@ Bell Atlantic

Bell Atlantic Network Services, Inc. Joseph J. Mulieri

1133 Twentieth Street, N.W. Director — FCC Relations
Suite 810 .

Washington, DC 20036 e

202 392-6979 Lo T

.o g
yrn o ome

EA PalTz OF LATEFILED

April 8, 1997

RE~

e =y W‘D
Ex Parte |

Mr. William F. Caton Miinjogs;
Acting Secretary i 0;.:: s Co
Federal Communications Commission v
1919 M Street, NW. Rm. 222

Washington, D.C. 20554

Re: CC Docket No. 94-1

Today, on behalf of Bell Atlantic, Dr. Melvyn Fuss of the University of Toronto, Maureen
Keenan, Ed Shakin, and I met with Jay Atkinson, Alex Belinfante, Raj Kanan, Steve
Spaeth, Mark Uretsky, and Brad Wimmer to discuss the above captioned proceeding. The
attached handouts were used during the meeting.

Please enter this letter and material into the record as appropriate. Please do not hesitate
to contact me if there are any questions.

Sincerely,

T

Attachment

cc: J. Atkinson
A. Belinfante
R. Kanan
S. Spaeth
M. Uretsky
B. Wimmer

. ot Ce O&Z/

nies rec’d
Ligs sie6,7p 3

I A



Bell Atlantic
Ex Parte Presentation

of
Dr. Melvyn Fuss

April 8, 1997

An Input Price Growth Rate Differential Term Should Not Be Included in the Calculation
of X

. The best prediction for the future value of the input price differential is zero.

. Correct statistical analysis of the input price data demonstrates that the shift in the

relationship between the LEC and U.S. input price growth rates observed after
Divestiture was temporary in nature.

. The period 1984-89 was a temporary departure from the long term relationship
between the LEC input price growth and the U.S. economy’s input price growth ;
and this long term relationship was resumed in the 1990's.

. The above statements are confirmed by an analysis of the data set supplied recently
by USTA to Dr Anthony Bush, which covers the period 1949-1995 and contains
the updated simplified Christensen data. The analysis is presented in the enclosed
tables. The average annual input price growth rate differential (LEC-U.S.) was:

1949-95 (excluding 1984-89) +0.4 %
1990-95 +0.6 %
1984-89 4.1%

. The enclosed tables demonstrate that the criticisms of AT&T and Ad Hoc

regarding the statistical procedures I employed are without merit with respect to
the 1949-95 data set.



Total Factor Productivity Growth Should Be Calculated on a Total Company Basis

’ There is no economically valid method for measuring interstate-only TFP, since

significant amounts of inputs are used jointly with intrastate services to create joint
and common costs.

. It is impossible to write down a formula to calculate interstate TFP.

. Joint and common costs cannot be allocated to separate services in an
economically meaningful manner.

. AT&T’s assumption that inputs used by all services grow at the same rate is a
particularly simplistic form of fully distributed cost allocation. It has not been
justified in AT&T’s various submissions, either analytically or empirically.
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AT&T’s Last Round of Criticisms of My Methodology Are Without Merit
(Ex Parte filed in CC Docket 94-1, June 28, 1997)

Input Price Differential

Norsworthy continues to be wrong regarding his use of cointegration testing.
His reference (Hamilton (1994)) contradicts his methodology and confirms mine
(evidence in the form of copies of the relevant pages are attached). All of
Hamilton’s tests are tests of the null hypothesis that variables are not
cointegrated. The Engle-Granger test statistic cannot test the reverse
hypothesis. Norsworthy’s interpretation of the word “Usually” in the TSP User’s
Guide is nonsensical, as the enclosed page from the Guide makes clear.

The Engle-Granger test statistic cannot be used to test whether the residuals
from a regression are non-stationary when one of the potentially cointegrated
variables is stationary. This is clear from the references supplied by
Norsworthy and myself.

I have always addressed all available evidence, contrary to Norsworthy’s

complaint. I continue to do so by presenting test results for the newly available
1949-95 data set.

In the 1949-95 data set , the U.S. input price series is taken from a common
source (the Bureau of Labor Statistics). There is no need to consider adding
dummy variables reflecting the time periods corresponding to each of the
separate sources since there are no separate sources. The test results using this
updated data set confirm my previous results.

