
t.pas

,'!.~ ,OroCJI'l::IT!. :~akes out~out [:-cjm~he HeFt1 _.c :15-e,':.'i _,

~ f r use with ~he PeedOist program.

D2 varlables:
CLU£ile1 CLU£ile2 IN£ile BINFile do batch areaname
,;loseParam
iataline
::1 us terNumber
,:::loseWindow
SetRaster
WeightDensity
GlobalRasterSize
cmdParam
Ii

code

:em obals.pas)
GR
coordinate file
CR

batch£i1e
num SAs
procedure ParseDataline

variables:c vstr code

ClusterNumber
GR. ex1 f ~

GR.ex1[= GR.ex1[1] *O.or)l GR.cy1[~]

GR. cy1 [: j = GR. cy1 [1] *. 1 tor i = 2 t s:}0

GR cy1 [1 :text

GR gTotalLines

GR.cx1fi GR. ex1 [1] GR.cyl11

GR. cx2[1] GR. cx2 [1] * O. 0 1

GR cy2[
GR.cy2" 1] GR.cy2[11·. Cl

GR.ex2[
GR.cx2f2] GR.ex2[2J*IJ.OOl

GR. cy2[2·
GR. cy2[2j

i t 4
GR. ex2[]
GR. cy2[L ~...

,'.1

GR.cy2[2] * .001

GR. cx2 1 J

GR.cy2 "J

for i = 1 to 4
GR.c.x3[i] GR.c.xl[l]
GR.c.x4[i] GR.c.xl[l]
GR. cy3[i] GR. cyl [1]
GR.cy4[i] GR.cyl[l]

nextGR.DepthToBedrock

GR. Hardness
GR. SoilTexture

GR. WaterTb

GR. MinSlope

GR. MaxSlope

end of procedure ParseDataline

procedure rasterize
passed variables:
ClusterNumber

local constants:
big = 1.Oe10

local variables:
x
y
Res Lines
Bus Lines
NumberOfPoints
i
c
code
vstr
xtry
ytry
numtry
m
Lx
lly
urx
ury
data2
indata
j
k
RasterSize
?asterTooLarge

NumberOfPoints = 0

for i = 1 to 8000
x [i]
y [i]
ResLines[i]

zero
zero
zero

BusLines[i]
next

zero

open file CLUfile2 and read header (' X, Y, Cluster ')

o:Jen file infile and move to the 5th line in the file

lJOp until the end of either CLUfile2 or infile is reached

read a line from CLUfile2 into the variable data2
read a line from infile into the variable indata

parse contents of data2 into the following variables (comma separated)
xtry
ytry
numtry

if numtry = ClusterNumber then
NumberOfPoints = NumberOfPoints + 1
x [NumberOfPoints] xtry * 0.001
y[NumberOfPoints] = ytry * 0.001

read the 4th and 5th values in indata into the following variable (comma separated)
ResLines[NumberOfPoints]
BusLines[NumberOfPoints]

end if

'"nd loop

,'" . gHouseholds = a
3R.gBusinessLines = 0
3R.gPrivateLines 0
GR.gs.PecialLines = 0

11x big
lly big
urx -big
ury -big

for i = 1 to NumberOfPoints
if xli] < llx then llx xli]
if y[i] < lly then lly y[i]
if xli] > urx then urx xli]
if y[i] > ury then ury y[i]
GR.gHouseholds = GR.gHouseholds + round(ResLines[i])
GR.gBusinessLines ='GR.gBusinessLines + round(BusLines[i])

next i

11x 11x - 0.5
11y lly - 0.5
urx urx + 0.5
ury ury + 0.5

RasterSize = GlobalRasterSize

{ if raster size is not given externally, or it is too large, calculate it here.

