The (simple) Case for a New 5G Air Interface... and a few other things

Dr. Ir. Michael Peeters, Alcatel-Lucent
20150508 Washington D.C.
Agenda

- Overall Evolution
- First Step
- 5G Air
- 5G Network
- Timing
3.9Bn
People connected to the Internet in 2017

720%
Increase in video traffic 2012–2017

320M
More tablets sold in 2014 than laptops and desktop computers combined

>50Bn
Enterprise networking market revenue in 2017 (US $)

>70Bn
Things connected to the Internet in 2020

440%
Increase in cloud and data center traffic 2012–2017

3X
Increase in average broadband speed 2012–2017

2X
Increase in cloud computing market 2013–2017

More of everything

Every success has its network
IoT key requirements

<table>
<thead>
<tr>
<th>Factor</th>
<th>Requirements - low end</th>
<th>Requirements - high end</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak data rate</td>
<td><100 bits/s UL (e.g. smart metering)</td>
<td>> several Mb/s UL (e.g. security cameras)</td>
<td>10000</td>
</tr>
<tr>
<td>Latency</td>
<td>>1 s (e.g. smart metering without control)</td>
<td>< 10 ms (e.g. ITS Intelligent Transportation Systems - ITS)</td>
<td>100</td>
</tr>
<tr>
<td>Usage</td>
<td><1 event/day (e.g. intrusion alarm)</td>
<td>“continuous” (e.g. security cameras)</td>
<td>∞</td>
</tr>
<tr>
<td>Coverage</td>
<td>Normal (e.g. outdoor devices)</td>
<td>+20 dB (e.g. indoor devices located in basements)</td>
<td>100</td>
</tr>
<tr>
<td>Mobility</td>
<td>“none” (stationary devices)</td>
<td>“seamless” (e.g. ITS devices)</td>
<td>∞</td>
</tr>
<tr>
<td>Device cost</td>
<td>“not an issue”</td>
<td><4$ for e.g. smart meters</td>
<td>10</td>
</tr>
<tr>
<td>Battery lifetime</td>
<td>“N/A” (e.g. remotely-powered devices)</td>
<td>>10 years (e.g. smart meters)</td>
<td>∞</td>
</tr>
</tbody>
</table>
4G
Radios
BBU Hardware
IT+ Router
IT
Small cell
CA

Evolve.
Radios
VRAN
vEPC
vI MS
NFV
CoMP
DC & MultiX
LTE-U
Conn-less
CA

5G
Radios
VRAN
vEPC
vI MS
New radio I/F
mm Wave
Massive MIMO
Conn-less
SDN
Policy
DC & MultiX

Every success has its network
Operator drivers for a new architecture

New architecture needed that:

1. Easily adapts to changing demand patterns
2. Delivers higher capacity and end user quality of experience (QoE)
3. Optimizes Total Cost of Ownership (TCO)

Traffic uncertainties
- Where?
- What kind? - apps and devices mix changing

Resource uncertainties
- Spectrum
- Sites
- Backhaul
- Capital

vRAN addresses challenges and unlocks new opportunities
What is a vRAN?

vRAN
- Virtualized, centralized, and pooled functions hosted in the RAN
- Includes vBBU function hosting L2/3 processing of LTE base station
- Implements additional functions and applications for control, performance and delivery optimization

Virtualization (applications abstracted from hardware)
- Continuous cost/performance benefits from simplified operations and higher reliability
- Flexible capacity: Application scaling separated from hardware scaling
- Capability to host different virtualized functions/applications on the same hardware platform
High level vRAN architecture
Virtualizes ran functions and optimizes hosting of new functions
Benefits of vRAN

- Applications implemented at the edge of the network for greater end-user QoE
- Fast access to local metadata for low latency applications

Lower TCO
- Simplified site acquisition, build and upgrade
- Hardware economies of scale
- Simplified operations
- Lower cost redundancy

vRAN

Better network performance
- Better performance using cell coordination features
- Easier load balancing across centralized cells
- Applicable to macro, metro sites and HetNets

Differentiation and new revenue streams
Efficient use of hardware with vBBU

DRIVERS

Cell site BBU must meet peak load:
- Mobile apps driving increasingly peaky traffic
- IoT devices introducing new traffic patterns
- HetNets driving increasingly dynamic load per cell

BENEFITS

Virtualizing BBU enables scaling and pooling among cells
- Statistical dimensioning
- Pooling of a larger amount of cells
- Scaling of user load sensitive L2/L3 part of baseband processing
- Tuning of active user capacity between macro and metro cells

CELL SITE BBU MUST MEET PEAK LOAD

| Load cell 1 |
| Load cell 2 |
| Load cell 3 |
| Load cell 4 |

VBBU ENABLES SCALING & POOLING AMONG CELLS

- Cumulated peak dimensioning
- BBU capacity gains
- Statistical gains delivered by pooling