Structural breaks in the data are not sources of unit roots, as claimed by
Norsworthy. His reference (Enders(1995)) states the finding, commonly noted
in the cointegration literature, that in the presence of structural breaks in the
data unit root tests are biased toward a finding of unit roots when they are not
present (see enclosed page from Enders).

The point made by Norsworthy in the section “Economics and the Input Price
Differential” regarding different input cost shares, to the extent it has
relevance, is equally applicable for all time periods. Yet the different cost shares
did not lead to an average input price differential over the 1949-95 (excluding
1984-89) and 1990-95 periods. Norsworthy needs to explain why this
"economic” effect is quantitatively important for only a short period of time
(1984-89) and not for the other time periods.
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The mixup over the bond yield data series used by Bush and Uretsky (BU) was
communicated to AT&T before the Norsworthy- Berndt (NB) Reply statement
was filed. Christensen used the Moody public utility bond yield data in the
Feb. ex parte, not the corporate yield series used by BU.



Interstate Only TFP

Norsworthy admits that the NB algebraic equation for interstate "TFP”" was
incorrect (he says it needs adjustment). The equation in his Supplemental
Statement adds no light on the argument, since it depends on the unsustainable
assumption that input growth rates are equal for all outputs.

Contrary to Norsworthy's assertion, Christensen includes the inputs and outputs
from all non-regulated services which use inputs jointly with the regulated
services.

Norsworthy claims I should offer an alternative method of calculating interstate
access only TFP growth. But how can I, since I argue that it does not exist
conceptually.

Norsworthy's claim that a LEC’s choice of a high X factor demonstrates high
interstate TFP growth is not correct logically. When the accounting rate of
return starting point is in excess of the sharing rate of return and the selection is
only for a limited period, it can be in a LEC’s interest to choose a high X
factor even when it expects to have a lower productivity growth rate.

On p. 15 of his Supplemental Statement Norsworthy repeats Nadiri's mixup of
levels and rates of growth. The discussion of variable cost elasticities is not
relevant since variable costs do not include capital switching costs. In any case,
cost elasticities refer to the effects of output changes on total company cost, not
service-specific cost.

The discussion of the Bernstein paper on p.16 ignores my criticism of that
paper. My criticism demonstrates that the results are meaningless because of
the specification error in the model (as explained in my earlier ex parte).

Local verus global cost separability: My comments regarding cost
complementarities in my previous ex parte are applicable to both the global and
local forms. Only the illustrative example used the global form of cost
complementarity for simplicity. Since it is the prevailing opinion (including
that of Norsworthy - see first paragraph on page 12 of his Supplemental
Statement) that telecommunications costs are not separable, it is Norsworthy
who should provide empirical evidence that separability (whether global or local
over all relevant output combinations) is a reasonable working hypothesis. I
know of no such empirical evidence.



Guide To Enclosed Tables

The enclosed tables are based on the underlying LEC input [price] inflation data for the
period 1949-95 submitted by USTA, Letter to Dr. Anthony Bush, March 24, 1997.

Tables 1-3 are new tables.

Tables A2(revised), A4(revised), A6(revised), D1(revised) and D2(revised) are revised
tables from my previous Declarations. The revisions utilize the 1949-95 data*.

Tables A2, A4 and A6 appeared in my initial Declaration (December 15, 1995)

Tables D1 and D2 appeared in my third Declaration (May 31, 1996)

* The U.S. input price growth rate for 1995 is not yet available. The enclosed results use
the 1989-94 average (3.2%) as an estimate of the 1995 data point.



LEC-U.S. I Price Diff ial
Time Period Annual % Change in | Annual % Change in LEC-U.S. Input
LEC Input Prices U.S. Input Prices Price Differential
1949-95 4.5 4.7 -0.2
(t=0.4)
1949-95 52 4.8 +0.4
(excluding 1984-89) (t=0.7)
1990-95 3.7 3.1 +0.6
(t=1.1)
1984-89 -0.2 3.9 4.1
(t=4.1)




Variable Symmetric P-Value Dickey- Fuller P-Value

NMann Tagt Tagt Ctatigtis
ivivali 1L WOot

1 WOoL vLlalioLliv
Statistic*

% Change in -2.48 0.31 -2.25 0.46
LEC Input
Prices (CPT)

% Change in -2.22 0.49 -0.99 0.95
U.S. Input

Prices (CPE)

LEC-U.S. Input -3.30%:* 0.028 -3, 19%*:* 0.085
Price

Differential
(CPDIFF =
CPT-CPE)

Moody’s -1.77 0.79 -1.37 0.87
Corporate Aaa

Bond Yield
MOODY)

Divestiture -1.78 0.78 -1.78 0.71
Dummy
(DIVEST)

D90 -2.05 0.62 -1.64 0.78

* Preferred to the Dickey-Fuller test because it is a more powerful test (see the TSP 4.3 User’s
Guide, page 94.)

