

1. The percentage of websites adopting HTTPS remains low.

In Section 5.3 of our study of online tracking (Englehardt & Narayanan 2016), we find that only 14.2%
of the top 55,000 websites default to HTTPS on their home pages as of January 2016. This number falls
to 8.6% on the top 1 million websites. Only a further 2.9% of the top 55,000 sites even offer HTTPS as
an option.

2. There are serious impediments to the continued adoption of HTTPS.

Today’s web is a mash-up, with websites incorporating a plethora of “third parties” to provide services
such as advertising, analytics, and social-media functionality. In the same Section of the attached paper
(Englehardt & Narayanan 2016), we find that many of these third parties do not support encryption, and
that this impedes the adoption of HTTPS by websites. Specifically, a significant fraction of today’s
unencrypted sites will be unable to upgrade to HTTPS without jettisoning one or more of the third
parties whose services they currently rely on.

3. Internet service providers benefit from the third-party web tracking ecosystem.

In the attached 2015 paper we studied the ability of a passive eavesdropper to track users by utilizing
third-party cookies (Englehardt et al. 2015). Essentially all of our findings are applicable to Internet
Service Providers (ISPs).

Multiple people may use the same Internet access subscription, and online tracking companies may
sometimes be in a better position than ISPs to tell such users apart (say, if they use different browser
profiles). However, any cookies created by those online trackers are then visible to the ISP on unen-
crypted traffic between the user and the website, increasing the ISP’s visibility into its own users’ activ-
ities. We quantified this ability in our 2015 paper and showed that it is surprisingly revealing.

Similarly, if a portable device connects to the Internet via different subscriptions or access points served
by the same ISP, that ISPs can connect the dots using cookies found in that device’s web traffic.

In other words, while much of today’s privacy debate has focused on the online tracking economy due
to its sophistication, this is not a reason to have lax privacy rules for ISPs. On the contrary, ISPs can in
fact benefit from this tracking infrastructure.

To clarify, I claim no knowledge of whether today’s ISPs use web cookies for tracking or profiling their
customers. Rather, my point is that such tracking is technically feasible and effective.

References

Englehardt, Steven, et al. "Cookies that give you away: The surveillance implications of web tracking."
Proceedings of the 24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2015.

Englehardt, Steven, and Narayanan, Arvind. "Online tracking: A 1-million-site measurement and anal-
ysis." Manuscript, 2016.

Cookies That Give You Away:
The Surveillance Implications of Web Tracking

Steven Englehardt
Princeton University
ste@princeton.edu

Dillon Reisman
Princeton University

dreisman@princeton.edu

Christian Eubank
Princeton University
cge@princeton.edu

Peter Zimmerman
Princeton University

peterz@princeton.edu

Jonathan Mayer
Stanford University

jmayer@stanford.edu

Arvind Narayanan
Princeton University

arvindn@princeton.edu

Edward W. Felten
Princeton University

felten@princeton.edu

ABSTRACT
We study the ability of a passive eavesdropper to leverage
“third-party” HTTP tracking cookies for mass surveillance.
If two web pages embed the same tracker which tags the
browser with a unique cookie, then the adversary can link
visits to those pages from the same user (i.e., browser in-
stance) even if the user’s IP address varies. Further, many
popular websites leak a logged-in user’s identity to an eaves-
dropper in unencrypted traffic.

To evaluate the effectiveness of our attack, we introduce
a methodology that combines web measurement and net-
work measurement. Using OpenWPM, our web privacy
measurement platform, we simulate users browsing the web
and find that the adversary can reconstruct 62—73% of a
typical user’s browsing history. We then analyze the effect
of the physical location of the wiretap as well as legal re-
strictions such as the NSA’s “one-end foreign” rule. Using
measurement units in various locations—Asia, Europe, and
the United States—we show that foreign users are highly
vulnerable to the NSA’s dragnet surveillance due to the con-
centration of third-party trackers in the U.S. Finally, we find
that some browser-based privacy tools mitigate the attack
while others are largely ineffective.

1. INTRODUCTION
How much can an adversary learn about an average user

by surveilling web traffic? This question is surprisingly tricky
to answer accurately, as it depends on four things: the struc-
ture of the web, the mapping of web resources to the topol-
ogy of the global Internet, the web browsing behavior of a
typical user, and the technical capabilities and policy re-
strictions of the adversary. We introduce a methodology for
quantifying the efficacy of passive surveillance. Our tech-
nique combines web measurement, network measurement, a
client model (that incorporates user browsing behavior, web
browser policies and settings, and privacy-protecting exten-
sions), and an adversary model.

More specifically, the adversary has the ability to inspect
packet contents and wishes to either track an individual tar-
get user or surveil users en masse. A key challenge for the

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741679.

adversary is the lack of persistent identifiers visible on the
network (in Section 3 we discuss why IP addresses are inad-
equate). However, the adversary can observe HTTP cookies
in transit. Indeed, both the NSA and GCHQ are known to
use such cookies for surveillance (Section 3).
Our work starts with three insights. First, the presence

of multiple unrelated third-party cookies on most web pages,
albeit pseudonymous, can tie together most of a user’s web
traffic without having to rely on IP addresses (Figure 1).
Thus the adversary can separate network traffic into clus-
ters, with each cluster corresponding to only one user (or
more precisely, one browser instance). A single user’s traffic
may span more than one cluster if the linking is imperfect.
Second, a significant portion of a typical user’s traffic

traverses U.S. borders even when the user is outside the
U.S. and browses local content. As it turns out, such sites
frequently include third-party resources such as analytics
scripts, tracking pixels, and advertisements from U.S. servers.
This leaves foreign users particularly vulnerable to the NSA’s
wiretaps within the U.S. under the “one-end foreign” rule
(Section 3).
Third, although most popular websites now deploy HTTPS

for authentication, many web pages reveal an already logged-
in user’s identity in plaintext. Thus, an adversary that can
wiretap the network can not only cluster together the web
pages visited by a user, but can then attach real-world iden-
tities to those clusters. This technique relies on nothing
other than the network traffic itself for identifying targets.
Figure 1 illustrates the basis for our work. The adver-

sary observes the user visit three different web pages which
embed trackers X, Y or both. The user’s IP address may
change between visits to each page, though we assume it is
consistent for the request to site A and the request to A’s
embedded tracker X. But there is no way to tie together her
visits to pages A and B until she visits C after which all three
visits can be connected. The unique cookie from X connects
A and C while the one from Y connects B and C. We as-
sume here that the user has visited pages with both trackers
before so that cookies have already been set in her browser
and will be sent with each request. While IP address is a
convenient method to link a request to a first party page
to the corresponding request to an embedded third party
tracker, it is not necessary. In Section 6.1 we show how this
linkage can be achieved even if the IP address cannot be
observed at all or if an IP address is shared by many users.
Contributions. Our contributions are both conceptual

and empirical. First, we identify and formalize a new pri-

Figure 1: Illustration of link between
each of a single browser’s visits to
three first-party pages using two dif-
ferent third-party tracking cookies.
The user accesses the web at three dif-
ferent times, behind three different IP
addresses.

C.com

IP 3.3.3.3
"ID-X=xxx"

IP 3.3.3.3
"ID-Y=yyy"

IP 3.3.3.3
"ID-C=ccc"

B.com

IP 1.1.1.1
"ID-A=aaa"

XX
XX

YY

A.com

YY

IP 2.2.2.2
"ID-B=bbb"

IP 1.1.1.1
"ID-X=xxx"

IP 2.2.2.2
"ID-Y=yyy"

vacy threat from packet sniffing. While the technique of
utilizing cookies to target users is well known, we formulate
the attack concretely in terms of the following steps: (1) au-
tomatically classifying cookies as unique identifiers (2) using
multiple ID cookies to make transitive inferences and clus-
tering HTTP traffic, (3) geographically tagging the flow of
traffic, and (4) inferring real-world identity from HTTP re-
quest and response bodies. We believe this attack to be the
strongest known way for a passive adversary to utilize web
traffic for surveillance.

Second, we rigorously evaluate the above attack model us-
ing a novel methodology that combines web measurement,
network measurement, a user model, and an adversary model
(Section 4). We simulate realistic browsing behavior and
measure the actual cookie ecosystem. This requires nuanced
techniques along several fronts: (1) a crawling infrastructure
based on browser automation to more closely simulate real
users (2) a model of browsing history derived from real user
behavior, and (3) network measurements to help verify the
robustness of geolocation data.

Third, we present an exhaustive empirical evaluation of
browser privacy settings and privacy extensions to discover
how well a proactive user can protect himself against the at-
tack model we’ve defined. Specifically, we measure how each
of the following privacy measures affect the effectiveness of
the attack: blocking all third-party cookies, blocking only
those from sites not visited directly, setting Do Not Track
(DNT), using Ghostery, and using HTTPS Everywhere.1

Results. We simulate users that make 0 to 300 web
page visits spread out over a 2–3 month period. We consider
users located in several possible countries. For each such set
of visits, we perform clustering using the method described
above and find the “giant connected component.” For non-
U.S. users, we consider an adversary with wiretaps in the
target user’s country as well as one with wiretaps in the U.S.

At a high level, our results show that for a U.S. user, over
73% of visits fall into this connected component. The clus-
tering effect is extremely strong and is robust to differences
in the models of browsing behavior. Clustering even occurs
when the adversary is able to observe only a small, random
subset of the user’s requests.

Non-U.S. locations show a lower degree of clustering due
to a lower number of embedded third-parties: over 59% of
traffic falls into the giant connected component. If the adver-
sary is further restricted to be in the U.S., the clustering level
does drop significantly (12% – 20%), but this is still surpris-
ingly high given that these users are browsing local content.

1DNT: http://donottrack.us/, Ghostery: https://www.
ghostery.com, HTTPS-E: https://www.eff.org/https-
everywhere

Second, we measure the presence of identifying informa-
tion in plaintext among popular (Alexa Top 50 U.S.) web-
sites. 56% of sites transmit some form of identifying informa-
tion in plaintext once a user logs in, whether first name, first
and last name, username, or email address. The majority
of these (42% of websites overall) present unique identifiers
(username or email address) in the clear.
Third, we show that many built-in browser protections are

able to reduce but not fully mitigate the attack. The most
effective blocking solution, Ghostery, still allows 24.2% of a
user’s traffic to be clustered, while alternative solutions have
far less of an impact.
Implications An adversary interested in targeted surveil-

lance can proceed as follows: (1) Either scan for the target’s
identity in plaintext HTTP traffic, or use auxiliary methods
to obtain the target’s cookie ID on some first-party page (2)
From this starting point, transitively connect the target’s
known first-party cookie to other third-party and first-party
cookies of the target. On the other hand, an adversary inter-
ested in en masse surveillance can first cluster all observed
HTTP traffic, albeit at a high computational cost, and then
attach identities to these clusters using the methods above.
Our attacks show the feasibility of either adversary’s goal.
What can the adversary do after attaching an identity to a

cluster of web traffic? First, browsing history itself could be
the information of interest, as in the NSA plan to discredit
‘radicals’ based on browsing behavior, such as pornography
[4]. Second, further sensitive information might be found in
unencrypted web content such as preferences, purchase his-
tory, address, etc. Finally, it can enable active attacks such
as delivering malware to a targeted user [47, 19].