RasterTooLarge false
if (max ((urx - llx), (ury-lly)) I RasterSize > SO) then RasterTooLarge true

.f RasterTooLarge or (SetRaster = false) then
RasterSize = max ((urx - llx), (ury-lly)) I 50

:nd if

:;R.MicroGridNS RasterSize
'iR.MicroGridEW RasterSize
iR.nrow = round(max ((urx-llx), (ury-lly)) I RasterSize)
iR.ncol = GR.~~ow

iR. LowerLe:ftx = llx
liR. LowerLe:ftY = 11 Y
iR.UpperRightX urx
:iR. UpperRightY = ury

in = (GR.cyl[l] - GR.SwitchY) I (GR.cxl[l] - GR.SwitchX)

if (m >= -1) and (m < 1) and (GR.cxl[l] >= GR.SwitchX) then
GR. quadran t = 1

21se if ((m >= 1) or (m < -1)) and (GR.cyl[l] >= GR.SwitchY) then
GR. quadrant = 2

21se if (m >= -1) and (m < 1) and (GR.cxl[l] < GR.SwitchX) then
GR. quadrant 3

else
GR. quadran t 4

e~d if

end
next k

next j
next i

for
for

1 to GR.nrow
j = 1 to GR.ncol
GR.Households[i,j] = 0
GR.BusLines[i,j] = 0
for k = 1 to 1mberOfPoints

if (x[k] >= llx + (j-1) * RasterSize)
and (x[k] < llx + j * RasterSize)
and (y[k] >= lly + (i-1) * RasterSize)
and (y[k] < lly + I * RasterSize) then

GR.Households[i,j] GR.Households[i,j]
GR.BusLines[i,j] = GR.BusLines[i,j] +
if

+ round(ResLines[k])
round(BusLines[k])

(Now calculate density, using area defined by convex hull of populated raster cells.}

GR.density = call dist density
passing variables:
GR

end of procedure rasterize

procedure convert
passed variables:
x10n
y1at

reflon
leflat
'xft
'yft

.. ocal constants:
:arthRadius meters = 6367723
iceetPerMeter = 3.28083989501312

Local variables:
QSCirc
:'WCi:-c

'JSCirc

EWCirc

2 * pi * EarthRadius meters * FeetPerMeter

NSCirc * cos(reflat * pi / 180)

yft NSCirc * (ylat - reflat) / 360

xft EWCirc * (xlon reflon) / 360

end of procedure convert

procedure process
passed variables:
areaname

local variables:
DoneWithClusters
swx
swy
cenx
ceny
swxkf
swykf
c
vstr
code
BAKFile
TctalLines
qt 2.

open file CLUFilel with filename of {areaname}.CLU
open file CLUFile2 with filename of {areaname}.CLU
open file INFile with filename of {areaname} .IN
create file BINfile with filename of {areaname}.BAK
create file coordinate file with filename of (areaname}.COO

read from file CLUfilel until reach the value 'Cluster'

move to the third line of the file Infile

read line from Infile into variable dataline

parse values from dataline into the followinq variables: (comma separated)

skip first value

:3WX

:3WY

~enx

,~eny

,:;R.OriginX = cenx
,:;R.OriginY = ceny
:;R'. Reference la ti tude ceny

Nrite the values in CR to the file coordinate file

call convert
passing:
swx
swy
cenx
ceny
*swxkf
*swykf

swxkf
swykf

swxkf * 0.001
swykf * 0.001

TotalLines = zero

DoneWithClusters false

start loop
read line from file CLUfilel into dataline

if dataline <> " then
create a new GR variable
GR.S"itchX = swxkf
GR.S"itchY = swykf
call ParseDataline

call rasterize
Passing:
ClusterNumber

This tells us which microgrid each customer location belongs in.