Every success has its network
Small Cells and WiFi: Wireless Unified Networks for near-wireline QoE
Multi-RAT and LTE-U

- Small cell innovation (home, enterprise, metro)
- LTE-Unlicensed (LTE-U) / Licensed Assisted Access (LAA)
 - Dynamic co-existence of Wi-Fi and Cellular (LTE)
- “Boost”
 - Blending of Wi-Fi and Cellular (LTE & W-CDMA)
Small Cells
Site Challenge: Integration in advertisement panels

One or two compact metro cell outdoor hidden between the two advertising panels for multi-operator use.

External antennas high enough for excellent performance.

Wi-Fi access point.

Multi-operator LTE and Wi-Fi connectivity with microwave backhaul.
Agenda

- Overall Evolution
- First Step
- 5G Air
- 5G Network
- Timing
9 Key use cases @NGMN

<table>
<thead>
<tr>
<th>Use case family</th>
<th>Example use case</th>
<th>Key technical requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband in dense areas</td>
<td>Pervasive video</td>
<td>Massive spectrum on small cell pushing need for new “high” band to achieve traffic density of up to 750 Gb/s per km2 in dense urban areas</td>
</tr>
<tr>
<td>Broadband everywhere</td>
<td>50 Mb/s everywhere</td>
<td>Significant improvement to cell edge bitrate to offer consistent user experience at target bitrate over 95% locations for 95% of time</td>
</tr>
<tr>
<td>Ultra-low cost networks</td>
<td></td>
<td>Flexible radio parameters for cost reduction when offering limited services (<10 Mb/s, >50ms, <20 Device/km2)</td>
</tr>
<tr>
<td>Higher user mobility</td>
<td>High speed train</td>
<td>Flexible radio parameters for speeds up to 500 km/h</td>
</tr>
<tr>
<td>Massive Internet of Things</td>
<td>Sensor networks</td>
<td>Connectionless service to offer scalable solution for device densities of up to 200kDevice/km2 and extended battery life</td>
</tr>
<tr>
<td>Extreme real-time</td>
<td>Tactile internet</td>
<td>Flexible radio parameters for low latency down to 1 ms</td>
</tr>
<tr>
<td>Lifeline</td>
<td>Natural disaster</td>
<td>High availability and service recovery resilience mechanisms to ensure availability of basic communications (voice, text, etc.) with large battery life</td>
</tr>
<tr>
<td>Ultra-reliable</td>
<td>Public safety</td>
<td>High reliability rates up to 99.999% (5 nines) implying need to eliminate single points of failure from network design</td>
</tr>
<tr>
<td>Broadcast like</td>
<td>Broadcast services</td>
<td>Reuse of SFN techniques from LTE to offer efficient wide area service delivery</td>
</tr>
</tbody>
</table>
Where does 4G stumble? = 6 requirement drivers for 5G

BROADBAND
- Massive traffic capacity
- Reduce Cost
- Spectrum efficiency
- Access new spectrum

MISSION CRITICAL
- Very low latency
- High reliability
- High availability
- Security

INNOVATIVE SERVICES
- Flexible bearer design
- 3rd party policy

BATTERY LIFE
- Signaling reduction
- Energy optimization

EXTREME DENSITY
- Massive user density
- User content

NON TRADITIONAL DEVICES
- Short packet
- Sporadic access
- More devices and more device types

INNOVATIVE SERVICES
- Flexible bearer design
- 3rd party policy
A divergence is coming: 2 asymptotes

- **2G**
 - Mobile voice, traffic scaling proportional to number of subs.

- **3G**
 - Start of mobile broadband. Usage per subscriber increasing.

- **4G**
 - Mobile entertainment, total traffic driven by average data usage instead of number of subscribers.

- **5G**
 - At the same time as ultra-broadband continues to grow, the rise of M2M traffic and number of subscribers causes diverging requirements, both technical and economical.
Driving vision

5G will be a **unified** ecosystem that serves both traditional as well as potential new applications like drones, real-time video surveillance, mobile augmented and virtual reality, IIoT...

Ultra-broadband = the evolution of communications and entertainment = a network that serves:
- Human-2-Human: communications, be it voice or video
- Human-2-Machine: photos, video, upload to the cloud
- Machine-2-Human: mobile entertainment; video, games, internet

Ultra-narrowband = the evolution of sensing, command and control = a network that serves:
- Machine-2-Machine: sensors & control (latency!), exchanges between devices or applications (mobile devices, gateways, …).
Technology evolution
The broadband scenario is “clear”
Technology evolution

The broadband scenario is “clear” - the narrowband is what we need to agree on!