** Unit root rejected at 5% significance level
*** Unit root rejected at 10% significance level



Table 3
T f Coi .

|| Equation

Engle-Granger Test Statistic

P-Value

Permanent Change
Hypothesis (%change in
LEC Input Prices as

denendent variahle)

WV wane il VRLAGVIV

-3.01

0.59

Temporary Change
J Hypothesis (%change in
LEC Input Prices as
dependent variable)

-3.33

0.42

Permanent Change
Hypothesis (LEC-U.S. Input
Price Differential as
dependent variable)

not applicable since unit root
test on dependent variable
rejected

not applicable since unit root
test on dependent variable
rejected

Temporary Change
Hypothesis (LEC-U.S. Input
Price Differential as
dependent variable)

not applicable since unit root
test on dependent variable
rejected

not applicable since unit root
test on dependent variable
rejected




Data to 1995
T DX | ChristensenData | Christensen Data |
Equation (4) Equation (5)
D85 3.552 3.579
D86 3.460 3.518
D87 3.446 3.528
D88 3.428 3.533
D89 3.181 3.351
D90 2.888 3.151
D91 2.933 3.214
D92 2.995 3.318
D93 3.115 3.413
D9%4 3.211 3.477
D95 3.190 3.474

* Failed cointegration test and hence may be a spurious regression.



Table A.4 (Revised)

Testing the Two Competine Hypotheses Using the J T

Data to 1995
Data Set and Hypothesis t - Statistic for o Critical 5% P-Value
Equation Nos. Value of t
Christensen H1 versus HC 3.46 1.96 .0005
Eqs 2)&4) *
H2 versus HC 1.81 1.96 .0700
Christensen H1 versus HC 3.05 1.96 .0023
Eqgs (3)&(5)
H2 versus HC 0.42 1.96 .6750

* Failed cointegration test and hence may be a spurious regression.



i X
Data to 1995
T — — e —
Data Set and Hypothesis Standard Critical 5% P-Value
Equation Nos. Normal (N) Value of N
Statistic for o
Christensen H1 is correct -6.91 -1.96 .0000
Egs (2)&(4) *
H2 is correct -2.35 -1.96 .0189
Christensen H1 is correct -6.45 -1.96 .0000
Egs (3)&(5)
H2 is correct -0.43 -1.96 .6652

" Failed cointegration test and hence may be a spurious regression.




Time Series Analysis
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and W(r) denotes n-dimensional standard Brownian motion while the integral sign
indicates integration over r from 0 to 1. Similarly,

h,
_
s
YRS xre > | (18.2.43)
r=1 h3
h,

where h, ~ N(0. o;V). The variables h, and h, are also Gaussian. though h; is
non-Gaussian. If we define w to be the vector of coefficients on lagged Ay.

w = (g;l' gill’ st g;.n—l),u

then the preceding results imply that

Tl:".'(d’T - w)
.o T(arr - of) | ¢ [V“hx]
Y_ b._< —_ B!ﬁ) = . N " — _ . 18249
r(b TP — o) Q™'n [ ]

7 (Fir — v)

where q = (h,, hi, h;)" and Q is the [(n + 1) X (n + 1)] lower right block of the
matrix in [18.2.46]. Thus. as usual, the coefficients on u,_, in [18.2.43] are asymp-
totically Gaussian:

V(@7 ~ @)= N0, a;VY),

These coefficients are, of course, numerically identical to the coefficients on Ay, _,
in [18.2.38]. Any F tests involving just these coefficients are also identical for the
two parameterizations. Hence, an F test about {;, &, . . . . {,~, in [18.2.38] has
the usual limiting x* distribution. This is the same asymptotic distribution as if
[18.2.38] were estimated with p = I, imposed; that is, it is the same asymptotic
distribution whether the regression is estimated in levels or in differences.