2. RELATED WORK
Our work draws from two previously independent bodies

of research. The first analyzes the privacy implications of
third-party cookies and the second analyzes the ability of a
network eavesdropper to infer sensitive information. We de-
scribe each in turn. To our knowledge, the two sets of ideas
have not been combined before.
Third-party tracking: prevalence and privacy im-

plications. There have been several notable results uncov-
ering or quantifying various types of online tracking: cookies
[28, 45], flash cookies (LSOs) including respawning behavior
[46, 9, 38, 6], and browser fingerprinting [41, 7, 6]. The abil-
ity of trackers to compile information about users is further
aided by PII leaks from first parties to third parties [29, 30,
27] and “cookie syncing”, or different third-party trackers
linking their pseudonymous cookies to each other [42, 6].
While this body of research helps us understand what

trackers themselves can learn, it does not address the ques-
tion we are interested in, which is what an eavesdropper can

learn through cookies and identifier leaks. The latter is influ-
enced by many additional factors including geographic loca-
tion of the trackers and the adoption of HTTPS by websites.

Yen et al. show how IP, cookies and usernames can be
combined to track devices reliably even when any one of
these identifiers may be individually unreliable [50]. The
similarities to our work are superficial: we study linkage by
an eavesdropper who utilizes third-party cookies rather than
a website that uses its first-party cookies. The goals are also
different: learning users’ web histories vs. ID-ing devices.

There are various client-side tools to block, limit or visual-
ize third-party tracking. These are too numerous to list ex-
haustively, but a sampling include Adblock Plus, Ghostery,
ShareMeNot [1], Lightbeam, and TrackingObserver [2]. Stud-
ies that have quantified the privacy effect of these tools in-
clude [35, 11, 20].

Surveillance: attacks, defenses, and measurement.
While there is a large body of work on what a passive adver-
sary can infer about users, virtually all of it concerns attacks
arising from side-channels in encrypted traffic, particularly
Tor. While Tor is insecure against a global passive adver-
sary, traffic analysis attacks have been studied with respect
to passive and active adversaries with less comprehensive
access to the network [39, 40]. Website fingerprinting al-
lows a local eavesdropper to determine which of a set of web
pages the user is visiting, even if the connection is encrypted,
by observing packet lengths and other features [25, 24, 43].
Other side-channel attacks include timing attacks on SSH
[48], leaks in web forms, [15] and inferring spoken phrases
from VoIP [49].

By contrast, we study users who do not use a properly
configured Tor browser. The adversary’s main challenge is
not linking origin and destination, but rather linking differ-
ent traffic flows to the same (real-world) identity.

Closer to our work, Arnbak and Goldberg studied how
the NSA could actively redirect U.S. traffic abroad, so as
to bring it within broader surveillance authorities [8].2 The
IXMaps tool allows users to interactively view the routes
taken by their traffic and intersection with known NSA wire-
tapping sites [16].

3. BACKGROUND AND THREAT MODEL
In recent years, a combination of technical research, leaks,

and declassifications has provided unprecedented transparency
into Internet surveillance by governments. Some nations,
such as Iran and Bahrain [17], practice near-total Inter-
net monitoring. Others, including the United States and
Britain, have large-scale technical capacity—but subject to
legal limits. This section explains how the National Security
Agency (NSA) and Government Communication Headquar-
ters (GCHQ) have used third-party cookies in their respec-
tive surveillance programs, as well as briefly discusses the
laws that govern surveillance of Internet traffic within the
United States. It then sets out a threat model that moti-
vates our study.

NSA and GCHQ use of third-party cookies. Leaked
documents reflect at least three ways in which the NSA has
used third-party cookies obtained from its Internet inter-
cepts. First, the agency has investigated passively identify-

2It is not apparent whether the NSA has redirected traffic
in this manner, nor is it apparent whether the agency would
consider the practice lawful.

ing Tor users by associating cookies with non-Tor sessions.
Specifically, the NSA attempted to link a Google third-party
advertising cookie between Tor and non-Tor sessions [5].
Second, the agency has an active, man-in-the-middle sys-

tem (“QUANTUMCOOKIE”) that induces cookie disclosure
[5]. Applications include identifying Tor users and targeting
malware delivery.
Third, the agency has used passively obtained cookies to

target active man-in-the-middle exploitation. On at least
one occasion, the NSA offered a Google cookie to single out
a user for exploitation [47].
In addition to these specific applications, HTTP analyti-

cal tools (such as “XKEYSCORE”) incorporate cookie data.
An analyst could easily take advantage of third-party cook-
ies when querying intercepted data [21].
Several leaked documents also reveal two GCHQ programs

for surveilling and targeting users via third-party tracking
data, both from web browsers and mobile applications. One
program,“MUTANT BROTH”, a repository of tracking cook-
ies linked with additional metadata such as IP addresses and
User-Agent strings. This repository is reported to have been
used for targeted malware delivery [19].
The other program, “BADASS”, offers a similar repository

and search interface for querying information leakage from
mobile apps. The system collects and extracts leaked iden-
tifiers, device and operating system details, and additional
information transmitted in plaintext [31].
United States Internet monitoring. The law sur-

rounding NSA authority derives from a complex mixture of
constitutional doctrine, statutory restrictions, and executive
regulation. One emergent property is that, when at least one
party to a communication is outside the United States, it is
eligible for warrantless surveillance.3 “Upstream” intercep-
tion devices, controlled by the NSA and foreign partners,
are exposed to large volumes of this “one-end foreign” In-
ternet traffic. While the details remain classified, it also
appears that a substantial quantity of one-end foreign traf-
fic is temporarily retained. Leaks indicate that at least some
installations of “XKEYSCORE,” a distributed analysis sys-
tem, maintain a multi-day buffer of Internet traffic [12].
Threat model. In developing a threat model, there are

two extremes, neither of which is desirable. The first is to as-
sume that the adversary is all-powerful, as in cryptographic
security arguments. Such a model is both uninteresting and
largely irrelevant to the real world. The other extreme is to
focus too closely on the NSA or GCHQ’s activities. Such a
model may not yield insights that apply to other surveillance
programs and the results may be invalidated by changes to
the respective agency’s programs. We seek a careful mid-
dle ground and arrive at a model that we believe is realistic
enough to influence policy debates and privacy tool devel-
opment, yet general enough for our analyses and algorithms
to be of independent scientific interest and for our results to
hold up well over time.
We consider only passive attacks for several reasons. First,

passive attacks appear to be more powerful than generally

3One-end foreign wireline interceptions inside the United
States are generally governed by Section 702 of the FISA
Amendments Act [22]. Two-end foreign interceptions and
one-end foreign wireless interceptions inside the United
States are generally governed by Executive Order 12333.
Interceptions outside the United States are also generally
governed by Executive Order 12333 [3].

realized, and we wish to highlight this fact. Second, even an
active attack must usually begin with passive eavesdropping.
An adversary must have refined criteria for targeting the
active attack. Finally, almost all active attacks carry some
risk of detection. Passive attacks much easier to mount,
especially at large scale.

We consider a powerful adversary with the ability to ob-
serve a substantial portion of web traffic on the Internet
backbone. The adversary’s view of a given user’s traffic may
be complete or partial. We model partial coverage in two
ways: by assuming that a random subset of the user’s HTTP
requests and responses flows through one of the adversary’s
wiretaps, or that the adversary taps the portion of the user’s
traffic that traverses United States borders. While the NSA
has many interception points outside U.S. borders as well,
the U.S.-only model provides a useful, approximate lower
bound of the agency’s abilities. We also assume that the ad-
versary cannot routinely compromise HTTPS, so cookies or
other identifying information sent over HTTPS are of no use.

The adversary may have one of two goals: first, he might
want to target a specific individual for surveillance. In this
case the adversary knows either the target’s real-world iden-
tity or a single ID cookie known to belong to the target
(whether on a first or third party domain). Second, the ad-
versary might be engaged in mass surveillance. This adver-
sary would like to “scoop up” web traffic and automatically
associate real-world identities with as much of it as possible.

The adversary’s task is complicated by the fact that the IP
addresses of the target(s) may change frequently. A user’s
IP address could change because she is physically mobile,
her ISP assigns IP addresses dynamically, or she is using
Tor. Leaked GCHQ documents show that their search in-
terface even warns analysts to take care when selecting data
on dynamic IPs [19]. Browsing from a smartphone is a case
worth highlighting: Balakrishnan et al. find that “individ-
ual cell phones can expose different IP addresses to servers
within time spans of a few minutes” and that “cell phone IP
addresses do not embed geographical information at reason-
able fidelity” [10].

To link users across different networks and over time, the
adversary aims to utilize first-party and third-party unique
cookies assigned to browser instances by websites. He can
easily sniff these on the network by observing the “Cookie”
field in HTTP request headers and the “Set-Cookie” field
in HTTP response headers. Cookies set by an“origin”(roughly,
a domain) that have not expired are automatically sent as
part of requests to the same origin.

4. METHODOLOGY
In this study, we wish to simulate real users browsing over

a period of time, detect the creation of unique identifiers,
and measure the flow of both unique pseudonymous and
real-world identifiers to adversaries with differing collection
capabilities. We present a summary of our methodology be-
low, and provide detailed descriptions of our measurement
and analysis methodology in the following subsections.

1. Define all clients and adversaries to be studied, according
to the following models:

• client: (location, browsing model, browser configura-
tion) which encodes the client’s geographic and net-
work location, which sites the client visits, and the
browser settings and plugins the client browses with.

• adversary: (location, policy restrictions) which encodes
the adversary’s geographic and network location, and
the policy restrictions on data use and collection.

2. For each unique (user location, browsing model) pair of
interest, generate N simulated browsing profiles as de-
fined in Section 4.1 and create a corresponding client in-
stance for each one.

3. Use the measurement infrastructure (Section 4.2) to sim-
ulate the users defined in Step 2 and collect all network
traffic (i.e. HTTP requests, responses, and cookies). Our
measurements are summarized in Section 4.3.

4. For each (client location, web resource) pair of interest,
determine the geographic path of traffic using the proce-
dure described in Section 4.4.

