! (j.e., x* revealed preferred to x°), then {J,(p°, Pix%xh >
1 (i.c., the quantity index indicates an increase in the aggregate); and (¢) i
pO-x-m p%.x% and p'-x® w pl.x! (i.e., x° and x* revealed to be equivalent o
indifferent), then @(p° p';x% x') = 1 (ic, the quantity index remain
unchanged). Thus even if the true aggregator function J is non-homothetic
the quantity index §J, will correctly indicate the direction of change in the aggre
gate when revealed preference theory tells us that the aggregate is decreasing
increasing or remaining constant,

(i) The index number pair (P,, Q,) is consistent with both a linear aggregalo

1%See Samuelson (1947), Houthakker (1950) and Afriat (1967). We should also mentior
the non-parametric méthod of price and quantity Index number determination pioneerced by
Afriat (1967} which depends only on the R? inner products of the rth price vector p* and the
sth quantity vector x*, p*- 2, If there are R observations. See Diewert (1973b, p. 424, footnotr
2) for an algorithm which would snable one to calculate a polyhedral approximation ¢(x)
to the ‘trus’ linear homegeneous aggregator function f(x),
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Junction (mﬁmtc substitutability between the goods to be aggregated) and a
Leontief aggregator function (zero substitutability between the commodities
to be aggregated). No other (P,, () or (F,, Q,) has this very uscful property.

6. Proofs of thecorems
Proofof (2.2)

fE)—f(2°) = a"z' +42'T 42! — a7z —32°T42°

= aT(z' —2°) 442! TA(! ~2°) +42°TA(z! - 2°)

' .
= {la+ At +a+A2°)7(z' -2, since A = AT

= [P/ +PIEONT( -2°).

Assume [ is thrice-differentiable and satisfies the furctional equation f(x)~—
JO) = PSR+ PO (x—y), for all x and y, in an open neighbourhood.
We wish to find the function that is characterized by the fact that its average
slope between any two points equals the average of the endpoint slopes in
the direction defined by the difference between the two points. If fis a function
of one variable, the functional equation becomes f(x)—7(») = {[f'(x)+/' ()]
(x—y). If we differentiate this last equation twice with respect to x, we obtain
the “differential equation 4/ "(x)(x—y) = 0, which implies that f(x) is a poly-
nomial of degree two. The general case follows in an analogous manner usmg
the directional derivative concept.

Proof of (2.4). 2% and x! will satisfy the first-order necessary conditions for an
interior maximum for the maximization problem (2.5),

61) A=Al plxt =T

Similarly, A3 and x° will satisfy the first-order conditions for the constrained
maximization problem (2.6),

Pf(x°) = 43p°  porxo = YO

Now substitute the first parts of (6.1) into the right-hand side of the identity
(2.3), and obtain (2.7).

Proof of (2.16). For a fixed u*, In C(u*; p) is quadratic in the vector of vari-

~ ables Inp and we may apply the quadratic approximation lemma (2. 2) to
obtain ,

W.E. Diewert, Exact and superlative index nunibers 13

t *. 0y

In C(u*; p*)~In Cu*; p°) =*[ " gﬁ:.ﬁ; ”ov ?2‘,4‘;53_
-[lnp -—lnp ]

- *[ W7, C'; pY) p., ca_«;;_pp‘

Clu P) Cw®;p% ]

{inp'=Inp']

(where the equality followe upon evaluating the derivatives of C and notin
that 21n 4* = In u' +in %

= In Po(p°, p'; x° x')
(using the definitions of x°, x! and P,).

Proof of (2.17). It is first necessary to express the partial derivatives of I
with respect to the components of x, V,D[i"; x'}, r = 0, 1, in terms of th
partial derivatives of f We have D[v'; ¥) = max.{k S(xXlk) 2 v} =1, fo
r = 0, 1, since each x” is on the " ‘utility’ surl'ace To find out how the distanc
D[u® x'] changes as the components of x° change, apply the implicit functio:
theorem to the equation f(x°/k) = u° (where k = 1 initially). We find that

dk|ox; = dD[u®; x°)fox, -f,(x°)/ Y A0, Jj=1,2,..,N.
Similarly

f aD[ul' X'WXJ -fl(x‘)/ Z xlfl(x‘)- J=4L2..,N.