write values in the variable GR to the file BINfile

TotalLines = TotalLines + GR.gTotalLines

else DoneWithClusters = true

end loop when DoneWithClusters

dens = call feed density
Passing: ­
areaname
swx
swy
cenx
ceny

true

swxkf
swykf

create file DENfile with filename {areaname}.DEN

write the value in dens to DENfile

if WeightDensity then
{ Now update density calculation for each cluster by entering a weighted average of

the cluster density and the feeder density. This will handle anomalous clusters,
such as a townhouse development in the middle of a farm region by weighting the small
cluster's relatively high density by its population relative to the relatively low
density of the overall region. }

open file BAKfile with filename {areaname}.BAK
create file BINfile with filename {areaname}.BIN

loop until reach the end of file BAKfile
read values from the file BAKfile into the variable GR
gtl = GR.gTotalLines
GR.density = (GR.density * gtl + dens * (TotalLines - gtl)) / TotalLines

write the values from the variable GR to the file BINfile
end loop

else

rename the file {areaname} .BAK to {areaname}.BIN
end if

end of procedure process

BEGIN
(start of main program)

set the following parameters from the command line:
areaname
CloseWindoW"
etRaster

:11obalRasterSize
lieigbtDensity

Lf (areaname='BATCH') or (areaname='batch') then
do batcb = true
open file batcbfile with filename 'batch. 1st'

;od if

_f not do batcb then
call process (areaname)

,~lse

for each line in batcbfile
read line into areaname
call process (areaname)

next
f'nd if

density.pas

(This unit contains routines used to calculate density for distribution
areas and feeder routes.)

function PolygonArea
passed variables:
x
y
N

local variables:
i
j
area

{This Pascal function returns the area of a polygon. It has been
translated from a C routine provided by Paul Bourke on his web site,

http://www.mhri.edu.au/-pdb/geometry/polyarea/.

The units initially are the square of the ones used for the vertices of the
polygon
that is, kf-squared. We translate that into mi-squared.

Note that the vertices passed to this routine must be unique i.e., the
routine will close the polygon itself. }

area = zero
for i = 0 to N-1

j = (i + 1) mod N
area area + x[i+1] * y[j+1]
area area - y[i+1] * x[j+1]

next

area
area

area

area * half
abs(area)

area / (5.28 * 5.28) { convert from square kilofeet to square miles.

PolygonArea area

end function PolygonArea

procedure AreaHull
passed variables:
x
y
*Hulllnd
NoPts
*HullCnt
*area
*HullCalc

local constants:
tol = 1.0e-16

local variables:
dist
1:

angle
d2mn
d2im
l

j
m
n
Anglelnd
hullx
hully

{This procedure is taken from code published on the internet by the MapTools
Company.
It is an implementation of Graham's Algorithm for finding the convex hull of

a set of
points.

The variable HullCalc returns FALSE if NoPts < 3 or if any points are
dupl ica te or if
all points are on a line. Note that calls to this procedure must first check

to see
if there are any duplicate points the routine does not return useful data if
duplicates exist.}

HullCalc
HullCnt

true
o

if NoPts < 3 then
HullCalc = false

else
(Find the pair m,n with the greatest separation }

dist = zero
for i = 1 to NoPts

for j = i + 1 to NoPts
t = sqr(x[j] - xli]) + sqr(y[j] - y[i})
if t > dist then

m = i
n = j
dist t

end if
next j

next i

if abs(dist) < tol then
HullCalc false

else
{ Find the rightmost point from the line m to n }

angle = -1
Anglelnd = m

for j = 1 to 2
d2mn = sqr(x[n] - x[mJ) + sqr(y[n] - y[m])

if abs(d2mn) < tal then
HullCalc false

else
for i = 1 to NoPts

if (i<>m) and (i<>n) then

d2im = sqr(x[i] - x[m]) + sqr(y[i] - y[m])

if abs(d2im) < tal then
HullCalc false

d2mn)

else
t ((x[i]-x[m]) * (y[n]-y[m))

-(x[n] - x[m]) * (y[i]-y[m])) I sqrt(d2im *

if (t > angle) then
angle = t
Anglelnd = i

end if

if (t = angle)
and (sqr(x[i] - x[m]) + sqr(y(i] - y(m])