Since p% and %, converge at a faster rate than &, the asymptotic distribution
of a linear combination of &, pF, and ¥ that puts nonzero weight on wr has the
same asymptotic distribution as a linear combination that uses the true values for
p and v. This means, for example, that the original coefficients ®, of the VAR
estimated in levels as in [18.2.1] are all individually Gaussian and can be interpreted
using the usual ¢ tests. A Wald test of the null hypothesis of p, = 1 lag against the
alternative of p > p, lags again has the usual y? distribution. However, Granger-
causality tests typically have nonstandard distributions.

18.3. Spurious Regressions

Consider a regression of the form

Ye = x B+ u,

for which elements of y, and x, might be nonstationary. If there does not exist some
population value for B for which the residual u, = y, — x,B is 1(0). then OLS is
quite likely to produce spurious results. This phenomenon was first discovered in
Monte Carlo experimentation by Granger and Newbold (1974) and later explained
theoretically by Phillips (1986).

A general statement of the spurious regression problem can be made as

follows. Let y, be an (n x 1) vector of {(1) variables. Define g = (n — 1), and

18.3. Spurious Regressions 557
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This chapter discusses a particular class of vector unit root processes known as
cointegrated processes. Such specifications were implicit in the “error-correction”
models advocated by Davidson, Hendry, Srba, and Yeo (1978). However, a formal
development of the key concepts did not come until the work of Granger (1983)
and Engle and Granger (1987).

Section 19.1 introduces the concept of cointegration and develops several
alternative representations of a cointegrated system. Section 19.2 discusses tests of
whether a vector process is cointegrated. These tests are summarized in Table 19.1.
Single-equation methods for estimating a cointegrating vector and testing a hy-
pothesis about its value are presented in Section 19.3. Full-information maximum
likelihood estimation is discussed in Chapter 20.

19.1. Introduction

Description of Cointegration

An (n x 1) vector time series y, is said to be cointegrated i@of the series
taken individually 1s I(1), that is, nonstationary with a unit root, while some linear
combination of the series a'y, is stationary, or /(0), for some nonzero (n X 1)

vector a. A simple example of a comntegrated vector process is the following bi-
variate system:

Yie = VY + Uy, [1911]
Yoo = Yau-y t Uy, [19.1.2]

with u,, and u,, uncorrelated white noise processes. The univariate representation
for y,, is a random walk,

Ayy = uy, [19.1.3]

while differencing [19.1.1] results in
Ay, = YAy, + Auy, = yup + g — Uy,_;. [19.1.4]
Recall from Section 4.7 that the right side of [19.1.4] has an MA(1) representation:
Ay, = v, + Ov,_,. [19.1.5]

where v, is a white noise process and § # —1 as long as y # 0 and E(u3)
> 0. Thus, both y,, and y,, are I(1) processes, though the linear combination

571
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FIGURE 19.2 One hundred times the log of the price level in the United States
(p,), the dollar-lira exchange rate (s,), and the price level in Italy (p7), monthly,
1973-89. Key: ———=p,; —=—5,; pi-

exchange rate (s,), where s, is in terms of the number of U.S. dollars needed to
purchase an Italian lira. Natural logs of the raw data were taken and multiplied
by 100, and the initial value for 1973:1 was then subtracted, as in

p. = 100-[log(P,) — log(Pier.1))-

The purpose of subtracting the constant 10g(Pig73,,) from each observation is to
normalize each series to be zero for 1973:1 so that the graph is easier to read.
Multiplying the log by 100 means that p, is approximately the percentage difference
between P, and its starting value P,g3.,;. The graph shows that Italy experienced
about twice the average inflation rate of the United States over this period and
that the lira dropped in value relative to the dollar (that is, s, fell) by roughly this
same proportion.
Figure 19.3 plots the real exchange rate,

Z:EPr"SI_Pr-

It appears that the trends are eliminated by this transformation, though deviations
of the real exchange rate from its historical mean can persist for several years.
To test for cointegration, we first verify that p,, p*, and s are each individually
1(1). Certainly, we anticipate the average inflation rate to be positive (E(Ap,) >
). so that the natural null hypothesis is that p, is a unit root process with positive
drift, while the alternative is that p, is stationary around a deterministic time trend.
With monthly data it is a good idea to include at least twelve lags in the regression.
Thus, the following model was estimated by OLS for the U.S. data for r = 1974:2

19.2. Testing the Null Hypothesis of No Cointegration 583
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FIGURE 19.3 The real dollar-lira exchange rate, monthly, 1973-89.