Furthermore, the ﬂnt-ord'ér conditions for the two aggregator maximizatio:
problems after elimination of the Lagrange multipliers yield the relations

! N
Pylp®-x° -f,(J_f’)/ L WACD, J=12 N,

and
piip'-x* -f,(x‘)/Z xflx"),  J=1,2,..,N.

Upon noting that the right-hand sides of the last set of relations are identica
to the right-hand sides of the earlier relations, we obtain

(62)  P.Du® x°1=p°p°x° and P,Dlu';x'}=p'jp' x,
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Now for a fixed u*, In D[u*; x] is quadratic in the vcctor of variebles In x
and we may agnin apply the quadratic approximation lemma (2.2) 2 obtuin
the following equality.

.. *. x0
In D[u*;x']-—ln D[ut;xol =- *[xlv _IB){_u_‘__r}‘{'xovx %%:_.;__z_a%]

+{in x' —1n x°}

= |n Qo(Pon P‘ ’ xo’ xl)v

where the equality follows upon evaluating the derivatives of D, noting that
2inu* = Inu'+In 4%, using (6.2), the cqualitics D{u'; x') = 1, D[u®; x°} = |
and the definition of Q,.

Proof of (4.3). Since both f and f, are twice continuously differentiable, their
Hessian matrices evaluated at x*, P?f(x*) and 73/,(x*), are both symmmetric.
Thus we need only show that 33/(x*)/xdx; = 3%/(x*)/oxdx, forl SIS ]S
N. Furthermore, by Buler's theorem on linear homogeneous functions, f(x*) =
x*TPf(x*) and f(x*) = x*TPf,(x*). Since the partial derivative functions
9f(x)/0x, are homogeneous of degree zero, application of Euler's theorem on
homogeneous functions yields, fori = 1,2,.. ., N,

(G.S)d lﬁl x$ Y (x*)[0x2x) = 0 = ;%‘t xJ0%/,(x*)/dxdx;.

-

Thus the above material implies that f,(x*) = f(x*), Pf(x*) = Pf(x*) and
PIf(x*) = P2f(x*) will be satisfied under our present hypothesis if and only if

(64) A (x")ox, = fi* = 3f(x*)/ox,,
for 1=1,2..,N,

(6.5) 3% (x"))oxdx; = £} = 3*(x*))ax2x,,
for 1S1</SN.

Thus we need to choose the N(N+1)/2 independent parameters a1 S 1 S
j & N),sothatthe N+ N(N—-1)/2 = N(N 4 1)/2 eqs. (6.4) and (6.5) ~re satisfied.
Recall that x* = (x}, x$, ..., x¥) > Oy and that y* = x*P/(x*) = f(x*) > 0,
since f is assumcd to be positive over its domain of definition, Thus since
y*>0,x' >0andr 0, thenumbcrsa,‘,,forl S i <j S N, can be defined
by solvmg the following equations for a}
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i—r (tep r1- ’
(6.6) f,; - _;‘_.,;o”_,, y* 'a’x," »'\; /1~ n. 1$i<j<N.

The system of eq. (6.6) is equivalent to (6 S) il we also make use of (6.4)

Now define af} = aj}, for { ;‘ J, and then ay} is defined as the solution to th
following equation:

(6.7 )_‘, alx " x )y = i=12...,N

Now define f(x) = (L), Y7 a%%/2x/)'F, and it can be verificd readil:
that eqs. (6.4) and (6.5) are saluﬂcd by £, as defined.