< sqr(x(Anglelnd] - x[m])
+ sqr(y[Anglelnd] - y[m])) then

Anglelnd = l

end if

end if
end if

next i

Test to make sure that some point is to the right ow,
exchange m and n and do again }

if angle <= zero then
if j = 2 then

HullCalc = false

else
Anglelnd = n
n = m
m = Anglelnd

end if
end if

end if
next j

Hulllnd [1]
Hulllnd[2]
HullCnt = 2
n m
m = Anglelnd

m
Anglelnd

(Find the point at the greatest clockwise angle from current hull edge

repeat
angle "" 1
Anglelnd "" m
d2mn"" sqr(x[n] - x[m]) + sqr(y[n] - y[m))

for i "" 1 to NoPts
if (i <> m) and (i <> n) then

d2im = sqr(x[i] - x[m]) + sqr(y[i] - y[m])
if abs(d2im) < tol then

HullCalc = false

else
t = ((x[i] - x[m]) * (x[n] - x[m])

+ (y[i] - y[m]) * (y[n] - y[m]))
/ sqrt(d2im * d2mn)

if (t < angle) then
angle = t
Anglelnd i

end if

if (t = angle)
and (sqr(x[i] - x[m]) + sqr(y[i] - y[m])

< sqr(x[Anglelnd] - x[m]) + sqr(y[Anglelnd] -
y[m])) then

Anglelnd = i
end if

end if
end if

next i

HullCnt = HullCnt + 1
Hul1Ind[HullCnt) = Ang1elnd
n "" m
m = Anglelnd

until Hulllnd[HullCnt] Hulllnd[l]
end if

end if

x[Hulllnd[i]]
y[Hullind[i]]

for i "" 1 to HullCnt-l
{ Note that the last

area calc }
HullX[i]
HullY[i]

next

vertex is the same as the first, so we discard it for

area call PolygonArea
Passing:
HullX
HullY
HullCnt -1

end of procedure AreaHull

function MIN

passed variables:
x
y

if (x <= y) then
min x

else
min y

end if

function MAX
passed variables:
x
y

if (x >= y) then
max x

else
max y

end if

function InsidePolyqon
passed variables:
x
y
N
px
py

{This function returns INSIDE (true) or OUTSIDE (false) indicating the
status of a point P with respect to a polygon with N points.

The code was translated from a C routine written by Paul Bourke, posted
on his website athttp://www.mhri.edu.au/-pdb/geometry / }

local variables:
counter
i
xinters
plx
ply
p2x
p2y

counter = 0
plx x[l]
ply yell

for i = 0 to N-l
p2x = x[(i mod N) + 1]
p2y = y[(i mod N) + 1]
if (py > MIN (ply , p2y)) then

if (py <= MAX(ply,p2y)) then
if (px <= MAX(plx,p2x)) then

if (ply <> p2y) then
xinters = (py_ply)*(p2x-plx)!(p2y-ply)+plx

next

end
pix
ply ==

if (pix == p2x) or (px <== xinters) then
counter counter+l

end if
end if

end if
if
p2x
p2y

if (counter mod 2) == 0 then
InsidePolygon false

else
InsidePolygon true

end if

end function InsidePolygon

function dist density
passed variables:
GR

local constant tiny

local variables:
i
j
k
x
y
Hulllnd
HullCnt
area
HullCalc
lines
test

1.Oe-6

{This function calculates the density for a distribution area by counting the
number of
lines and dividing by the area of the convex hull of the populated region in

the
distribution area.

lines
k == 1
for i

for

zero

1 to GR.ncol
j == 1 to GR.nrow
if (GR.Households[i,j] + GR.BusLines[i,j]) > 0 then

lines == lines + GR.Households[i,j) * TakeRate
*lines_per_house + GR.BusLines(i,j]

{We include all four corners of each microgrid in order to
guarantee that

all relevant area is included. We draw in the borders of each

microgrid a

the

"tiny" amount so that all points are unique, which is required by

convex hull calculation.}

GR.LowerLeftX + (j -1) * GR.MicrogridEW + tiny
GR.LowerLeftY + (i-1) * GR.MicrogridNS + tiny