5. Run the ID cookie detection algorithm detailed in Sec-
tion 4.5 to flag identifying cookies

6. For each (client, adversary) pair of interest, do the follow-
ing for all instances of the client and average the results:

• filter the list of requests based on the geographic loca-
tion and policy restrictions of the adversary using the
geographic mapping created in Step 4.
• run the cookie linking algorithm detailed in Section 4.6

using the ID cookies detected in Step 5.
• report the size of the connected components in the link-

ing graph (as a ratio of total number of visits)
• report the number of sites known to leak real-world

identifiers (Section 4.7) contained in each component.

4.1 Browsing models
We use two browsing models to create simulated user pro-

files. One of our models was a naive one – the user visits
random subsets of the Alexa top 500 sites local to the lo-
cation of the measurement instance. For example, a mea-
surement instance in Japan would sample the Alexa top-500
sites for users in Japan, while a measurement instance in
Ireland would sample from the Alexa top-500 sites for users
in Ireland.
Our other browsing model aims for realism by making

use of the AOL search query log dataset. The dataset con-
tains queries made by 650,000 anonymous users over a three
month period (March–May 2006). We create a browsing pro-
file from a user’s search queries as follows. First, we remove
repeated queries. Next, for every search query performed by
the user, we submit the query to Google search and retrieve
the links for the first five results. Users were selected on the
basis that they performed between 50 to 100 unique queries
which resulted in browsing profiles of 250 to 500 URLs. This
is almost identical to the method that was used in [32].
Of course, only a subset of real users’ web browsing results

from web searches. Nevertheless, we hypothesize that our
profiles model two important aspects of real browsing histo-
ries: the distribution of popularity of web pages visited, and
the topical interest distribution of real users. Popular web-
sites may embed more trackers on average than less popular
sites, and websites on the same topic may be more intercon-
nected in terms of common embedded trackers. Failure to
model these aspects correctly could skew our results.
The reason we recreate the users’ searches on a current

search engine rather than simply using the sites visited by
the AOL users (available in the dataset) is that the distri-
bution of websites visited by real users changes over time as
websites rise/fade in popularity, whereas the distribution of
users’ interests can be expected to be more stable over time.

4.2 Measurement infrastructure
We built our study on top of a web measurement plat-

form, OpenWPM [18], which we developed in earlier work.
The platform has the ability to drive full browsers, such
as Firefox, with any set of browser extensions and collects
a wide range of measurement data as it visits sites.4 In
our study, we use version 0.1.0 of OpenWPM to drive Fire-
fox measurement instances from which we record all HTTP
data for analysis. We configure the measurement instances
to browse with profiles generated from the models described
in Section 4.1, and deploy the crawls on cloud machines in
the United States, Japan, and Ireland.

4.3 Measurements
We deployed OpenWPM on Amazon EC25 instances in

three regions: Northern Virginia, United States, Dublin, Ire-
land, and Tokyo, Japan. We chose these to achieve as much
geographic diversity as possible from Amazon’s limited set
of regions. Each measurement took place on an m3.medium
instance of Ubuntu 14.04 in June 2014. All measurements
were ran using 25 simulated profiles for each (user location,
browsing model, browser configuration) combination.

When making measurements from within the U.S., we
were able to utilize the more realistic AOL browsing model.
We used it under serveral browser configurations: no cookie
blocking, blocking third-party cookies from sites which the
user has not yet visited as a first-party, blocking all third-
party cookies, setting the DNT flag, browsing with HTTPS
Everywhere installed, and browsing with Ghostery installed
and configured to block all possible entities.

For measurements outside of the Unites States, we were
not able to utilize the AOL browsing model as the search
terms and results are likely biased towards U.S. users. In-
stead, we fall back to the Alexa browsing model when do-
ing comparisons between geographic locations. To compare
measurements between the United States, Japan, and Ire-
land we used an Alexa browsing model localized to the most
popular sites within each country.

To run the identifying cookie detection algorithm described
in Section 4.5, we also require synchronized measurements
of each site visit from two separate machines. We ran these
measurements from the Northern Virginia location and vis-
ited all of the links which may be visited by any other mea-
surement instance (13,644 links total).

For all measurements, web pages were visited approxi-
mately once every ten seconds. We set a 60 second timeout
per visit and restarted the browser with consistent state in
the event of a crash.

4.4 HTTP Traffic geolocation
In order to determine the if an HTTP request is bound

for a specific location of interest, we augment commercially
available geolocation data with additional measurement data.
After each measurement instance finished browsing, we ran a
traceroute6 to each unique hostname and recorded the full
output. All IPs returned in each hop of the traceroute were
geo-located with the MaxMind GeoLite27 country databases.

4https://github.com/citp/OpenWPM
5https://aws.amazon.com/ec2/
6Our traceroutes were configured to use a single probe per
hop with a maximum of 25 hops.
7http://dev.maxmind.com/geoip/geoip2/geolite2/

The mapping between IP and physical location is not one-
to-one. Instead, there may be many servers in different lo-
cations which all share the same IP address for various pur-
poses. One such example is anycasting, the process by which
several nodes share the same address and the user is routed
to the nearest node.8

Thus, when determining if an HTTP request enters a spe-
cific country it is not sufficient to simply geolocate the IPs re-
turned from a traceroute to that host. As a solution, we im-
plement a simplified version of the geo-inconsistency check
proposed by Madory, et.al. [33]. We check that the min-
imum round-trip time (RTT) returned by a traceroute to
each hop is greater than the physical minimum RTT assum-
ing a direct fiber-optic connection between the two locations.
Algorithm 1 summarizes the steps we take to perform this

origin-specific geolocation check. Broadly, if the geolocation
of a specific hop returns as being within the country of inter-
est, we find the travel time between the (latitude, longitude)
pairs of the origin server and the geolocated IP. If geolocated
IP’s location is on the country level, we choose the closest
point in the geolocated country from the origin location.
We then use the haversine forumla to calculate the distance
between the two points and find the minimum RTT:

minRTT =2∗ haversine distance∗n
c

where c is the speed of light in units matching the distance
measurement and n is the optical index of the fiber. In our
study, we use n=1.52 as the reference optical fiber index.

Data: httpRequest, testCountry
Result: True/False if httpRequest enters testCountry
origin ← latitude/longitude of origin server
hostname ← parse httpRequest.url
for each hop in hostname traceroute do

location ← geolocate(hop.IP)

if location not in testCountry then
continue

if location not city code then
location ← closest point to origin within country

dist ← haversine(origin,location)
minRTT ←2 ∗ minimum time to travel dist

if hop.RTT > minRTT then
return True

end
return False

Algorithm 1: Origin-specific geolocation check

This check does not guarantee that a specific request en-
ters a country, as network delays could artificially push a
traceroute RTT above the threshold. Our assumption of
a straight-line connection and optical fiber index is also un-
likely to hold in practice. Instead, this check provides a more
realistic upper-bound on the amount of traffic an adversary
at a specific geographic location can monitor. For example,
this check eliminated the numerous examples we observed
of traceroutes originating in Ireland and Japan having ge-
olocations within the United States with RTTs of <5ms.
We use a simplified version of this check when examining

if requests are exiting the United States. Since a request can

8CloudFlare, for example, claims to use anycasting as part of
their content delivery network: https://www.cloudflare.
com/features-cdn

be bound for any non-U.S. destination, we do not attempt to
find the closest point in each country. Instead, we only check
that the observed RTT is greater than the minimum RTT
to the geolocation point regardless of the point’s location.

4.5 Detecting unique identifier cookies
An essential task to quantifying our attack is the ability

to detect which cookies are identifying. Identifiers can be
stored in many locations (e.g. HTTP cookies, Flash cook-
ies), but to be sent back to trackers the identifiers must
be included in HTTP cookies or query parameters of the
request. We choose to focus HTTP cookies as they are in-
cluded in every request and thus provide a generic approach
that does not necessitate the parsing of URL parameters for
all sites under surveillance. Furthermore, non-cookie track-
ing techniques are ordinarily paired with tracking cookies;
our approach indirectly incorporates an adversary’s capabil-
ities against those technologies.

For our analysis, we are interested in the host (the domain
that set the cookie), name, and value fields of a cookie and
determine if the data stored in the value field is identifying.
This algorithm is a modified version of one we used in a
previous study [6].

To be useful to the adversary as identifiers, cookie values
must have two important properties: persistence over time
and uniqueness across different browser instances. Based on
these criteria we develop an algorithm that classifies cookies
as identifiers. Our algorithm is intentionally conservative,
since false positives risk exaggerating the severity of the at-
tack. Our method does have some false negatives, but this
is acceptable since it is in line with our goal of establishing
lower bounds for the feasibility of the attack.

We define a cookie to be an identifier cookie if it meets
the following criteria: (1) It is long-lived, with expiry times
longer than three months. The three month cut-off matches
our AOL dataset three month window. (2) It’s value is sta-
ble, and remains constant through all page visits. Dynamic
value strings may be timestamps or other non-identifiers. (3)
Has a constant-length across all our datasets. (4) Is user-
specific, so the values are unique across different browser in-
stances in our dataset. (5) Has a high-entropy value string,
with values sufficiently different between machines to enable
unique identification. To test for this, we used the Ratcliff-
Obershelp [13] algorithm to compute similarity scores be-
tween value strings. We filtered out all cookies with value
strings that were more than 55% similar to value strings
from the corresponding cookies of different measurements.

We run our detection algorithm on the synchronized mea-
surement data described in Section 4.3. By using synchro-
nized measurements, we avoid the problem of sites chang-
ing their cookie interaction behavior depending on a user’s
browsing time. For instance, in relation to the entropy
heuristic, cookies with values that depend on time stamps
will be easier to detect and ignore if the crawls have nearly
the same timestamps for all actions. For other measure-
ments, we extract identifying cookie values by searching for
cookies which match the identifying (host, name) pairs clas-
sified in the synchronized measurements.

4.6 Transitive Cookie Linking
Building the graph. Once we determine which cook-

ies contain unique identifiers, we use the http_requests,
http_responses, and http_cookies tables of the OpenWPM

crawl database to cluster traffic. From these tables, we con-
struct cookie linking graph using Algorithm 2, which cre-
ates a graph with two node types: URL nodes and Cookie
nodes. URL nodes are identified by the tuple (U, <node

url>, <request’s geographic destination>) and cookie
nodes consisting of the tuple (C, <cookie_value>).
Edges are created under the assumption that a network

adversary will be able to link all requests and responses for
a single page visit together if he can both follow the chain
of referrer and redirect headers for HTTP requests from a
single IP. URL — URL edges are created under two condi-
tions: (1) one url node was observed as the referer on a
request to the connected url node or (2) one url node was
returned in the location field of a 301 or 302 redirect re-
sponse to the request for the connected url. An adversary is
only able to link together different page visits by the shared
cookie values loaded on each page. As such, URL — Cookie
edges are created whenever a cookie value is observed in
the Cookie field of an HTTP Request header or the Set-

Cookie field of an HTTP Response header. Notice that the
only linking between separate page visits in the graph occurs
when two HTTP requests/responses happen to link to the
same Cookie node, while referrer and redirection chaining
provides linking within a page visit.

