UNLICENSED LTE INTERFERENCE TO WI-FI
WHEN OPERATING CO-CHANNEL

Christopher Szymanski
WI-FI DEMAND EVER-INCRESSING

Approaching 15 billion cumulative shipments and 7.5 billion Wi-Fi install base

Source: ABI Research: Cumulative Wi-Fi-enabled Product Shipments and Installed Base of Wi-Fi-enabled Products World Market, Forecast: 2000 to 2020.
Wi-Fi is predominate way for people to access internet; in some instances the only way

- **Cisco**: Mobile data traffic increased 74% in 2015, reaching 3.7 exabytes per month [1]

- **Over 80% of mobile data traffic goes over Wi-Fi**
 - **Strategy Analytics’ Telemetry Intelligence Platform**: From 2H13 to 1H15 Wi-Fi traffic grew at over 2X the rate of cellular traffic, accounting for ~83% of wireless traffic [2]
 - **Analysys Mason**: 81% of smart phone traffic is carried over Wi-Fi [3]
 - **Mobidia**: “Wi-Fi dominating monthly data usage” [4]
 - iOS users consume 82% of wireless data over Wi-Fi
 - Android users consume 78% of wireless data over Wi-Fi

- **Pew Internet Research**: In-home Broadband access decreasing, increasing number of “smartphone-only” adults (13% of Americans are smartphone-only, and shift most pronounced among lower income households) [5]

- **Public Libraries and the Internet**: 90.5% of public libraries offer Wi-Fi Internet access, and bandwidth capacity of libraries becomes an increasingly significant issue [6]

"Fair coexistence between LTE and other technologies such as Wi-Fi as well as between LTE operators is seen necessary."

"However, it is not enough to minimize interference simply for regulatory aspects. It is also essential to insure that a deployed system will operate as a ‘good neighbor’, and not significantly impact legacy systems."

3GPP
CO-CHANNEL LTE INTERFERES WITH WI-FI

• Based on a variety of tests & simulations, Broadcom and many other industry leaders believe that Wi-Fi links will be severely degraded by interference from neighboring co-channel LTE-U based networks

• The most harmful impact to the user experience will be on Wi-Fi signal strengths below -62 dBm (802.11 “below ED”)
 – In-the-field measurements for enterprise and outdoor deployments have demonstrated that:
 • ~90% of Wi-Fi links are below -62 dBm
 • ~50% of Wi-Fi links are below -80 dBm

• Effects on user experience
 – Greatly reduced Wi-Fi AP coverage areas
 – Poor performance because of reduced throughput and increased latency

• LTE-U impact to lower level Wi-Fi links is likely to apply to any co-channel LTE, unless politeness mechanisms are specifically designed to protect low level signals
 – LAA incorporates various technologies to improve coexistence fairness/politeness with WiFi, but if LAA is unable to detect Wi-Fi traffic, then LAA’s protection mechanisms are irrelevant
LTE-U CHANNEL SHARING: NEIGHBOR DETECTION

- LTE-U eNB must be able to detect the Wi-Fi signal in order to adapt its duty cycle or make a clear channel assessment.

Neighbor detection level \(\geq -67 \text{ dBm} \)

LTE-U Duty Cycle \(\leq 50\% \)
LTE-U CHANNEL SHARING: NEIGHBOR DETECTION FAILURE

- eNBs will likely be unable to hear neighboring median strength Wi-Fi signals
- eNB interferes with Wi-Fi nearly all the time
For average Wi-Fi link signal strengths, even low levels of interference from neighboring networks can massively degrade link quality.

In-field measurements show that Wi-Fi link signal strengths in the range -80 to -85 dBm are typical – Sufficient throughput for good user experience (e.g., HD video).

To ensure fairness to deployed Wi-Fi, we recommend mandatory neighbor detection at level of at least -82 dBm – Consistent with Wi-Fi preamble detect levels.
LTE-U AND WI-FI COEXISTENCE TEST CONFIGURATION

• Broadcom conducted laboratory tests based on the draft WFA Test Plan v0.8[3]
 – Test Case 4.10 “LTE-U Node Impact on Wi-Fi Throughput Performance Test”

• Scenario
 – 2 networks, downlink full buffer UDP, coexisting on same 20 MHz channel, quasi Line-of-Sight
 – Interference levels: [a] -60 dBm [b] -65 dBm (“WFA Test Level 2”)
 [c] -75 dBm (“Optional WFA Test Level 3”) [d] -90 dBm

• Wi-Fi network setup:
 – 1 AP + 1 STA (both BCM4366 4x4 chipset, 11ac LDPC)
 – Wi-Fi link signal strength (AP heard by STA): -80 dBm (per draft WFA Test Plan)

• LTE-U network setup:
 – 1 eNB based on Broadcom LTE Small-Cell platform
 – Varying LTE-U duty cycles (ON period of 20 ms, compliant with LTE-U Forum spec[4])
 – “Phase 1” (eNB full buffer load)
LTE-U AND WI-FI COEXISTENCE TEST SCENARIO

- Demonstrate impact of LTE-U interference on Wi-Fi throughput
 - When eNB is at various distances from the Wi-Fi network

MCS indications are guidelines based on 20 MHz, LDPC, Nss=4, AWGN
1 Wi-Fi network

2 Wi-Fi networks coexisting

BASELINE: WI-FI + WI-FI

Wi-Fi + Wi-Fi coexistence is basically robust over a wide range of interference levels

The two networks defer to each other and share the available airtime and bandwidth
 - At -60 dBm interference, OBSS frame detection is accurate and collisions are very rare
 - At -65 and -75 dBm interference, occasional OBSS frame misdetection causes collisions that modestly reduce throughput
 - At -90 dBm interference, some OBSS misdetections occur but lower interference means some collisions can still be decoded
• Even when LTE-U detects Wi-Fi neighbor and limits its duty cycle to 50%, throughput of the Wi-Fi network is substantially degraded compared to Wi-Fi + Wi-Fi case
 – At all interference levels, LTE-U ON cycles interrupt Wi-Fi transmissions and cause retransmits, with a knock-on effect on Wi-Fi rate adaptation implementations in response to unexpected interference
 – At -75 dBm interference, degradation is worst since LTE-U interference is low enough that Wi-Fi cannot always detect it and back-off its own transmissions, yet high enough that the SINR of the resulting collisions is very poor
WI-FI + LTE-U 90% DUTY CYCLE (FAILED NEIGHBOR DETECTION)

- **1 Wi-Fi network**
- **1 LTE-U + 1 Wi-Fi network interacting**

- If LTE-U doesn’t detect Wi-Fi neighbor and raises its duty cycle to 90%, the impact on the Wi-Fi throughput is **catastrophic**
 - Still substantial degradation even when the interference level is as low as -90 dBm
In this very typical coexistence scenario...

Wi-Fi throughput may fall to almost zero; is there anything to prevent shrunken Wi-Fi coverage area in current LAA specification?
CONCLUSIONS

• The issue is being framed as a technology vs technology or cable vs carrier dispute, but poor coexistence will be felt by the users.

• There are hundreds of millions of Wi-Fi devices installed in the US today, many of which provide the sole means of broadband access to part of the population.

• Coexistence fairness should be based on how deployed LTE-U devices would impact the typical Wi-Fi user in real world deployments.
 – Coexistence fairness must not be based on edge cases.

• LTE-U as currently contemplated would be a disaster for Wi-Fi, and any type of co-channel LTE (e.g., LAA) is likely to significantly reduce Wi-Fi coverage area unless specific coexistence mechanisms are adopted.
 – Additional LTE-U and LAA coexistence work remains critical prior to mass deployment.