GR.LowerLeftX + (j -1) * GR.MicrogridEW + tiny
GR.LowerLeftY + i * GR.MicrogridNS tiny

GR. LowerLeftX + j * GR.MicrogridEW - tiny
GR.LowerLeftY + (i-l) * GR.MicrogridNS + tiny

GR.LowerLeftX + j * GR.MicrogridEW - tiny
GR.LowerLeftY + i * GR.MicrogridNS tiny

x[k+2]
y[k+2]

x[k+1]
Y[k+1]

x [k]
y[k]

x[k+3]
y[k+3]
k = k+4

end if
next j

next i

k = k-1

call AreaHull
passing:
x
y
*Hulllnd
k
*HullCnt
*area
*HullCalc

if HullCalc then
dist density

else
dist density

end if

lines/area

zero

end function dist_density

procedure reverse convert
passed variables:-
xkf
ykf
reflon
reflat
*xlon
*ylat

local constants:
EarthRadius meters 6367723.0

KFPerMeter = 0.00328083989501312

local variables:
NSCirc
E:WCirc

NSCirc

EWCirc

2 * pi * EarthRadius_meters * KFPerMeter

NSCirc*cos(reflat*pi/180.0)

ylat
xl on

ykf * 360 / NSCirc
xkf * 360 / EWCirc

reflat
reflon

end procedure reverse convert

function feed density
passed variables:
areaname
swx
swy
cenx
ceny
swxkf
swykf

local variables:
BIN file
x
y
HullX
Hull Y
HullInd
i
j
HullCnt
area
HullCalc
lines
px
py
test
xlon
ylat

! This function calculates the line density of the convex hull of the SAl
loea tions. }

open the file BINfile with filename {areanamel.BAK

i = 0

loop until reach the end of file BINfile

read values from BINfile into variable GR
i = i+l
xli] = GR.cxlllJ

y(i] GR.cyl(l]

end loop

nwn SAs = i

x [nwn_SAS+l]
y [nwn_SAs+l]

swxkf
swykf

if nwn SAs > 2 then

call AreaHull
Passing:
x
y
*Hulllnd
nwn Sas + 1
*HullCnt
*area
*HullCalc

for i = 1 to
HullX [iJ
Hull Y [iJ

next i

lines = zero

HullCnt
x(Hulllnd[i]]

= y[Hullind[i]]

loop until reach the end of file BINfile

read values from BINfile into variable GR

for i = 1 to GR.nrow do
for j = 1 to GR.ncol do

if GR.Households[i,j] + GR.BusLines[i,j] > 0 then
{ midpoint of microgrid
px = GR.LowerLeftX + .5 * (j - 1 + j) * GR.MicroGridEW

{ midpoint of microgrid
py = GR. LowerLeftY + .5 * (i - 1 + i) * GR.MicroGridNS

call reverse convert
Passing:
px
py
cenx
ceny
*xlon
*ylat

if call InsidePolygon
Passing:
HullX
HullY
HullCnt
px
py

true then

lines = lines + GR.Households[i,j] * takerate
* Lines Per House + GR.BusLines[i,j]

end if
end if

next j
next i

end loop

if HullCalc then
feed_density lines/area

else
feed_density zero
Display error message: "Feeder density calculation failed"

end if

else {We have to calculate density by looking at individual grid density}

lines = zero
area = zero

for i = 1 to num BAs do
read values from file BINfile into GR
area = area + GR.density * GR.gTotalLines
lines = lines + GR.gTotalLines

next

lines / area

End of program

HCPM Clustering Critique
The HCPM code was analyzed by the BCPM Sponsors to understand the methodology
behind the model and how the algorithms truly work. Taking into account intricacies of
writing a complex program, this point-by-point critique is meant to be constructive rather
than nit picking.

The proceeding comments have been divided into categories addressing general review,
programming technique, algorithm design, network design, and a review of the logic. It
should be noted that the following points have been identified in a very short amount of
time and will be supplemented with a more complete analysis in the future.