through 1989:10 (standard errors in parentheses):
p.=0554p,_; — 0.06 Ap,_, + 0.07 Ap,_; + 0.06 Ap,_,
(0.08) (0.09) (0.08) (0.08)

- 0.08 Ap,_s - 0.05 AP:-—6 + 0.17 Ap,_7 - 0.07 Ap,_s
(0.08) (0.07) (0.07) (0.07

[19.2.1]
+ 0.24 Apl—Q - 0-11 Ap,_lo + 0.12 Apt—ll + 0.05 Ap,_lz

(0.07) (0.07) (0.07) (0.07)
+ 0.14 + 0.99400 p,_, + 0.0029 ¢.

(0.09) (0.00307) (0.0018)

The ¢ statistic for testing the null hypothesis that p (the coefficient on p,_,) is unity
is

t = (0.99400 — 1.0)/(0.00307) = —1.95.

Comparing this with the 5% crtical value from the case 4 section of Table B.6 for
a sample of size T = 189, we see that —1.95 > —3.44. Thus, the null hypothesis
of a unit root is accepted. The F test of the joint null hypothesis that p = 1 and
8 = 0 (for p the coefficient on p,_, and & the coefficient on the time trend) is 2.41.
Comparing this with the critical value of 6.40 from the case 4 section of Table B.7,
the null hypothesis is again accepted, further confirming the impression that U.S.
prices follow a unit root process with drift.

If p,in [19.2.1] is replaced by p;', the augmented Dickey-Fuller ¢ and F tests
are calculated to be —0.13 and 4.25, respectively, so that the null hypothesis that
the Italian price level follows an I(1) process is again accepted. When p, in [19.2.1]
is replaced by s,, the ¢ and F tests are —1.58 and 1.49, so that the exchange rate
likewise admits an ARIMA(12, 1, 0) representation. Thus, each of the three series

1 o B i M 5 A TN L ol . 1 i bl TR

individually could reasonably be described as a unit root process with drift.

584 Chapter 19 | Cointegration




Proposition 19.1: (Gra

nsider an (n X 1) vector
y, where Ay, satisfies [1v.1.29} for €, white noise with positive definite variance-
covariance matrix and {s- W }7_, absolutely summable. Suppose that there are exactly
h cointegrating relations among the elements of y,. Then there exists an (h X n)

matrix A’ whose rows are linearly independent such that the (h X 1) vector z, defined
by

z, = A'y,
is stationary. The matrix A' has the property that
A'¥(1) = 0.

If, moreover, the process can be represented as the pth-order VAR in levels as in
equation [19.1.26), then there exists an (n X h) matrix B such that

®(1) = BA',
and there further exist (n X n) matrices {;, &, . . ., {,, such that

Ay, = LAY, + LAY, 2+ - - + LAY per + @ — Bz + &,

19.2. Testing the Null Hypothesis
of No Cointegration

This section discusses tests for cointegration. The approach will be to test the null
hypothesis that there is no cointegration among the elements of an (n x 1)
vector y,; rejection of the null is then taken as evidence of cointegration.

Testing for Cointegration When
the Cointegrating Vector Is Known

Often when theoretical considerations suggest that certain variables will be
cointegrated, or that a'y, is stationary for some (n x 1) cointegrating vector a, the
theory is based on a particular known value for a. In the purchasing power parity
example [19.1.6], a = (1, —1, —1)'. The Davidson, Hendry, Srba, and Yeo
hypothesis (1978) that consumption is a stable fraction of income implies a co-
integrating vector of a = (1, —1)’, as did Kremers's assertion (1989) that govern-
ment debt is a stable multiple of GNP.

If the interest in cointegration is motivated by the possibility of a particular
known cointegrating vector a, then by far the best method is to use this value
directly to construct a test for cointegration. To implement this approach, we first
test whether each of the elements of y, is individually J(1). This can be done using
any of the tests discussed in Chapter 17. Assuming that the nul] hypothesis of a
unit root in each series individually is accepted, we next construct the scalar z, =
a'y,. Notice that if a is truly a cointegrating vector, then a'y, will be I(0). If a is
not a cointegrating vector, then a'y, will be I(1). Thus, a test of the null hypothesis
that z, is I(1) is equivalent to a test of the null hypothesis that y, is not cointegrated.
If the null hypothesis that z, is I(1) is rejected, we would conclude that z, = a'y,
is stationary, or that y, is cointegrated with cointegrating vector a. The null hy-
pothesis that z, is J(1) can also be tested using any of the approaches in Chap-
ter 17.