Data: httpRequests and httpResponses for useri
Result: Graph Gi for useri with URL & Cookie nodes
for each visited url do

for httpRequest do
if HTTPS then

continue

urlNode ← createNode (U, req.url, req.inUS)
G.addNode(urlNode)

if req.referer is not empty then
refNode ← createNode (U, ref.url)
G.addNode(refNode)
G.addEdge(refNode, urlNode, req.inUS)

if req.cookie is not empty and is identifying
then

cookieNode ← createNode (C, cookie.value)
G.addNode(cookieNode)
G.addEdge(cookieNode, urlNode, req.inUS)

end
for httpResponse with Set-Cookie do

if HTTPS then
continue

if cookie is identifying then
cookieNode ← createNode (C, cookie.value)
urlNode ← node for requested url
G.addNode(cookieNode)
G.addEdge(cookieNode, urlNode, req.inUS)

end
for httpResponse with location field do

if HTTPS then
continue

urlNode ← node for requested url
locNode ← createNode (U, loc.url)
G.addNode(locNode)
G.addEdge(locNode, urlNode, req.inUS)

end

end
Algorithm 2: Cookie Linking algorithm

Analyzing the graph. In our analysis all graphs only
contain traffic for a single user. This allows us to find the
connected components within the graph and utilize the gi-
ant connected component (GCC) to find the amount of a
single user’s traffic an adversary is able to link. Once the
GCC is found, we take the intersection of the set of URLs
contained in the GCC with the set of URLs visited during
the measurement to find the amount of top-level page visits
an adversary is able to observe. When the adversary applies
the attack in a multi-user setting, they will have many dis-
joint subgraphs per user of varying size. Depending on the
adversary’s goal, these clusters could be processed to link
them individually to real world identities, or disambiguated
by identifying disjoint sets of cookies for the same sites.

When evaluating adversaries restricted by policy or ge-
ographic constraints, an additional pre-processing step is
required before finding the GCC. Utilizing the geolocation
data from Section 4.4, we are able to filter nodes from the
cookie linking graph based on geographic restrictions. In
order to determine the amount of traffic for a specific user
that a U.S. restricted adversary has access to, we filter all
edges from the cookie linking graph that were not added
due to U.S. bound requests. We create a subgraph from this
filtered edge list and continue the normal linking analysis.

4.7 Identity leakage in popular websites
We conducted a manual analysis of identity leaks on the

most popular pages which allow account creation. The top-
50 pages are a useful representation for how heavily-used
sites with user accounts manage data, and are more likely
to be visited by a real user. We identified 50 of the Alexa top
68 U.S. sites that allow for account creation and signed up
test accounts when possible. We then examined the home-
page, account page, and several random pages on each site
to see if any of identifiers are displayed on an HTTP page. If
so, an adversary collecting HTTP traffic for that user could
inspect the contents of the page to find the identifier and
link it to any tracking identifiers also loaded on the page.

5. RESULTS
In the course of our measurements we make nearly 100,000

page visits to 13,644 distinct sites under several client and
adversary models. Of these 13,644 sites, nearly all of them
(13,266) make requests for external content from a host dif-
ferent than the domain of the host visited.

5.1 Clustering
In this section, we evaluate the effectiveness of our pro-

posed attack under several (adversary, client) models. We
are primarily interested in the number of web pages visited
by a user which are located in the giant connected compo-
nent (GCC) relative to the number of pages with embedded
third-parties. We focus on large connected components be-
cause the probability that a cluster will have at least one
page visit that transmits the user’s real-world identity in
plaintext increases with the size of the cluster. Manual in-
spection shows that page visits not in the large connected
components belong to small clusters, typically singletons,
and are thus unlikely to be useful to the adversary.

An adversary’s incomplete view. We must consider
that the adversary’s position on the network may not give
them a full view of any user’s traffic. The adversary’s view
may be limited due to its policy or geographic restrictions

as described in Section 3, however even with these consider-
ations an adversary may not see all of a user’s traffic. A user
may change locations on the network or alternative routes
taken by packets through the network might result in gaps
in the adversary’s data collection. To model the adversary’s
partial view of the user’s browsing activity, we repeat our
analysis with random subsets of web pages of various sizes.
For illustration, Figure 2a shows how the GCC of a single

AOL user’s page visits (y-axis) grows as we vary the com-
pleteness of the adversary’s view of the user’s HTTP traffic
(x-axis). Each data point was computed by taking 50 inde-
pendently random samples of page visits. For each sample
we apply the clustering algorithm and compute the fraction
contained in the GCC. We then average the fractions across
the 50 samples. Since we wish to simulate these page vis-
its being spread out over time, only cookies with expiration
times at least three months into the future were included
when computing the clusters.

(a) Individual AOL User
(b) Average AOL & Alexa Users

Figure 2: Clustering, random subsets of traffic

Thus for each (x,y) pair we can say that if the adver-
sary captures x web page visits by a user in the course of
a wiretap, they could link approximately y% of those visits
into a single cluster. The numbers we see for this user are
typical — the fraction is around 55% for even very small
clusters and exceeds 60% as the cluster size increases. As
discussed in Section 4, we average all results over N = 25
client instances for all (client, adversary combinations).
We alternatively examined an adversary who sees subsets

of web pages that the user visited in chronological order
(perhaps the adversary only observed the user for a short
period of time). These results had no statistically signifi-
cant differences from random subsets. As such, we present
the remainder of the graphs using random subsets.
Unrestricted Adversary — AOL User Profiles We

first examine the level of clustering an adversary can achieve
when it is not subject to any policy or geographic restric-
tion. The results for users simulated under the AOL brows-
ing model and no blocking tools are included in Figure 2b.
These results show that the clustering remains very similar
to the single user case of Figure 2a, except that no incon-
sistencies remain. After just 55 web page visits observed
by the adversary, the growth of the GCC flattens out to
62.4±3.2% after 200 sites. For the remaining results, we will
only present values for this asymptotic case of 200 sites, as
the shape of the GCC growth is nearly identical in all cases.
Unrestricted Adversary — Alexa profiles Next we

examine the effect of the browser model on the ability of
an unrestricted adversary to cluster user data. We hold
the user location and browser configuration set to browsing
within the U.S. with no blocking settings. Figure 2b com-
pares the results for Alexa profiles for U.S. users against the
AOL profiles. The Alexa clustering shows a similar growth

pattern with an offset around 10% higher on average, with
an overall level of clustering after two sites of 72.9±1%.

5.2 U.S. Users Under One-End Foreign
We now consider an adversary located within the United

States who is constrained by the“one-end foreign” rule when
collecting data on U.S. users. The client model used in eval-
uating this adversary is U.S.-based users browsing random
subsets of the Alexa top-500 U.S. sites with no blocking
tools. The size of the largest cluster observed reduces to
just 0.9±0.2% of visited sites averaged across all instances.

To understand why this occurs, we must look at the com-
position of HTTP traffic. For the average user in this (ad-
versary, client) pair, at least one non-U.S. sub-resource re-
quest occurs for 31.7% of the Alexa top-500 sites in the U.S.
However, the overall number of HTTP Requests leaving the
United States is comparatively small, accounting for just
2.0% of all requests. Only considering traffic where an ad-
versary could learn the top-level domain through the re-
ferrer headers, this reduces to 22.7% of visits and 1.6% of
requests.9 Although nearly a quarter of a user’s browsing
history is visible to the adversary, we show that cookie link-
ing is an ineffective method to cluster this traffic.

5.3 Cookie Linking in Non-U.S. Traffic
We now explore the level of clustering that is possible

for traffic with a non-U.S. origin. We examine two differ-
ent cases in this section: we first show the level of clustering
possible under the assumption that the adversary will see all
web requests that occur for a specific page visit and then we
show what an adversary observing U.S.-bound traffic would
see. A key point to note is that even if the majority of a web-
site’s resources are requested from a local server, embedded
third-parties may cause U.S.-bound requests to occur which
have the domain of the first-party as a referrer.

User Location Unrestricted Adver. US-based Adver.
Japan 59.6±1.2% 20.9±0.7%
Ireland 63.8±1.2% 12.8±1.1%

Table 1: Clustering of non-U.S. users by an adversary with
no restrictions vs. one restricted to U.S. bound traffic.

Unrestricted Adversary — non-U.S. profiles When
all requests are considered, the level of clustering is similar
to that of the U.S.-based Alexa user simulations. Table 1
shows amount of clustering that occurs for users in Ireland
and Japan under the random subset clustering model. Simu-
lated users in Ireland can expect around 63% of traffic to be
clustered, while users in Japan can expect nearly 60%. We
believe the differences between user simulations generated
using Alexa’s top U.S., Japan, and Ireland lists arises from
the difference in the number of included third parties on the
first party (i.e., 62, 38, and 30 on average, respectively).

U.S. based Adversary — non-U.S. profiles We then
restrict the clustering to only consider requests which are
U.S. bound, and cluster based on the information available
to a geographically restricted adversary. This could include
an adversary within the United States, or an adversary sit-
ting at the entrance to undersea cables returning to the
United States. Table 1 shows clustering capabilities of an

9These results are broadly consistent with measurements
taken by several of this paper’s authors in past work [36].

adversary restricted to these conditions. In Ireland, we see
a reduction to around 13% of page visits and in Japan we
see a less severe decrease to 20% of visited sites.

5.4 Cookie Linking Under Blocking Tools
We now investigate several ways users may mitigate a clus-

tering attacking using currently available consumer tools.
For all blocking configurations, we make measurements us-
ing the AOL browsing model and we examine the ability of
an unrestricted adversary to cluster traffic. Measurements
are run using several different privacy settings within the
browser and two popular privacy and security add-ons.

Figure 3: Clustering under several privacy settings.

Baseline displays the level of clustering with no privacy
settings or blocking tools enabled. This represents an upper
bound on the level of tracking we would expect to see under
the other configurations.
DNT had a negligible effect on clustering, showing no sta-

tistically significant difference than without blocking.
Cookie blocking policies are more effective, particularly

when an adversary sees a low number of page visits. We
block cookies for sites that have not been visited in a first-
party context by setting “Accept third-party cookies: From
visited” in Firefox (this is also the default in Safari). When
set, the level of clustering reduces to 43.9±3.2%. Blocking
all third-party cookies further reduces this to 30.2±3.0%.
HTTPS Everywhere is an extension created by the EFF to

force HTTPS connections whenever available. Since HTTPS
requests are not visible to an attacker, and HTTP requests
from HTTPS origins will not include a referer (preventing
the attacker from linking requests back the the original site).
A site can fall into one of four categories: no support for
HTTPS, supported but not the default, supported and used
by default, and finally, HTTPS-only. This measurement pro-
vides a picture of what happens as more sites support and
use HTTPS by default. Under our browsing model, the
number of HTTPS requests increases from 12.7% to 34.0%
and the level of clustering is reduced to 46.1±3.2%.
Ghostery is a popular list-based browser extension for

blocking third-party requests to domains considered to be
trackers. This proves to be the most effective solution for
users, reducing the level of clustering to 24.2±2.8% of vis-
ited sites. Enabling Ghostery and configuring it to block as
much as possible reduces the average number of inclusions
from external hosts to just 5.2 per first-party.