- **LTE**
 - 2015
- **LTE-U**
 - 2017
- **LTE-A** evolution
 - 2019
 - **<6GHz**
 - **5G**
- **WiFi**
 - 802.11n
 - 2015
 - 802.11ac
 - 2017
 - 802.11ad
 - 2019
- **LTE-A** evolution
 - 2021
 - **mmWave**

triggers:
- LTE control overload; low latency control & command applications
- marketing; latency for augmented reality, games; enabling massive MIMO
- last drop wire/fiber replacement

direct path: continues to serve traditional mobile BB case.
5G Radio: New air-interface needed

• Unified framework for multiple services with different requirements
 - Spectral efficiency improvement for short bursts
 - High battery life for short packet IoT devices
 - Very low latency for critical applications
 - Acceptable performance out to cell edge

• Flexibility to optimize the parameters for different situations
 - Service needs (latency, activity, performance)
 - Vehicle speeds (static/nomadic to 500 km/hr)
 - Environments & Propagation (indoor/small cell/macro in urban/rural)
5G radio: Adding contention access within air interface

- Challenge:
 - Combine broadband and small packet traffic
 - Be resource efficient (energy, spectrum, network)
 - Allow for low overhead, low complexity, simple terminals
 - Offer high reliability & low latency options
 - Add new contention mode to support connectionless services for bursty traffic

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Synch?</th>
<th>Access Type</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>closed-loop</td>
<td>scheduled</td>
<td>classic high volume data services</td>
</tr>
<tr>
<td>II</td>
<td>open-loop</td>
<td>scheduled</td>
<td>HetNet and/or cell edge multi-layered high data traffic</td>
</tr>
<tr>
<td>III</td>
<td>open-loop</td>
<td>sporadic, contention-based</td>
<td>few bits, supporting low latency, e.g. smartphone apps</td>
</tr>
<tr>
<td>IV</td>
<td>open-loop/none*</td>
<td>contention-based</td>
<td>energy-efficient, high latency, few bits</td>
</tr>
</tbody>
</table>

*: none for maximal energy savings at Tx, open-loop for reduced complexity at Rx
5G Radio: UF-OFDM

- Designed to meet new requirements
 - Contention based access for connection-less services
 - In-band optimization to devices and services
 - Higher capacity
- Universal Filtered OFDM (UF-OFDM)
 - New filter stage applied per sub-band
 - Cyclic prefix replaced by filter time response
 - More tolerant to power and timing errors
 - Reduced guard band requirements
 - May re-apply huge knowledge base of LTE processing

[2] 5GNOW deliverable D3.2

Every success has its network
Alcatel-Lucent
5G Radio: High band to add massive capacity

- “High band” (>20 GHz, known as mm-wave)
 - Enormous blocks of spectrum available for short range outdoor or indoor access
 - BUT should not plan to re-farm microwave backhaul bands
 - Will offer high peak bitrates for well placed users but will not significantly improve cell edge bitrates
 - Radio parameters may not be harmonised with low band systems (open issue)

- Expected to be used as a “secondary carrier”
 - Using Carrier Aggregation or Dual Connectivity
 - While control plane and coverage ensured by “lower band” (<6 GHz) connection
5G Radio: are we addressing the key drivers?

<table>
<thead>
<tr>
<th>Driver</th>
<th>LTE Evolution</th>
<th>WLAN</th>
<th>Low band (< 6 GHz)</th>
<th>High band (>20 GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile broadband</td>
<td>MIMO, HetNet and CoMP features</td>
<td>Multi-RAT and Boost</td>
<td>Higher spectrum efficiency</td>
<td>Peak bitrates Massive capacity</td>
</tr>
<tr>
<td>Innovative services</td>
<td>Capacity</td>
<td></td>
<td>Short packet Low latency</td>
<td>Scheduled low latency service</td>
</tr>
<tr>
<td>Crowds</td>
<td>Capacity</td>
<td>Capacity</td>
<td>Contention access</td>
<td>Massive capacity</td>
</tr>
<tr>
<td>Mission critical</td>
<td>Public safety features</td>
<td></td>
<td>Low latency</td>
<td>Scheduled low latency service</td>
</tr>
<tr>
<td>Battery life</td>
<td></td>
<td></td>
<td>Contention access</td>
<td></td>
</tr>
<tr>
<td>Non traditional devices</td>
<td>MTC features (to bridge gap until 5G)</td>
<td>Short range access</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5G Radio: Complements 4G and WLAN

5G Radio: Macro and Small Cell layers, low and high bands plus LTE and WLAN

5G (<6 GHz) on MACRO and SMALL CELL
- Coverage
- Connectionless service
- Low latency bearers
- Capacity

5G (>20 GHz) on SMALL CELL
- Massive Capacity
- Extreme low latency
- But unlikely to match lower band coverage

LTE EVOLUTION on MACRO and SMALL CELL
- Coverage for 4G
- Capacity for 4G and 5G
- Fallback coverage for 5G

WLAN on SMALL CELL
- Capacity for 5G and 4G
- Standalone service for any device

MULTIPLE CARRIERS AND SITES
Combined using Carrier Aggregation and Dual Connectivity
Combining 5G, LTE and WLAN interfaces
So: Why do we need a new & unified 5G radio interface?