Proofof (4.8). Using assumptions (ii) and (jii) of (4.8) yiclds
(68) o = p%p®-x° = PA(xO)f(x),
(69) o' mpljp'-x' = PL(M (Y.

Upon differentiating £,(x°), the ith equation in (6.8) becomes

v‘o .p?/po.xo -'-(x‘O)(rI” :Z alxyrn/ Z Z a .,xo'” or/t

k=) mel

(l'l'
P AN

’ N
610 o3 AR = T el (£ 5 st

Similarly, using eq. (6.9). we obtain

(6'“) 2 xD’I’ ll"l’ - zzxvﬁ lr/! Z Zakm p,: |r,:

” .
Upon noting that a,; = aj;, take the ratio of (6.10) to (6.11),

f O fxP) P x? YZa...X"" e T !

6.12 T = VACY)
( ) ;( JIXI)',.UJ\J .Z ak,,x,‘ Xow = [m] '

Take the rth root of both sides of (6.12) and obtain (4.9),
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Proof of (4.10). Let x, y be any two points belonging to S such that

6.13) 1 =) =S0)=xFf(x) = »-Vf0)

where the last two equalitics follow from tho linear homogeneity of /. Since
fis a concave function over S, for every z belonging to S, f(2) S f(x)+Pf(x)-
(z=x) = f(x)+Pf(x)-z—f(x) = Pf(x)-z, and similarly f(2) £ Pf(»)-2. Thus x
is a solution to max,{/(z): Pf(x)-z S Pf(x)-x, z belongs to S}, and y is a
solution to max,{/f(z2): P/(»):z S Vf(y)-», z belongs to 5). Since f is exact for
Q, for some r # 0 by assumption, we must have, using (6.13),

0.F, PADY: %3) = SONG) = L
or
$ Gl SOWIPION = T, Oy AP 5

or

N N
e X WP)xy 1) = Zt 7 LoM,

where £,(3) = &/())/0y., fi(x) = 3f(x)/ox,, and x-Pf(x) = 1 = y-P; ). Re-
place the vector y = (3, ya, . - ., ¥x), Which occurs in (6.14) with tle vector
" belonging to S, where f()") = 1, forn=1,2,..., N. Regard the cesuiting
system of N equations as N lincar equations in the N unknowns, :

Li0IxE 3, ()X, L )T,

and since we can choose the vectors y', y2, . . ., »" to be such that the coefficient
matrix on the left-hand side of the system of N equations is non-singular, we
may invert the coeflicient matrix and obtain the solution

619 S T A n= 12008,

for some constants, 4,;, 1 S 1,/ S N. Eq. (6.15) is valid for any x belonging to
S, such that f(x) = 1; in particular, (6.15) is true for x = y,

N
(6'16)\ f;c(}’))’:-m = ;’ A"]y},z! n= lp 21 00y N.

Now substituting (6.15) into the left-hand side of (6.14) and (6.16) into the
right-hand side of (6.14), we obtain
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s /2 - /3 _ & /2 N 12
Zyl ZAlI*}I = ZX; ZAu}': ’
=1 J=1 el I=1
or
(6.17) ;g: )4/2 A,, I,‘J/z - ;; x:fz A.J.ﬁ”o

Since (6.17) is true for every x, y, such that f(x) = 1 = f(y), we must have

(6.18) A.J = A.J. for 1 s n, j S N.

Now take x2/2 times (6.15) and sum over #,

N
Y, X = Y Y AR =1,

[ 3} wwig=l

since % Pf(x) = f{x) = i.
Thus if f(x) = 1, then x satisfies the equation )Y /4, x/3x}* = 1, where

Ay = Ay, Since f is linear homogeneous by assumption, we must have for x
belonging to S,

N N t/r

(6.19) ﬁ(x)»-[z 14:-1";""7;'

Nes ] o
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Our complete accounting system incorporates a new concept of the standard
of living, defined as the ratio of the quantity index of gross private national
expenditures to the quantity index of gross private national consumer receipts.
Our concept of the standard of living is similar but not identical to our concept
of total factor productivity. Changes in the private standard of living reflect
both changes in total factor productivity and changes in the proportion of the
total product consumed in the public sector.