5.5 Identity Leakage
Table 2 summarizes our results from a manual survey of

the Alexa U.S. sites. We picked the top 50 sites that sup-
port account creation. 44 of the 50 websites used HTTPS
to secure login pages.10 Only 19 of those sites continued to

105 of the remaining 6 made POSTs with credentials and 1
made a GET with the credentials as a URL query parameter

use HTTPS to secure future interactions with the user after
logged in. We summarize the cleartext identity leaks for the
websites which no longer continue to use HTTPS after login.

Although a majority of sites secure user credentials on
login pages, personally identifying information (name, user-
name, email address) is transmitted much more frequently
via HTTP. Over half of the surveyed sites leak at least one
type of identifier, and 42% (not shown in table) leak either
username or email address, which can be used to uniquely
infer the user’s real-world identity. Past work [34, 29] has
found a roughly equivalent level of leakage to occur through
the Request-URI and Referer.

A representative example of the web’s identity-leak prob-
lem is imdb.com. IMDB provides a secure login page, but
once logged in, users return to an HTTP page. This page
includes the user’s full name on the homepage of the site.
Every time a user visits the site while logged in, a passive
attacker can extract the name from the unencrypted traffic.

Plaintext Leak Type Percentage of Sites
First Name 28%
Full Name 14%
Username 36%

Email Address 18%
At least one of the above 56%

Table 2: Leakage on Alexa Top 50 supporting user accounts

Furthermore, we verified that pages from these popular
sites that leak identity occur in the clusters of web pages
found in our attack. Specifically, at least 5 (and an average
9.92) of the 28 sites we found to leak some type of identity
were found in the giant connected component of every one
of the 25 Alexa U.S. users. Due to global popularity of the
top-50 U.S. sites, an average of 4.4 and 6.4 of these identity
leaking sites are found in the GCC’s of the Alexa Japan and
Alexa Ireland users, respectively. Additionally, for the AOL
profiles with no blocking, 9 of the 25 simulated users had at
least 1 identity leaker in the GCC. Of course, there are likely
also many sites outside the top 50 that leak identity and are
found in these clusters, but we did not measure these.

Taken together with our results on clustering, our mea-
surements show that a passive attack is highly feasible: after
observing only a fraction of a user’s web traffic the adversary
will be able to link the majority of the user’s web requests
together and furthermore, use the contents of the responses
to infer the user’s real-world identity.

6. DISCUSSION

6.1 Linking without IP address
So far we have assumed that the adversary sees the same

source IP address on a request to a first-party site and its
corresponding third-party tracker, and that this can be used
to link the two requests. There are at least two scenarios in
which this assumption is problematic. The first is a NAT.
If two users, Alice and Bob, behind the same NAT visit the
same web page at roughly the same time, the adversary sees
the same IP address on all ensuing HTTP requests. The
other scenario is when the user employs Tor without proper
application layer anonymization, and the adversary is able
to sniff cookies only on the path from the exit node to the
web server. (If the user is using a properly configured Tor

setup, such as the Tor browser bundle, this attack does not
work at all). Since Tor will, in general, use different circuits
for communicating with different servers, the adversary will
see different source IPs for the two requests (or may be able
to observe only one of the requests).
However the well-known “intersection attack” can be used

to link requests without using the IP address: if a cookie
value a associated with page A’s domain and a cookie value x
associated with an embedded tracker domainX are observed
multiple times near-simultaneously (e.g. within 1 second of
each other), then a and x are probably associated with the
same user. Intuition suggests that for all but the busiest of
web pages, two or three visits may be sufficient to link the
first-party and tracker cookies with each other. However,
this claim cannot be rigorously evaluated without access to
large-scale HTTP traffic and so we leave this as a hypothesis.

6.2 NSA Surveillance
Our results bear directly on the NSA’s technical capabil-

ities, against individuals both within and external to the
United States. For non-U.S. individuals, our data indicates
that the agency could have access to a majority of a per-
son’s browsing history (71.3% of visits in Ireland and 61.1%
of visits in Japan), without ever collecting data outside the
United States.11 Furthermore, we show that the agency can
link a non-trivial portion of this traffic through cookies.
Nearly a quarter of U.S. page visits are visible outside

the U.S. through third parties and referers. While we show
that linking is infeasible, this does not imply that U.S. users
browsing domestic sites are safe from NSA surveillance. Pas-
sive tracking techniques, or a static IP address, could cause
the user’s traffic to be just as vulnerable.

6.3 Mitigation by users
Figure 3 shows that users can minimize their exposure to

surveillance through cookies, but can not eliminate it all to-
gether. Since the identifiers of advertising networks play a
key part in the transitive linking of page visits, ad filtering
lists (e.g. Ghostery) are currently the most effective solution
for users. However even after blocking these lists, ISP level
identifiers like Verizon’s UIDH would cause the vulnerabil-
ity to persist [26]. Firefox’s built-in cookie blocking can also
be effective in reducing the level of traffic clustering, though
even the most restrictive option leaves nearly a third of a
user’s traffic vulnerable to clustering.
Users have very little control over identity leakage outside

of stopping the use of services. Forcing HTTPS connections
after login can help (i.e. using HTTPS Everywhere), but as
we show in our measurements, two-thirds of sites still do not
support HTTPS after this step is taken. Users can also be
careful to not reuse usernames between sites as this could
provide an additional identifier to link page visits.

6.4 Mitigation by trackers
Trackers can prevent a passive eavesdropper from piggy-

backing on their unique identifiers if they are only trans-
mitted over HTTPS. Some trackers have already deployed
HTTPS to avoid mixed content warnings when embedding
in HTTPS pages. There are also subtle issues, such session

11Alternatively, the agency could rely on collection points
just outside the U.S. That approach would fall under Exec-
utive Order 12333, which affords more latitude than Section
702 of the FISA Amendments Act.

tickets used for TLS session resumption, which can be used
by an eavesdropper to link multiple HTTPS connections to
the same browser instance similar to a cookie.

Unfortunately, a large fraction of trackers would need to
deploy such mitigation strategies for them to make a dent in
the adversary’s overall chances. As we showed in Section 5.4
with our HTTPS Everywhere measurements, the feasibility
of traffic clustering only drops by 23% when the amount
requests occurring over HTTPS more than doubles.

6.5 Limitations
A couple of important limitations of the attack must be

pointed out. First, using the Tor browser bundle likely de-
feats it. “Cross-origin identifier unlinkability” is a first-order
design goal of the Tor browser, which is achieved through a
variety of mechanisms such as double-keying cookies by first-
party and third-party [44]. In other words, the same tracker
on different websites will see different cookies. However, our
measurements on identifier leakage on popular websites ap-
ply to Tor browser usage as well. Preventing such leakage is
not a Tor browser design goal.

Simply disabling third-party cookies will also deter the at-
tack, but it is not clear if it will completely stop it. There
are a variety of stateful tracking mechanisms in addition to
cookies [14, 23, 51, 37, 6], although most are not as prevalent
on the web as cookies are.

We also mention two limitations of our study. First, while
a significant fraction of popular sites transmit identities of
logged-in users in the clear, we have not actually measured
how frequently typical users are logged in to the sites that
do so. Anecdotal evidence suggests that this number must
be high, but experiments on actual user sessions are required
for an accurate estimation of vulnerability.

Second, we use commercial geolocation data with an ad-
ditional custom metric to determine if requests enter the
United States for users in Japan and Ireland, and to de-
termine if requests leave the United States for users within
the U.S. Even with this additional check, two scenarios can
occur: requests outside the U.S. can be marked as entering
the U.S. due to an incorrect geolocation and high network la-
tency, and requests inside the U.S. can be marked as staying
in the U.S. if they are incorrectly geolocated as being further
away than the actual location of the destination (which may
still be external to the U.S.).

6.6 Other applications of our methodology
Stated in general terms, we study an adversary with a

given set of technical capabilities, network positions, and
policy restrictions, and ask, for a given user browsing model,
how much of her activity is vulnerable. Our general algo-
rithm in Section 4 can be easily adapted to study a variety
of questions that fit this framework. For example, we might
assume an adversary who can can compel certificate creation
and uses this to spoof some third parties on secure websites
to launch active attacks. Here the relevant measurement
would be the prevalence of active third-party content on
websites visited by typical users and the geographic distri-
bution of third parties serving such content.

7. CONCLUSION
While much has been said from a legal, ethical and policy

standpoint about the recent revelations of NSA tracking,
many interesting technical questions deserve to be consid-

ered. In this paper we studied what can be inferred from
the surveillance of web traffic and established that utiliz-
ing third-party tracking cookies enables an adversary to at-
tribute traffic to users much more effectively than methods
such as considering IP address alone. We hope that these
findings will inform the policy debate on tracking, raise user
awareness of subtle, inferential privacy breaches, and lead
to the development of better defenses and greater adoption
of existing ones.

8. ACKNOWLEDGMENTS
We would like to thank Jennifer Rexford, Doug Madory,

Harlan Yu, and our anonymous reviewers for their insightful
comments, as well as Andrew Clement and Colin McCann
for their willingness to share data related to this study.

9. REFERENCES
[1] ShareMeNot: Protecting against tracking from third-

party social media buttons while still allowing you to
use them. https://sharemenot.cs.washington.edu.

[2] TrackingObserver:
A Browser-Based Web Tracking Detection Platform.
http://trackingobserver.cs.washington.edu.

[3] Executive Order 12333–United States intelligence activ-
ities. http://www.archives.gov/federal-register/
codification/executive-order/12333.html, 1981.

[4] NSA ‘planned to discredit radicals over web-porn use’.
http://www.bbc.co.uk/news/technology-25118156,
November 2013.

[5] ‘Tor Stinks’ presentation
- read the full document. http://www.theguardian.
com/world/interactive/2013/oct/04/tor-

stinks-nsa-presentation-document, October 2013.

[6] G. Acar, C. Eubank,
S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz. The Web never forgets: Persistent tracking
mechanisms in the wild. In Conference on Computer
and Communications Security (CCS). ACM, 2014.

[7] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: dusting
the web for fingerprinters. In Conference on Computer
and Communications Security (CCS). ACM, 2013.