General Review ofthe HCPM Clustering Approach
The HCPM is designed to rely upon geocoded customer locations as the basis for its
clustering module. Census Block data can also be input as a supplement to imperfect
geocoding success rates!. Once this data is provided, the clustering code will then
generate the "engineering" areas the FeedDist program builds in and to.

To recap briefly the clustering approach, there are two bottom-up ("agglomerative")
algorithms and one top-down ("divisive") algorithm implemented here. Each of them
honors constraints of maximum number of lines in a cluster, and maximum rectangular
distance from a cluster's centroid to any cell in the cluster.

The base bottom-up agglomerative algorithm is the standard one, with no surprises. The
second, referred to as "nearest neighbor" is essentially the same as the first, with the
added constraint of a two-mile maximum distance to the "nearest neighbor" of a cell in a
cluster. The diagram below demonstrates either of the bottom-up agglomerative
approaches.

1 A method for geographically locating the census block data and for combining the data geocoded and
surrogate data types has yet to be determined. However, as we stated in the Public Notice response, we
recommend the use of roads to locate surrogate points and the use of all surrogate points whenever the
success rate of the geographic area being analyzed falls below 85%.
o
- In some algorithms, the constraint values are user inputs; in another they are not. There does seem to be
inconsistency in this.

Page 1

I. IdentitY the starting cluster and
then detennlne the next nearest cI uster

Agglomerative Approach
C1U5tcrsm~e

, The [\\0 clusters merge. IdentitY
the next nearest cI uster to the new cI uster
now containing two customers

OUSIcnrnt:r1CJPin

3 The process continues until distance
or total customer constraints are reached

The divisive algorithm is also essentially a standard one, starting with all cells in a single,
too-large cluster, and carving out successive clusters from it (using bottom-up procedures
to agglomerate cells), always starting with the currently unassigned cell farthest away
from the mother cluster's centroid. The diagram below demonstrates the divisive
approach.

Divisive Approach

Farth.:st Jl~Ulm;t'

tr,lm ·,me-\\el~hlt'[J

~(nlr"IJ

I. Identify the customer farthest from
the line-weighted cluster centroid.

Patl:'nlCl~h:r/
lhLld (lUSI...,. -. ~

2. Farthest customer splits from the
parent cluster and becomes a new chIld
cluster.

Closet' 10

~hlld .:lustet'

3. Identify if the remaining customers
are closer to the new child cluster centrOid.
or the parent centroid.

Regardless of the algorithm used, a highly iterative set of optimizing procedures follow.
The sole aim of optimization is to reduce the total "noise" of the set of clusters. (For any
cluster, the "noise" is the sum of the rectangular distances of each cell from the cluster
centroid, each distance weighted by the number of customers at that cell location.) There
are two exit criteria for terminating optimization: 1) the last iteration was unable to
produce a reduction in the total noise value; or 2) a user-input time limit was exceeded3

.

r Note that on faster machines the optimization for a wire center might go to completion, while on slower
machines full optimization might not complete. We can easily imagine multiple members of a
commission, using identical time limits but different machines, getting different results from a model.

Page 2

All in alL the user has the potential to select from 9 different methods of developing the
cluster data. This implies that 9 result files can be obtained from the same input
geocoded points~.

Critique ojthe Code

Programming Technique:
• Variable typing are not consistently applied. While this is probably an oversight. it

does result in potential problems with the clustering algorithms. The number of
rasters and the number of clusters generated are dependent on how the program
variables are typed.

Type declaration is incorrect. Unlike Pascal, in VB each variable must have a type
assigned to it. If it is done by line, only the last variable is of the desired type, the rest
have a variant data type. For example, in the declaration:

Dim Lon, Lat, Area, maxArea As Double

Lon, Lat and Area will be declared as variants, and only maxArea will be a double.

This point is especially important in declarations like:

Dim Dist(), id(), Nodes, Cells As Long

In this case, the arrays DistO and IdO are actually arrays of variants, not longs. This
can affect memory and performance.