2. INCOME AND EXPENDITURE

2.1, Introduction

The income and expenditure account includes data on the vajue of income
from factor services and transfer payments, the value of consumer outlays and
saving. The value of consumer receipts is cqual (o consumer outlays plus saviog.
The two sides of the receipts and expenditure account are linked through property
compensation and saving. Saving results in the accumulation of tangible assets
and financial claims; accumulated assets generate future property income. Saving
must be defined in a way that is consistent with property compensation. Income
must include all payments for factor services that result in consumption expendi-
tures or in the accumulation of assets that result in future income.

Our accounting unit is the private national U.S. economy. We include as
income all items which accrue to this sector whether or not they are available
for current consumption. We include gross property income generated in the
private domestic economy even if it is not completely distributed to individual”
consumers in the form of dividends and interest. Similarly we include contribu-
tions to social insurance in income. Our concept of income differs in several
respects from personal disposable income, but is very similar to the concept of
income implicit in the definition of gross private saving, as employed in the
U.S. national accounts.?2 We term our income concept gross private national
income.

2.2. Definition of Income

We define income to include all payments for factor services provided by
U.S. residents and income from financial claims on government and rest of
world sectors by U.S. residents. We consolidate U.S. households, private
businesses, and institutions into a single accounting unit. Financial claims on the
business sector by households and institutions are liabilities of the business
sector; in the consolidated account these assets and liabilities cancel out. We treat
sogial insurance funds as part of the private national economy; contributions to
social insurance funds are included and benefits paid from social insurance,
funds are excluded from gross private national income.

We define gross private national income to include property and labor
income generated in the private domestic economy, net of interest paid by con-
sumers, plus net property income of U.S. residents and businesses from the

2All references to data from the U.S. national income and product accounts are to The
National Income and Product Accounis of the United States, 1929-1963, Statistical Tables,
A Supplement to the Survey of Current Business, August 1966, henceforward NIP (1966), and
subsequent national income issues of the Survey of Current Business, unless otherwise indicated.
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foreign sector, plus labor income of U.S. residents from the foreign sector, plus
labor compensation and net interest paid by government, all net of taxes, plus
investmens income of social insurance funds less transfers to general government
by these funds. Transfer payments to persons other than benefits from social
insurance funds are received by the private national economy from the govern-
ment sector without any factor services being rendered. Thus these transfer
payments are not included in our definition of income. Adding these transfers
to gross private national income yields gross private national receipts. Gross
private national income and gross private national receipts are presented for
1958 in Tablie 1.

TABLE 1|
GROss PRIVATE NATIONAL RECEIPTS AND EXPENDITURES, 1958 (CURRENT PRICES)

Receipts

1. Gross private domestic factor outlay* 419.7
2. + Income originating in general governmeat (Table 1.13) 42.1
3. + Income originating in government enterprises (Table 1.13) 4.8
4. + Income originating in rest of worid (Table 1.13) 2.0
5. + Investment income of social insurance funds (Table 3.7) 1.8
6. — Transfers to general government from social insurance funds (Table 3.7) 0.6
7. 4 Net interest paid by government (Tables 3.1 and 3.3) 6.2
8. - Corporate profits tax liability (Table 1.10) 19.0
9. — Business property taxes* 17.4
10. — Personal tax and nootax payments (Table 2.1) 42.3
11.  + Personal nontax payments (Tables 3.1, 3.3) 23
12. = Gross private patiosal income 399.5

13.  + Government transfer paymeats to persons other than benefits from social
insurance funds (Table 3.9) 8.1
14. = Gross private national consumer receipts 407.7