[8] A. Arnbak and S. Goldberg. Loopholes for circumvent-
ing the constitution: Warrantless bulk surveillance on
americans by collecting network traffic abroad, 2014.

[9] M. Ayenson, D. J. Wambach, A. Soltani, N. Good,
and C. J. Hoofnagle. Flash cookies and privacy II:
Now with HTML5 and ETag respawning. World Wide
Web Internet And Web Information Systems, 2011.

[10] M. Balakrishnan,
I. Mohomed, and V. Ramasubramanian. Where’s that
phone?: geolocating IP addresses on 3G networks. In
Internet Measurement Conference (IMC). ACM, 2009.

[11] R. Balebako, P. Leon, R. Shay, B. Ur,
Y. Wang, and L. Cranor. Measuring the Effectiveness
of Privacy Tools for Limiting Behavioral Advertising.
In Web 2.0 Security & Privacy (W2SP). IEEE, 2012.

[12] J. Ball. NSA stores metadata of millions
of web users for up to a year, secret files show.
http://www.theguardian.com/world/2013/sep/

30/nsa-americans-metadata-year-documents, 2013.

[13] P. E. Black. Ratcliff/Obershelp
pattern recognition. http://xlinux.nist.gov/
dads/HTML/ratcliffObershelp.html, December 2004.

[14] E. Bursztein. Tracking
users that block cookies with a HTTP redirect. http:
//www.elie.net/blog/security/tracking-users-

that-block-cookies-with-a-http-redirect, 2011.

[15] S. Chen, R. Wang,
X. Wang, and K. Zhang. Side-channel leaks in web
applications: A reality today, a challenge tomorrow.
In Security and Privacy (S&P). IEEE, 2010.

[16] A. Clement. IXmaps–Tracking
your personal data through the NSA’s warrantless
wiretapping sites. In International Symposium
on Technology and Society (ISTAS). IEEE, 2013.

[17] B. Elgin and V. Silver. The Surveillance
Market and Its Victims. http://www.bloomberg.com/
data-visualization/wired-for-repression/, 2011.

[18] S. Englehardt, C. Eubank, P. Zimmerman,
D. Reisman, and A. Narayanan. Web Privacy
Measurement: Scientific principles, engineering
platform, and new results. Manuscript, 2014.

[19] R. Gallagher. Operation Socialist: The Inside Story

of How British Spies Hacked BelgiumâĂŹs Largest
Telco. https://firstlook.org/theintercept/2014/
12/13/belgacom-hack-gchq-inside-story/, 2014.

[20] Ghostery. Are
we private yet? http://www.areweprivateyet.com/.

[21] S. Gorman and J. Valentino-Devries.
New Details Show Broader NSA Surveillance
Reach. http://online.wsj.com/news/articles/
SB10001424127887324108204579022874091732470,
2013.

[22] G. Greenwald and S. Ackerman.
How the NSA is still harvesting your online
data. http://www.theguardian.com/world/2013/
jun/27/nsa-online-metadata-collection, 2013.

[23] M. Hastak and M. J. Culnan. Persistent
and unblockable cookies using HTTP headers.
http://www.nikcub.com/posts/persistant-and-

unblockable-cookies-using-http-headers, 2011.

[24] D. Herrmann, R. Wendolsky,
and H. Federrath. Website Fingerprinting: Attacking
Popular Privacy Enhancing Technologies with
the Multinomial Naive-Bayes Classifier. In Workshop
on Cloud Computing Security (CCSW). ACM, 2009.

[25] A. Hintz. Fingerprinting Websites Using Traffic Analy-
sis. In Privacy Enhancing Technologies. Springer, 2003.

[26] J. Hoffman-Andrews. Verizon
Injecting Perma-Cookies to Track Mobile Customers,
Bypassing Privacy Controls. https://www.
eff.org/deeplinks/2014/11/verizon-x-uidh, 2014.

[27] B. Krishnamurthy,
K. Naryshkin, and C. Wills. Privacy leakage
vs. Protection measures: the growing disconnect.
In Web 2.0 Security & Privacy (W2SP). IEEE, 2011.

[28] B. Krishnamurthy and C. Wills. Privacy diffusion on
the Web: a longitudinal perspective. In International
Conference on World Wide Web (WWW). ACM, 2009.

[29] B. Krishnamurthy and
C. E. Wills. On the Leakage of Personally Identifiable

Information Via Online Social Networks. In Workshop
on Online Social Networks (WOSN). ACM, 2009.

[30] B. Krishnamurthy and C. E. Wills. Privacy leakage
in mobile online social networks. In Conference
on Online Social Networks (COSN). USENIX, 2010.

[31] M. Lee. Secret “BADASS”
Intelligence Program Spied on Smartphones.
https://firstlook.org/theintercept/

2015/01/26/secret-badass-spy-program/, 2015.

[32] B. Liu, A. Sheth, U. Weinsberg, J. Chandrashekar,
and R. Govindan. AdReveal: Improving Transparency
Into Online Targeted Advertising. In Workshop
on Hot Topics in Networks (HotNets). ACM, 2013.

[33] D. Madory, C. Cook, and K. Miao. Who Are the
Anycasters? In Proceedings of NANOG59, 10 2013.

[34] D. Malandrino, A. Petta, V. Scarano, L. Serra,
and R. Spinelli. Privacy awareness about information
leakage: Who knows what about me? In Workshop on
Privacy in the Electronic Society (WPES). ACM, 2013.

[35] J. Mayer. Tracking the Trackers: Self-Help
Tools. https://cyberlaw.stanford.edu/blog/
2011/09/tracking-trackers-self-help-tools,
September 2011.

[36] J. Mayer and E. W. Felten. The Web is Flat. http://
webpolicy.org/2013/10/30/the-web-is-flat/, 2013.

[37] J. R. Mayer and J. C. Mitchell.
Third-party web tracking: Policy and technology.
In Security and Privacy (S&P). IEEE, 2012.

[38] A. M. McDonald and L. F.
Cranor. Survey of the use of Adobe Flash local shared
objects to respawn HTTP cookies. ISJLP, 7:639, 2011.

[39] S. J. Murdoch and G. Danezis. Low-cost traffic analysis
of Tor. In Security and Privacy (S&P). IEEE, 2005.

[40] S. J. Murdoch and P. Zieliński. Sampled Traffic
Analysis by Internet-Exchange-Level Adversaries.
In Privacy Enhancing Technologies. Springer, 2007.

[41] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Explor-
ing the ecosystem of web-based device fingerprinting.
In Security and Privacy (S&P). IEEE, 2013.

[42] L. Olejnik, T. Minh-Dung, C. Castelluccia,
et al. Selling Off Privacy at Auction. 2013.

[43] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel.
Website Fingerprinting in Onion Routing Based
Anonymization Networks. In Workshop on Privacy
in the Electronic Society (WPES). ACM, 2011.

[44] M. Perry, E. Clark,
and S. Murdoch. The design and implementation of
the Tor browser [DRAFT]. https://www.torproject.
org/projects/torbrowser/design, November 2014.

[45] F. Roesner, T. Kohno, and D. Wetherall.
Detecting and Defending Against Third-Party
Tracking on the Web. In Networked Systems
Design and Implementation (NDSI). USENIX, 2012.

[46] A. Soltani, S. Canty,
Q. Mayo, L. Thomas, and C. J. Hoofnagle. Flash
Cookies and Privacy. In AAAI Spring Symposium:
Intelligent Information Privacy Management, 2010.

[47] A. Soltani, A. Peterson, and B. Gellman. NSA
uses Google cookies to pinpoint targets for hacking.
http://www.washingtonpost.com/blogs/the-

switch/wp/2013/12/10/nsa-uses-google-cookies-

to-pinpoint-targets-for-hacking, December 2013.

[48] D. X. Song, D. Wagner, and X. Tian.
Timing Analysis of Keystrokes and Timing Attacks
on SSH. In Security Symposium. USENIX, 2001.

[49] A. M. White, A. R. Matthews, K. Z.
Snow, and F. Monrose. Phonotactic reconstruction
of encrypted VoIP conversations: Hookt on
fon-iks. In Security and Privacy (S&P). IEEE, 2011.

[50] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi.
Host fingerprinting and tracking on the web: Privacy
and security implications. In Network and Distributed
System Security Symposium (NDSS). IEEE, 2012.

[51] M. Zalewski. Rapid history
extraction through non-destructive cache timing
(v8). http://lcamtuf.coredump.cx/cachetime/.

Online tracking: A 1-million-site measurement and analysis
Draft: May 18, 2016

Steven Englehardt
Princeton University
ste@cs.princeton.edu

Arvind Narayanan
Princeton University

arvindn@cs.princeton.edu

Abstract

We present the largest and most detailed measurement

of online tracking conducted to date, based on a crawl

of the top 1 million websites. We make 15 types of mea-

surements on each site, including stateful (cookie-based)

and stateless (fingerprinting-based) tracking, the effect

of browser privacy tools, and the exchange of tracking

data between different sites (“cookie syncing”). Our

findings include multiple sophisticated fingerprinting

techniques never before measured in the wild.

This measurement is made possible by our web

privacy measurement tool, OpenWPM, which uses an

automated version of a full-fledged consumer browser.

It supports parallelism for speed and scale, automatic

recovery from failures of the underlying browser, and

comprehensive browser instrumentation. OpenWPM is

open-source1 and has already been used as the basis of

seven published studies on web privacy and security.

1 Introduction

Web privacy measurement — observing websites and

services to detect, characterize and quantify privacy-

impacting behaviors — has repeatedly forced companies

to improve their privacy practices due to public pressure,

press coverage, and regulatory action [5, 13]. On

the other hand, web privacy measurement presents

formidable engineering and methodological challenges.

In the absence of a generic tool, it has been largely

confined to a niche community of researchers.

We seek to transform web privacy measurement into

a widespread practice by creating a tool that is useful

not just to our colleagues but also to regulators, self-

regulators, the press, activists, and website operators,

who are often in the dark about third-party tracking on

their own domains. We also seek to lessen the burden

1https://github.com/citp/OpenWPM

of continual oversight of web tracking and privacy, by

developing a robust and modular platform for repeated

studies.

Our tool, OpenWPM (Section 3), solves three key

systems challenges faced by the web privacy mea-

surement community. It does so by building on the

strengths of past work, while avoiding the pitfalls made

apparent in by previous engineering efforts. (1) We

achieve scale through the parallelism and robustness

by utilizing isolated measurement processes similar to

FPDetective’s platform [2], while still supporting state-

ful measurements. We’re able to scale to 1 million sites,

without having to resort to a stripped-down browser [29]

(a limitation we explore in detail in Section 3.2). (2)

We provide comprehensive instrumentation by building

upon the rich browser extension instrumentation of

FourthParty [32], without requiring the researcher

to write their own automation code. (3) We reduce

duplication of work by providing a modular architecture

to enable code re-use between studies.