• It is considered poor practice to use the "+" symbol for concatenations. The "&"
symbol should be used instead. When variants are used in string concatenations using
"+", the result is unpredictable. If all the variables can be treated as numeric, the
variables are added together, instead of concatenated.

• The code for this entire project is included in one subroutine. This makes auditing
any given method difficult. The standard method of coding would dictate that each
method be given its own subroutine(s). This modular approach would simplify
testing and validation.

• A variable naming convention should be used. This would make the code easier to
read. There are several common naming conventions that can be adopted. This point
is true for the other two HCPM modules as well.

4 While it is nice to offer the user such a choice. it will difficult to maintain, test, verify, compare and select
the appropriate results for a national model.

Page 3

• The output files an~ used to collect processing information. This statistical
information should be kept in a separate file if it is necessary. Also the cluster results
and the geo-coded points could be separated to simplify downstream processing.

Technique Relating to Speed:
• Each algorithm should be reviewed. Largely, the data is processed in large square

matrices when triangular structures could be used. Changing the underlying approach
would probably result in improved processing time.

• File structure could be improved. The structure of the geo-coded file contains too
much information. It appears that the terrain data is common for each census block.
If this information were removed from the input file and stored as either a separate
file or in a database, then the amount of data for each geo-coded point would be
reduced substantially. The reduction in input would open alternate methods that
might speed up processing.

Algorithm Design:
• Different algorithms utilize different line limits. The Divisive algorithm use lines

multiplied by the line fill factor, the other two methods use straight-line counts. It is
not apparent to the user that this is happening.

• The clustering methods are not consistent. In some the cases the constraints are hard­
coded even though there are client inputs. The client inputs are not handled
consistently. For instance, the line limits probably should be adjusted for the fill
factors, but are not.

• There is no way to choose which clustering algorithm produces the 'best' results. For
a given set of constraints, there should be some measure to indicate which clustering
method would result in the minimum cable costs. Possibly the line weighted distance
from the wire center switch location to each cluster plus the cluster line weighted
distances would work.

• The graphs, while informative, should be removed from the processing. The graphs
would probably work better if the clustering program had a review mode. The graphs
for each method could then be reviewed at the same time.

Network Design:
• The distance limit that is not adjusted for the length of the cell. When the final raster

size is determined, the distance limit should be adjusted by 1/2 of the diagonal of the
raster. Without adjustment there is a potential that the distances of individual points
would exceed the distance limits when the feeder/distribution plant is built.

• When a set of clusters is optimized by noise reduction the process potentially
terminates due to exceeding a time constraint. One obvious drawback of this method

Page 4

is that the number of iterations could vary by processor. When a process is
terminated by a 'time out' condition, the results are left in the intermediate state.

Terrain:
• The terrain data for the output clusters are not correctly assigned. Terrain data is

assigned to each cluster based on the terrain of the cell closest to the cluster centroid.
There should be some method to develop weighted terrain data for each cluster.

Critique o[Logic

Building Rasters:
The number of rasters (cells) generated is a function of the raster size and the number of
populated cell constraint. A rectangle is generated that encloses the geo-coded data. This
rectangle is divided into cells by dividing the rectangle side length by the raster size. The
geo-coded data is then placed in a cell. If the number of populated cells is greater than
the populated cell constraint, then the length of the raster is increased by the raster size
and a new grid is generated.

Concerns:
1. The input file is read multiple times utilizing repeated blocks of code rather than a

common subroutine.
2. Process produces different results if the data types are properly defined. In testing we

found that changing the data types to consistent values generated different results.
For instance, when generating rasters for the Divisive clustering algorithm the
program as released generates 2754 rasters, correcting the data types results in only
2752 rasters. The number of clusters generated also changed for some of the
algorithm when the data types are changed.

3. Even though the raster size is related to the distance limit and number of blocks, there
is no check on user input. It appears that the number of blocks is not used in any
case. As a matter of fact, the number of blocks and the distance limit are not used in
the raster generating process.