For example, Figure 19.2 plots monthly data from 1973:1 to 1989:10 for the
consumer price indexes for the United States (p,) and Italy (p;), along with the
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Of course, we could instead imagine including a time trend directly in the
regression, as in

Y= @+ Yoyt ya¥a + 0 Ya¥a + 8+ oy, [19248}

Since [19.2.48] is in the same form as the regression of [19.2.47], critical values for
such a regression could be found by treating this as if it were a regression involving
(n + 1) variables and looking in the case 3 section of Table B.8 or B.9 for the
critical values that would be appropriate if we actually had (n + 1) rather than n
total variables. Clearly, the specification in {19.2.42] has more power to reject a
false null hypothesis than [19.2.48], since we would use the same table of critical
values for [19.2.42] or [19.2.48] with one more degree of freedom used up by
[19.2.48]. Conceivably, we might still want to estimate the regression in the form
of [19.2.48] to cover the case when we are not sure whether any of the elements
of y, have a nonzero trend or not.

Summary of Residual-Based Tests for Cointegration

The Phillips-Ouliaris-Hansen procedure for testing for cointegration is sum-
marized in Table 19.1.

To illustrate this approach, consider again the purchasing power parity ex-
ample where p, is the log of the U.S. price level, s, is the log of the dollar-lira
exchange rate, and p,” 1s the log of the Italian price level. We have already seen
that the vectora = (1, —1, =1)" does not appear to be a cointegrating vector for
Y. = (P 5., p!)’- Let us now ask whether there is any cointegrating relation among
these variables.

The following regression was estimated by OLS for r = 1973:1 to 1989:10
(standard errors in parentheses):

p. =271 + 0.051 5, + 0.5300 p* + 4, [19.2.49)

0.37) 0.012) (0.0067)

The number of observations used to estimate [19.2.49] is T = 202. When the
sample residuals 4, are regressed on their own lagged values, the result is

f, = 0.98331 4, , + ¢,

(0.01172)
T

s2 = (T = 2)"' D> & = (0.40374)?
=2

é = 0.1622

T
= (T =17 D ée;

tmj+2

2}
it

>
[ 8]
i

12

& + 2- 2 [1 = (j13)}é; = 0.4082.
j=1

The Phillips-Ouliaris Z,, test is

Z,=(T- 1) -1 - W2T - 1):6, + sP(A2 = &)
(201)(0.98331 — 1)

— ${(201)(0.01172) + (0.40374)}3(0.4082 ~ 0.1622)
-7.54.

f

"

Given the evidence of nonzero drift in the explanatory variables, this is to be
compared with the case 3 section of Table B.8. For (n — 1) = 2, the 5% critical
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TABLE 19.1
Summary of Phillips-Ouliaris-Hansen Tests for Cointegration
Case 1:
Estimated cointegrating regression
i = Y2z + Y3V + + YnYn + Y,
True process fory, = (¥, ¥ s V)

Case 2:
Estimated cointegrating regression:

yll =a + 72y2r + 73)’34 + -+ 7nynt + u,
True process fory, = (Vi Yo+ - - » Yo
- 2 \I’ser—s
s=0

the same asymptotic distribution as the variable described under Case

@»=r

and the augmented Dickey-Fuller 7 test have the same asymptotic distri-
bution as the variable described under Case 2 in Table B.9.

V. = g + %y B Y T e S i " ” + u

J1t ! 272t ! I3>y3 ' n)nt “wr
True process for y, = (¥y Yo -« - » Y
=5+ D We,_,
s=0
with at least one e!ement of &, & 8, nonzero.

1 : al 20z, O3, - . ., O, 1L

Z, has the same asymptotic distribution as the variable described under Case

Z, and the augmented Dickey-Fuller ¢ test have the same asymptotic distri-
n as th 1 n Table B.9.