Solving these problems is hard because the web is not

designed for automation or instrumentation. Selenium,2

the main tool for automated browsing through a full-

fledged browser, is intended for developers to test their

own websites. As a result it performs poorly on websites

not controlled by the user and breaks frequently if used

for large-scale measurements. Browsers themselves

tend to suffer memory leaks over long sessions. In

addition, instrumenting the browser to collect a variety

of data for later analysis presents formidable challenges.

For full coverage, we’ve found it necessary to have

three separate measurement points: a network proxy, a

browser extension, and a disk state monitor. Further, we

must link data collected from these disparate points into

a uniform schema, duplicating much of the browser’s

own internal logic in parsing traffic.

OpenWPM is a mature open-source tool that has

2http://www.seleniumhq.org/

already been used to provide the measurements of

seven published studies since 2014 (Section 3.3). These

studies have already led to improvements and fixes to

privacy and security. These experiments performed

in these studies have crucially benefited from several

advanced features of OpenWPM such as the ability to

automatically log into websites using specified creden-

tials. Using these case studies, we show in detail how

OpenWPM’s capabilities enable quickly designing and

running an experiment (Section 3.2).

A large-scale view of web tracking and privacy.
Since June 2015 we have been conducting regular mea-

surements of online tracking, incrementally adding fea-

tures and fixing scale bottlenecks. The results we report

in this paper (Section 4) are all based on our January

2016 measurement of the top 1 million sites. In future

work, we will publish additional analyses of the evolu-

tion of tracking and privacy over time.

Our scale enables a variety of new insights. We

observe for the first time that online tracking has a

“long tail”, but we find a surprisingly quick drop-off

in the scale of individual trackers: trackers in the tail

are found on very few sites (Section 5.1). Using a

new metric for quantifying tracking (Section 5.2), we

find that the tracking-protection tool Ghostery (https:

//www.ghostery.com/) is effective, with some caveats

(Section 5.5). We quantify the impact of trackers and

third parties on HTTPS deployment (Section 5.3) and

show that cookie syncing is pervasive (Section 5.6).

Turning to browser fingerprinting, we revisit an

influential 2014 study on canvas fingerprinting [1] with

updated and improved methodology (Section 6.1). Next,

we report on several types of fingerprinting never before

measured at scale: font fingerprinting using canvas

(which is distinct from canvas fingerprinting; Section

6.2), and fingerprinting by abusing the WebRTC API

(Section 6.3), the AudioContext API (Section 6.4), and

the Battery Status API (6.5). Finally, we show that in

contrast to our results in Section 5.5, existing privacy

tools are not effective at detecting these newer and more

obscure fingerprinting techniques.

Overall, our results show cause for concern, but

also encouraging signs. In particular, several of our

results suggest that while online tracking presents few

barriers to entry, trackers in the tail of the distribution

are found on very few sites and are far less likely to

be encountered by the average user. Those at the head

of the distribution, on the other hand, are owned by

relatively few companies and are responsive to the

scrutiny resulting from privacy studies.

We envision a future where measurement provides

a key layer of oversight of online privacy. This will be

especially important given that perfectly anticipating

and preventing all possible privacy problems (whether

through blocking tools or careful engineering of web

APIs) has proved infeasible. To enable such oversight,

we plan to make all our data publicly available (Open-

WPM is already open-source). We expect that measure-

ment will be useful to developers of privacy tools, to reg-

ulators and policy makers, journalists, and many others.

2 Background and related work

Background: third-party online tracking. As users

browse and interact with websites, they are observed by

both “first parties,” which are the sites the user visits

directly, and “third parties” which are typically hidden

trackers such as ad networks embedded on most web

pages. Third parties can obtain users’ browsing histo-

ries through a combination of cookies and other tracking

technologies that allow them to uniquely identify users,

and the “referer” header that tells the third party which

first-party site the user is currently visiting. Other sen-

sitive information such as email addresses may also be

leaked to third parties via the referer header.

Web privacy measurement platforms. There are two

main ways to collect large-scale data for web privacy

measurement: crowd-sourcing and simulating users, i.e.,

running bots. Our focus is on the latter type, but there are

many similarities between the two types of studies.

The closest comparisons to OpenWPM are other

open web privacy measurement platforms, which we

now review. We consider a tool to be a platform if is

is publicly available and there is some generality to

the types of studies that can be performed using it. In

some cases, OpenWPM has directly built upon existing

platforms, which we make explicit note of.

FPDetective is the most similar platform to Open-

WPM. FPDetective uses a hybrid PhantomJS and

Chromium based automation infrastructure [2], with

both native browser code and a proxy for instrumenta-

tion. In the published study, the platform was used for the

detection and analysis of fingerprinters, and much of the

included instrumentation was built to support that. The

platform allows researchers to conduct additional exper-

iments by replacing a script which is executed with each

page visit, and the authors state the platform can be eas-

ily extended for non-fingerprinting studies.

OpenWPM differs in several ways from FPDetective:

(1) it supports both stateful and stateless measurements,

whereas FPDetective only supports stateless (2) it

includes generic instrumentation for both stateless and

stateful tracking, enabling a wider range of privacy

studies without additional changes to the infrastructure

(3) none of the included instrumentation requires native

browser code, making it easier to upgrade to new or dif-

ferent versions of the browser, and (4) OpenWPM uses

2

a high-level command-based architecture, which allows

purpose built commands to be re-used between studies.

Chameleon Crawler is a Chromium based crawler that

utilizes the Chameleon3 browser extension for detecting

browser fingerprinting. Chameleon Crawler uses similar

automation components, but supports a subset of Open-

WPM’s instrumentation.

FourthParty is a Firefox plug-in for instrumentation

and does not handle automation [32]. OpenWPM has

incorporated and expanded upon nearly all of Fourth-

Party’s instrumentation within its own extension (Section

3).

TrackingObserver is a Chrome extension that detects

tracking and exposes APIs for extending its functionality

such as measurement and blocking [46].

XRay is a platform for differential correlation: infer-

ring input-output relationships in any personalized web

service [26]. XRay handles the analysis phase of web

privacy measurement in a generic way, but not driving

the browser or instrumentation. This is precisely the

converse of OpenWPM, suggesting the exciting possi-

bility of using the two tools in concert to achieve an even

greater degree of generic automation.

AdFisher is a tool for running automated experiments

on personalized ad settings [8]. It contains a barebones

automation framework with similar components as ours

(Selenium, xvfb), but the key technology is a machine-

learning system for causality attribution. Again there is

the possibility of running OpenWPM’s automation and

instrumentation together with AdFisher’s analytic com-

ponent.

WebXray is a PhantomJS based tool for measuring

HTTP traffic [29]. It has been used to study third-party

inclusions on the top 1 million sites, but as we show in

Section 3.1, measurements with a stripped-down browser

have the potential to miss a large number of resource

loads.

Several research groups have built or deployed

crowd-sourcing platforms for web privacy measurement,

including $heriff and Bobble [34, 60]. Some challenges

here include providing value to users to incentivize

participation, participant privacy, etc.

Previous findings. Krishnarmurthy and Wills [23]

provide much of the early insight into web tracking,

showing the growth of the largest third-party organiza-

tions from 10% to 20-60% of top sites between 2005 and

2008. Roesner et al. provide a classification framework

for third-party domains, arguing “it is incorrect to bun-

dle together different classes of trackers”, such as cross-

site trackers and analytics trackers [47]. In the years fol-

lowing Krishnarmurthy’s measurements, studies show a

continual increase in third-party tracking and in the di-

3https://github.com/ghostwords/chameleon

versity of tracking techniques [1, 2, 4, 19, 32, 47]. More

recently, Libert studies third-party HTTP requests on the

top 1 million sites [29], providing view of tracking across

the web. In this study, Libert compiled a comprehensive

mapping of third-party domains to organizations, show-

ing that Google can track users across nearly 80% of sites

through its various third-party domains.

Web tracking has expanded from simple HTTP

cookies to include more persistent tracking techniques.

Soltani et al. first examined the use of flash cookies

to “respawn” or re-instantiate HTTP cookies [50], and

Ayenson et al. showed how sites were using cache

E-Tags and HTML5 localStorage for the same purpose

[6]. These discoveries led to media backlash [28, 35]

and legal settlements [9, 49] against the companies

participating in the practice. However, several follow up

studies by other research groups confirmed that, despite

a reduction in usage (particularly within the US), the

technique is still used for tracking [1, 33, 47].

Device fingerprinting is a persistent tracking tech-

nique which does not require a tracker to set any state in

the user’s browser. Instead, trackers attempt to identify

users by a combination of the device’s properties. Within

samples of over 100,000 browsers, 80-90% of desktop

and 81% of mobile devices have a unique fingerprint

[10, 25]. New fingerprinting techniques are continually

discovered [14, 36, 41], and are subsequently used to

track users on the web [1, 2, 39]. In Section 6.1 we

present several new fingerprinting techniques discovered

during our measurements.

Personalization measurement. Measurement of

tracking is closely related to measurement of personal-

ization, since the question of what data is collected leads

to the question of how that data is used. The primary

purpose of online tracking is behavioral advertising —

showing ads based on the user’s past activity. Datta et

al. highlight the incompleteness of Google’s Ad Settings

transparency page and provide several empirical exam-

ples of discriminatory and predatory ads [8]. Lécuyer et

al. develop XRay, a system for inferring which pieces of

user data are used for personalization [26]. Another sys-

tem by some of the same authors is Sunlight which im-

proves upon their previous methodology to provide sta-

tistical confidence of their targeting inferences [27].

Many other practices that raise privacy or ethical

concerns have been studied: price discrimination, where

a site shows different prices to different consumers

for the same product [18, 58]; steering, a gentler form

of price discrimination where a product search shows

differently-priced results for different users [31]; and

the filter bubble, the supposed effect that occurs when

online information systems personalize what is shown

to a user based on what the user viewed in the past [60].

Web security measurement. Web security studies of-

3

ten use similar methods as web privacy measurement,

and the boundary is not always clear. Yue and Wang

modified the Firefox browser source code in order to per-

form a measurement of insecure Javascript implemen-

tations on the web [61] . Nikiforakis et al. utilized a

headless browser to measure the amount of third-party

Javascript inclusions across many popular sites and the

vulnerabilities that arise from how the script is embed-

ded [38]. Van Goethem et al. likewise used a headless

browser to measure the presence of security seals on the

top 1 million sites [57]. Zarras et al. used Selenium

to drive crawls that measured and categorized malicious

advertisements displayed while browsing popular sites

[62]. Rafique et al. also used a Selenium-based crawler

to measure the presence of malware and other vulnerabil-

ities on live streaming websites [44]. Other studies have

analyzed Flash and Javascript elements of webpages to

measure security vulnerabilities and error-prone imple-

mentations [40, 56].