Expenditures

1. Personal consumption expenditures (Table 1.1) 290.1
2. -~ Personal consumption expenditures, durable goods (Table 1.1) 379
© 3.+ Services of consumer durables (our imputation)® 40.3
4. + Services of institutional durables (our imputation)* 0.3
5.+ Net rent on institutional real estate (our imputation)* 0.8
6. = Private national consumption expenditure 293.6
7. <+ Personal transfer payments to {oreigners (Table 2.1) 0.6
8. <+ Personal nontax payments (Tables 3.1, 3.3) 2.3
9. = Private national consumer outlays 296.5
10. 4+ Gross private national saving’ 111.2
11. = Private national expenditures 407.7

“Christensen and Jorgenson (1970, Table 1, p. 23). This series has been revised to include
a pet rent imputation to institutional structures. Also our other imputations have been slightly
modified. See expenditure items 3, 4, and 5 below.

*All table references are t0 The Neational Income and Product Accounts of the United States,
1929-65, Statistical Tables, A Supplement 10 the Survey of Current Business, August 1966,
henceforward NIP, 1966.

*Christensen and Jorgenson (1970, Table 1, p. 23, line 6 in factor outlay).

“Christensen and Jorgenson (1970, Section 5).

*We have computed an implicit rental value for institutional structures and land based
on our estitnate of the rate of return to owner-occupied real estate. The net rent figure is the
difference between the implicit rental value and the “space rental value™ (NVIP, 1966, Table 7.3).
This imputation was suggested to us by Edward F. Denison.

/See below, Table 3, line 5.
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* Qur definition of private national consumption expenditures differs slightly
from pcrsonal consumptlon expenditures.® We zxclude purchases of consumer
el tions for servj consumer durables, institu-

tional durables, and the equity return to institutional real estate. We preserve
the usual accounting identity that consumer outlays plus saving equals consumer

receipts. We define gross private pational saving as grass private national
sonsumer receipts less private national consumer outlays. Our estimates of

consumer outlays and saving for 1958 are given in Table 1.

Our definition of income is similar to the widely used concept of personal
disposal income,* but there are several important differences. First, personal
disposable income includes government transfer payments to persons and ex-
cludes contributions to social insurance funds. Since we include social insurance
funds in the private natiohal economy, we include contributions to social
insurance in income but exclude benefits from social insurance funds; we treat
other transfer payments as nonincome receipts. In addition we include the invest-
ment income of social insurance funds net of transfers to general government in
gross private national income. These differences between gross private income and
personal disposable income can be summarized as the surpius of social insurance
funds plus government transfers to persons other than social insurance
benefits. The surplus of social insurance funds is included in private saving and
in gross private national income. Similarly wage accruals less disbursements are
included in gross private national income.

Second, we include undistributed corporate profits, the corporate inventory
valuation adjustment, capital consumption allowances for corporate, non-
corparate, owner-occupied, 3nd institutional tangible assers, and the statistical
discrepancy in gross private national income. The statistical discrepancy is

included so that the income and product accounts balance. The remaining items
~ are included in income because they are part of gross private national saving.
Third, our imputations for consumer durables, institutional durables, and the
equity return on institutional real estate are included in gross private national
. income but not in personal disposable income. These flows of services are
included in consumer expenditure and must also be included in income. Finally,
weexclude net interest paid by copsumers in order to have a symmetric treatment
of interest received and interest paid by consumers. Table 2 contains a recon-
ciliation of personal dispasable income and our concept of gross private national
income.

There are three differences between gross private national income, as we
define it, and the concept of income implicit in the concept of gross private
saving employed in the U.S. national income and product accounts.® First,
our imputations for services from consumer durables and institutional tangible
assets are not included in the U.S. national accounts concept. Second, social
insurance contributions and benefits are treated as in the U.S. national accounts
in the manner described above for personal disposable income. Third, the
statistical discrepancy is exciuded. Since the underlying income concepts are

3NIP (1966), Table 1.1.
*NIP (1966), Table 2.1,
SNIP (1966), Table 5.1.
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