Notes to Table 19.1

Estimated cointegrating regression indicates the form in which the regression that couid describe
the cointegrating relation is estimated, using observations ¢ = 1,2,. ..,

True process describes the null hypothesis under which the distribution is calculated. In each
case, €, is assumed to be i.i.d. with mean zero, positive definite variance-covariance matrix, and finite
fourth moments, and the sequence {s-W } ., is absolutely summable. The matrix W(1) is assumed to

ha i sl 3 that 1 3 i
be nonsingular, meaning that the vector ¥, is not cointegrated under the null hypothesis. If the test

statistic is below the indicated critical value (that is, if Z,, Z,, or ¢ is negative and sufficiently large in
absolute value), then the null hypothesis of no cointegration is rejected.
Z, is the following statistic,

Z,=(T - Dpr ~ 1) = GDUT = D8}, = s} - un).

where pris the estimate of p based on OLS estimation of 2, = pi2,_, + e, for, the OLS sample residual

19.2. Testing the Null Hypothesis of No Cointegration 599
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value for Z,is —27.1. Since —7.54 > —27.1, the null hypothesis of no cointegration
is accepted. Similarly, the Phillips-Ouliaris Z, statistic is

= (&R (p — 1)/6, — (VT = 1)-6, + sHA2 = &)/A
{(0.1622)/(0.4082)}2(0.98331 — 1)/(0.01172)

~ }(201)(0.01172) + (0.40374)}(0.4082 — 0.1622)/(0.4082)"2
~ 2.02.

Comparing this with the case 3 section of Table B.9, we see that ~ 2.02 > ~3.80,
so that the null hypothesis of no cointegration is also accepted by this test. An
OLS regression of i, on ii,_, and twelve lags of Ad,_; produces an OLS 1 test of

= 1 of —2.73, which is again above —~3.80. We thus find little evidence that p,,
5,, and p* are cointegrated. Indeed, the regression [19.2.49] displays the classic
symptoms of a spurious regression—the estimated standard errors are small relative
to the coefficient estimates, and the estimated first-order autocorrelation of the
residuals is near unity.

As a second example, Figure 19.5 plots 100 times the logs of real quarterly
aggregate personal disposable income (y,) and personal consumption expenditures
(c,) for the United States over 1947:1 to 1989:III. In a regression of y, on a constant,
atime trend, y,_,, and Ay,_;forj = 1,2,. . . , 6, the OLS r test that the coefficient
on y,_, is unity is —1.28. Similarly, in a regressxon of ¢, on a constant, a time
trend, ¢,_;, and Ac,_;forj = 1,2,...,6, the OLS ¢ test that the coefficient on
¢, is unity is —1.88. Thus, both processes might well be described as (1) with

ositive drift.
The OLS estimate of the cointegrating relation is

= 0.67 + 0.9865 y, + . [19.2.50]

(2.35) (0.0032)

A first-order autoregression fitted to the residuals produces

G, = 0.782 4,_, + &,
(0.048)

Notes to Table 19.1 (continued).

from the estimated regression. Here,

-r-2 e

r=2

where &, = i, — prll,_, is the sample residual from the autoregression dcscnbmg 4, and G5,y is the
standard error for 3, as calculated by the usual OLS formula:

2“1!

t=2

Also,

Gr=(T-1D" 2 82,

w2

AL =g, + 2'2‘ 1 - jig + D}é.r.
by
Z, is the following statistic:
Z, m (& A (br ~ 1)IG,, - (12)YA3% ~ & DWAIUT - 1), + s

Augmented Dickey-Fuller ¢ statistic is the OLS ¢ test of the null hypothesis that p = 1 in the
regression

4. = M4, + AR, + o+ ;p~1Aal-p~1 + pl,_,+ e,
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FIGURE 19.5 One hundred times the log of personal consumption expenditures

(c)) and personal disposable income (y,) for the United States in billions of 1982
dollars, quarterly, 1947-89. Key: Ciy ———=¥:.

for which the corresponding Z, and Z, statistics for ¢ = 6 are —32.0 and —4.28.
Since there is again ample evidence that y, has positive drift, these are to be
compared with the case 3 sections of Tables B.8 and B.9, respectively. Since
—32.0 < -21.5 and —4.28 < —3.42, in each case the null hypothesis of no

cointegration is rejected at the 5% level. Thus consumption and income appear to
be cointegrated.

Other Tests for Cointegration

The tests that have been discussed in this section are based on the residuals
from an OLS regression of y,, on (ya,, Y3, - - - », Ya)- Since these are not the same
as the residuals from a regression of y,, on (yy,, Y3 - - - » Yu:), the tests can give
different answers depending on which variable is labeled y,. Important tests for
cointegration that are invariant to the ordering of variables are the full-information
maximum likelihood test of Johansen (1988, 1991) and the related tests of Stock
and Watson (1988) and Ahn and Reinsel (1990). These will be discussed in Chapter
20. Other useful tests for cointegration have been proposed by Phillips and Quiiaris
(1990), Park, Ouliaris, and Choi (1988), Stock (1990), and Hansen (1990).