4. The number of rasters is set to 3000 when the Divisive clustering algorithm is chosen.
5. The input file is read using a fixed format. The data in the input file is standard

comma separated values (CSV) and should be processed as such. There is no
guarantee that a particular data item will be located in a specific position in a CSV
file.

Solutions:
1. Generate temporary random access file based on input file. This type of file lends

itself to indexed reads. This way the data only has to be parsed once.
2. Update display when divisive algorithm is chosen.

Page 5

Divisive Clustering:
Create a single cluster that contains all cells. Generate new clusters centered on cells that
are furthest from the parent cluster centroid. As each new cluster is generated it collects
all cells that are closer to it than the parent and still maintains the line constraint and
distance constraint. Method is complete when parent cluster is either reduced to a single
cell or falls within limits.

Concerns:
1. The limit on the number of rasters is set to 3000 regardless of client input. There is

no notification that the change happens.

Agglomerative Clustering:
A cluster is created for each cell. Clusters are then combined in minimum distance order,
subject to the line constraint and distance constraint. When the minimum distance is
greater than the distance constraint the algorithm is complete.

Concerns:
1. The line constraint does not include the application ofthe fill factor.

Nearest Neighbor Clustering:
The algorithm is essentially the Agglomerative clustering method with the addition of a
2-mile minimum distance constraint.

Concerns:
1. The line constraint is hard coded at 1800.
2. The 2-mile limitation seems arbitrary. It is not tied to any physical limitation of

telephone plant.

Optimization by Simple Reassignment:
For a given set of clusters, each cell is assigned to the nearest cluster. Besides the usual
constraints there is an additional constraint. The additional constraint is the distance of
the cell from the target cluster must be less than 1.5 times the distance to its original
cluster. The process ends when there is no improvement in the line weighted distances.

Concerns:

1. Not sure what the additional constraint accomplishes.
2. Looks like the number of clusters can not be reduced by this process.

Page 6

Optimization by Noise Reduction:
For a given set of clusters, move cells between clusters that maximize the reduction in
noise gain. Noise is defined to be the number of lines times the distance to the cluster
centroid.

Concerns:

1. This method is constrained by a time limit. There is no indication that the time limit is
the terminating factor. The cluster is left in the modified state for subsequent processing.

Recommendation
The developers of the HCPM are in an enviable position. They have had the opportunity
to assess proposed cost proxy models, namely the BCPM and HAl, in order to select the
best proven approach to different issues associated with identifying the cost of supplying
telephone service.

However, some inputs and approaches, which may have a great influence on the resulting
outcome have yet to be determined. That being the case, we cannot make a
recommendation as to whether the HCPM clustering approach is acceptable or not.

To fully understand the clustering and its impact on subsidy values, we need closure on:
• Customer Location:

• What is the source of data
• What is the geocoding process
• What is the source for surrogate points
• What is the method to determine surrogate locations
• How should surrogate and geocoded points be combined
• Should vacant households be included

• Clustering:
• Should it be used
• What approach should be used
• What are the binding and engineering constraints
• What is the proper raster size
• What is the proper microgrid size

• Data for Analysis:
• What are the results at the state, wirecenter, density group, ... levels
• Will the code hold up as all 50 states and Puerto Rico are run through
• How do the results compare to the existing models
• Is the underlying data available for review

Page 7

....,.... ,,,,,,,,;

Finally, we would recommend that the code be revisited in order to make the changes that
are noted in the point-by-point critique. Underlying constraints or mistakes written into
the code may significantly jeopardize the accuracy of this model. In addition, as a part of
the code analysis, it will be important to determine if the use of three clustering
algorithms and 3 optimization routines truly adds accuracy to the results in the majority
of circumstances. Or, does it add confusion to the process by allowing users to have the
potential of developing 9 or more different results from the same input data.

Attachment
The HCPM code has been rewritten in Visual Basic to make further analysis more
efficient. Obviously, this is a lengthy document. It will be attached separately and at a
later date.

Page 8