• When we talk about M2M subscribers, these are not just devices. Applications on smartphones are already generating a large amount (30%) of short bursty traffic. Similarly M2M gateways using cellular uplink will contribute to the total amount of narrowband traffic. M2M subscribers = # devices × # applications/device

Ultra-broadband already acts as a channel for part of the ultra-narrowband traffic.

• The ultrabroadband track will require the integration of many different networks. In order to steer traffic quickly, seamlessly, without impacting the end-user, an efficient control system need to be present.

Efficient low latency narrowband communications benefit ultra-broadband as well.
5G Services: More complex requirements

Device and service needs

- Machine-Type, Internet of Things, Sporadic traffic, Battery-efficient
- High data rates
- MTC

Abstraction

Richer Set of Service Options

- Bitrate: description GBR/N-GBR, peak, expected, sufficient
- Latency (Packet delay): finer granularity, new Low latency option, average vs. first packet delay
- Loss rate: finer granularity
- Priority information (e.g. ARP): Availability class: best effort / prioritized
- Activity: Background, streaming, very infrequent, etc.
- Mobility category: fixed / nomadic / vehicular
- Traffic type: Scheduled, Sporadic vs. Contention
- UE power category: very low power (MTC), high power (WLL)
- Security: Application privacy level, networking restrictions
- Reliability: use case dependent
- Networking: Routing restrictions, recommendations

Profiles & Configuration

- UL data rate (1Gb/s)
- DL data rate (1Gb/s)
- Battery efficiency (10y)
- Mobility (500km/h)
- Latency (3ms)
- Availability (99.9%)
- User density (200k/km2)

Video
Broadband
Sensor
Industrial
Messaging
Logistics

User density
(200k/km2)
5G Network: Policy based to adapt the network to the user

Wireless and networking control
- Rules, resources and topology
- Wireless control
- Networking control

Policy based service management
- Network APIs
- Policy framework
- Service APIs

Charging
- Mobility
- Security
- QoS
- Monitoring
- Optimization

Applications

Every success has its network
Defining 5G - What’s involved?
5G Global activities - work on 5G have started

Global
- Next Generation Mobile Networks (NGMN): 5G project
- 3GPP: Study item proposals for Rel14, first specifications Rel15
- IEEE 802.11: Parallel evolution of Wi-Fi including mm-wave “WiGig”
- ITU-R: IMT-2020

Europe
- Multiple projects within FP7 including 5GNOW, METIS - EU
- 5G Infrastructure Public Private Partnership (5GPPP) - EU
- .. And 18 projects within FP8 starts mid 2015 - EU
- Universities: UK, Germany, Finland, etc.

Asia
- IMT-2020 (5G) Promotion Group - China
- 5G Program (National 863 program) - China
- Korean 5G Forum - Korea
- 2020 and Beyond AdHoc - Japan
- Tokyo Institute of Technology and NTT docomo - Japan

Americas
- 4G Americas
- Universities: Polytechnic Institute of New York University, VA Tech - Broadband Wireless Access & Applications Center, Wireless@MIT Center
- Intel Strategic Research Alliance - Academia & Industry
• **LTE**
 - Evolution continues well after 5G launch

• **5G**
 - Low band deployed from 2020 first on macro cell then on small cells
 - High band on small cell follows as 5G capacity needed
Universal take-aways

ULTRA BROADBAND
- Anticipating 8x data growth by 2018 with peaks of 20x for 25% of sites
- LTE, WiFi & small cells needed to address capacity/congestion/QoE

MOVE TO CLOUD
- NFV/SDN will drive scale, lower cost, and improve performance
- Dedicated HW → GPP platforms

5G ON THE HORIZON
- Understand what the shift may be and how your network fits
- User centric networks
- Have your architecture ready, low band first

All will be needed to tackle the opportunity of IoT as well.
Every success has its network
Resources

- NGMN: http://www.ngmn.org/work-programme/5g-initiative.html
- GSMA: https://gsmaintelligence.com/research/?file=141208-5g.pdf&download
- 3GPP: http://www.3gpp.org
- 5G-PPP: http://5g-ppp.eu