19.3. Testing Hypotheses About the Cointegrating Vector

The previous section described some ways to test whether a vector y, is cointegrated.
It was noted that if y, is cointegrated, then a consistent estimate of the cointegrating
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OLSQ DCONS LCONS(-1) C TIME;
CDF(DICKEYF) @T(1) ;

The resulting statistic for this example was -1.84 with a corresponding asymptotic P-value of .69, so the null of a unit
root is accepted at the .05 level. Note that if we had used the conventional t-table to evaluate this P-value, we might
have rejected this hypothesis. Options for CDF exist which allow you to compute the P-values without assuming the
presence of a trend or constant. See the references and the Reference Manual for further details. Also be aware that
the residuals from the Dickey-Fuller regression should be serially uncorrelated for the test to be valid, although they
do not generally need to be homoskedastic (Phillips 1987). The Weighted Symmetric test is recommended over the
Dickey-Fuller test, because it has (sometimes only slightly) higher power. That is, the WS test is more likely to reject
the unit root (null hypothesis) when it is in fact false. The Phillips-Perron test is a variant of the Dickey-Fuller which

tackles the problem of additional serial correlation in the residuals by using a GMM-type method to compute a residual
variance that is "robust” to autocorrelation.

The cointegration of time series is a methodology for the analysis of time series pioneered by Engle and Granger
(1987). Two or more time series are said to be cointegrated if a linear combination of them is 1(0) (is stationary, or
has all roots outside the unit circle) even though individually they are each I(1). Thus the hypothesis of cointegration
consists of two parts: tests for 1(1) of the individual series and 1(0) of a linear combination. Usually the term
cointegration testing refers only to the second part of the hypothesis; the test is performed condifional on the fact that
each component series is 1(1). Although this hypothesis sounds quite different from the hypothesis of a unit root, the
practice of testing for cointegration is quite similar, and TSP provides the P-values for the Engle-Granger versions
of these tests in the CDF procedure under the DICKEYF option.

As an example, consider testing that real consumption and real GNP from the Illustrative Model are cointegrated.
It is easy to establish that each is I(1) separately (with asymptotic P-values of .69 and .66). The TSP commands to
evaluate the second part of the hypothesis are the following:

SMPL 49 75 ;
COINT(ALLORD) LCONS LGNP; ? this also performs the individual unit root tests at the same time

When LCONS is the dependent variable of the cointegrating regression, COINT chooses 2 augmenting lags, and
obtains a test statistic of -1.65, which has a P-value of .89 . When LGNP is the dependent variable, 10 augmenting
lags are chosen, and the test statistic and P-value are -1.29 and .95 respectively. So the null hypothesis of a unit root
in the cointegrating regression cannot be rejected at the .05 level in either test. We can conclude that the linear
combination of LCONS and LGNP is not I(0), so they are not cointegrated (at this significance level).

If done manually (without augmentation, and only shown for LCONS as the dependent variable):

SMPL 4975 ;

OLSQ LCONS LGNP C TIME ; 7 the cointegrating regression

SMPL 50 75 ;

DRES = @RES-@RES(-1) ;

OLSQ DRES @RES(-1) ;  ? Engle-Granger test (Dickey-Fuller on residuals from cointegrating regression)
CDF(DICKEYF,NVAR=2) @T ;

We regress consumption on a constant, time, and GNP to obtain the cointegrating vector, construct the residuals from
this vector, and then regress the first-differenced residuals on the lagged residual. Under the hypothesis of
stationarity, the coefficient on this variable should be -1; the t-statistic for this hypothesis is the Engle-Granger
statistic. One complication is that the actual value of the Engle-Granger statistic (although not its distribution) will

be affected by the choice of lefi-hand variable in the first regression (consumption or GNP); the COINT(ALLORD)
will try both.

To compute the asymptotic P-value manually for the Engle-Granger statistic, use the DICKEYF option of the CDF
procedure with the NVAR option to specify the number of cointegrating variables used in computing the test statistic.
TSP provides P-values for cointegrating regressions with up to 6 variables, using the response surface estimates given
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