3 Measurement Platform

An infrastructure for automated web privacy measure-

ment has three components: simulating users, recording

observations (response metadata, cookies, behavior of

scripts, etc.), and analysis. We set out to build a platform

that can automate the first two components and can

ease the researcher’s analysis task. We sought to make

OpenWPM general, modular, and scalable enough to

support essentially any privacy measurement.

3.1 Design and Implementation

We divided our browser automation and data collec-

tion infrastructure into three main modules: browser
managers which act as an abstraction layer for au-

tomating individual browser instances, a user-facing

task manager which serves to distribute commands to

browser managers, and a data aggregator, which acts

as an abstraction layer for browser instrumentation. The

researcher interacts with the task manager via an exten-

sible, high-level, domain-specific language for crawling

and controlling the browser instance. The entire platform

is built using Python and Python-compatible libraries.

Browser driver: Providing realism and support for
web technologies. We considered a variety of choices

to drive measurements, i.e., to instruct the browser to

visit a set of pages (and possibly to perform a set of ac-

tions on each). The two main categories to choose from

are lightweight browsers like PhantomJS (an implemen-

tation of WebKit), and full-fledged browsers like Firefox

and Chrome. We chose to use Selenium, a cross-platform

web driver for Firefox, Chrome, Internet Explorer, and

Task
Manager

Data
Aggregator

WWW

SeleniumBrowser
Manager Browser

...

Browser
Manager Browser

Browser
Manager Browser

Instrumentation Layer

Analysis
Scripts

Selenium

Selenium

Figure 1: High-level overview of OpenWPM

The task manager monitors browser managers, which convert high-

level commands into automated browser actions. The data aggregator

receives and pre-processes data from instrumentation.

PhantomJS. We currently use Selenium to drive Fire-

fox, but Selenium’s common interface into all browsers

makes it easy to support other browsers in the future.

By using a consumer browser, all technologies that a

typical user would have access to (e.g., HTML5 storage

options, Adobe Flash) are also supported by measure-

ment instances. The alternative, PhantomJS, does not

support WebGL, HTML5 Audio and Video, CSS 3-D,

and browser plugins (like Flash), making it impossible to

run measurements on the use of these technologies [43].

In retrospect this has proved to be a sound choice.

Without full support for new web technologies we would

not have been able to discover and measure the use of

the AudioContext API for device fingerprinting as

discussed in Section 6.4.

We can quantify the loss of coverage if we were to

use a stripped-down browser. A recent study that used

PhantomJS to visit the Alexa top 1 million sites found

a total of roughly 35 million requests to 21 million

resources [29]. By contrast, in our top 1 million site

measurement, we find a total of roughly 90 million

requests to 68 million resources. We further study the

completeness of OpenWPM in Section 3.2.

Finally the use of real browsers also allows us to test

the effects of consumer browser extensions. We support

running measurements with extensions such as Ghostery

and HTTPS Everywhere as well as enabling Firefox

privacy settings such third-party cookie blocking and

the new Tracking Protection feature. New extensions

can easily be supported with only a few extra lines of

code. See Section 5.3 and Section 5.5 for analyses of

measurements run with these browser settings.

Browser managers: Providing stability. During the

course of a long measurement, a variety of unpredictable

events such as page timeouts or browser crashes could

halt the measurement’s progress or cause data loss or

corruption. A key disadvantage of Selenium is that it fre-

quently hangs indefinitely due to its blocking API [48],

4

as it was designed to be a tool for webmasters to test their

own sites rather than an engine for large-scale measure-

ments. Browser managers provide an abstraction layer

around Selenium, isolating it from the rest of the compo-

nents.

Each browser manager instantiates a Selenium in-

stance with a specified configuration of user preferences,

such as blocking third-party cookies. It is responsible

for converting high-level platform commands (e.g.

visiting a site) into specific Selenium subroutines. It

encapsulates per-browser preferences and state, enabling

recovery from browser failures. To isolate failures, each

browser manager runs as a separate process.

We support launching measurement instances in a

“headless” container, enabling greater parallelization

due to lower memory consumption and deploying

measurements on remote machines. Full browsers

have no headless option as they are built for graphical

user interaction. To solve this problem, we use the

pyvirtualdisplay tool to interface with Xvfb, which

draws the graphical interface of the browser to a virtual

frame buffer. They retain the ability to easily generate

screenshots of rendered sites when necessary.

Task manager: Providing scalability and abstrac-
tion. The task manager provides a scriptable command-

line interface for controlling multiple browsers simulta-

neously. Commands can be distributed to browsers either

synchronized or first-come-first-serve. Each command is

launched in a per-browser command execution thread.

The command-execution thread handles errors in its

corresponding browser manager automatically. If the

browser manager crashes, times out, or exceeds memory

limits, the thread enters a crash recovery routine. In

this routine, the manager archives the current browser

profile, kills all current processes, and loads the archive

(which includes cookies and history) into a fresh browser

with the same configuration options.

Data Aggregator: Providing repeatability. To pro-

mote scientific rigor, the platform should enable re-

searchers to easily reproduce experiments. This can be

achieved by logging data in a standardized format, so re-

search groups can easily share scripts and data. To sup-

port logging in a standard schema, we use data aggre-

gation components to gather results from all instrumen-

tation components in a central and structured location.

The data aggregator receives data during the measure-

ment, manipulates it as necessary, and saves it on disk

keyed back to a specific page visit and browser. The ag-

gregator exists within its own process, and is accessed

through a socket interface which can easily be connected

to from any number of browser managers or instrumen-

tation processes.

We currently support two data aggregators: a struc-

tured SQLite aggregator for storing relational data and

a LevelDB aggregator for storing compressed web

content. The SQLite aggregator stores the majority

of the measurement data, including data from both

the proxy and the extension (described below). The

LevelDB aggregator is designed to store de-duplicated

web content, such as Javascript or HTML files. The

aggregator checks if a hash of the content is present

in the database, and if not compresses the content and

adds it to the database. The hash can be used as a key

to access the content during analysis and to link it with

data in the SQLite database (such as an HTTP response).

In comparison to client-server databases, local

databases do not require end-user setup of a database

server and enable researchers to easily share self-

contained files. However, the use of socket connections

in both aggregators simplify the process of migrating to

other server-based solutions such as MySQL or cloud

hosted databases as studies grow in scale.

Instrumentation: Supporting compatibility and
modularity. We provide the researcher with data access

at several points: (1) raw data on disk, (2) at the net-

work level with an HTTP proxy, and (3) at the Javascript

level with a Firefox extension. This provides nearly full

coverage of a browser’s interaction with the web and the

system. Each level of instrumentation keys data with the

top level site being visited and the current browser id,

making it possible to combine measurement data from

multiple instrumentation sources for each page visit.

Disk Access — We include instrumentation that

collects changes to Flash LSOs and the Firefox cookie

database after each page visit. This allows a researcher

to determine which sites and third parties are setting

Flash cookies, and to record access to cookies in the

absence of an HTTP proxy or Firefox extension.

HTTP Data — After examining several Python based

HTTP proxies, we chose to use Mitmproxy (https:

//mitmproxy.org/) to record all HTTP Request and

Response headers. We generate and load a certificate

into Firefox to capture HTTPS data alongside HTTP. Ad-

ditionally, we use the HTTP proxy to dump the content

of any Javascript file requested during a page visit.

Javascript files are detected by first checking if the

Content-Type header contains the string “javascript”,

and if not, by checking the file extension of the URL

path. Once a script is detected, it is decompressed

(if necessary) and hashed. The hash and content are

sent through a socket to the LevelDBAggregator for

de-duplication.

Javascript Access — We provide the researcher with a

Javascript interface to pages visited through a Firefox ex-

tension. Our extension builds on the work of Fourthparty

[32]. In particular, we utilize Fourthparty’s Javascript

instrumentation, which defines custom getters and

setters on the window.navigator and window.screen

5

interfaces4. We updated and extended this functionality

to record access to the prototypes of the Storage,

HTMLCanvasElement, CanvasRenderingContext2D,

RTCPeerConntection, AudioContext objects, as well

as the prototypes of several children of AudioNode. This

records the setting and getting of all object properties and

calls of all object methods for any object built from these

prototypes. Alongside this, we record the new property

values set, and the arguments to all method calls.

In addition to recording access to instrumented

objects, we record the URL of the script responsible

for the property or method access. To do so, we throw

an Error and parse the stack trace after each call or

property intercept. This method is successful for 99.9%

of Javascript files we encountered, and even works for

Javascript files which have been minified or obfuscated

with eval. A minor limitation is that the function calls

of a script which gets passed into the eval method of a

second script will have their URL labeled as the second

script. This method is adapted with minor modifications

from the Privacy Badger Firefox Extension5.

We also replace Fourthparty’s direct SQLite log-

ging with a socket-based solution logging to our

SQLite DataAggregator. This eliminates the need to

merge databases post-measurement and makes data

management significantly easier for multi-browser

measurements.

Workflow. As an example workflow, the researcher

issues a command to the task manager and specifies that

it should synchronously execute on all browser man-

agers. The task manager checks all of the command ex-

ecution threads and blocks until all browsers are avail-

able to execute a new command. Then it creates new

command execution threads for all browsers and sends

the command and command parameters over a pipe to

the browser manager process. The browser manager in-

terprets this command and runs the necessary Selenium

code to execute the command in the browser. If the com-

mand is a “Get” command, which causes the browser to

visit a new domain, the browser manager distributes the

browser id and top-level page being visited to all cur-

rent instrumentation. The instrumentation uses this in-

formation to properly key data for the new page visit.

Once the Selenium code returns, the browser manager

can send returned data (e.g. the parsed contents of a

page) to the SQLite aggregator. All instrumentation is

also simultaneously sending data to the respective aggre-

gators from separate threads or processes. Once the com-

mand is complete, the browser manager notifies the task

manager that it is ready for a new command.

4In the latest public version of Fourthparty (May 2015), this

instrumentation is not functional due to API changes.
5https://github.com/EFForg/privacybadgerfirefox

3.2 Evaluation

We now evaluate OpenWPM’s stability, completeness,

performance, and generality. In Section 3.3 we look at

several studies which have used our platform to conduct

multiple large-scale experiments.

Stability. We tested the stability of vanilla Selenium

without our infrastructure in a variety of settings. The

best average we were able to obtain was roughly 800

pages without a freeze or crash. Even in small-scale

studies, the lack of recovery led to loss or corruption of

measurement data. Using the isolation provided by our

browser manager and task manager, we recover from all

browser crashes and have observed no data corruption

during stateful measurements of 100,000 sites. During

the course of our stateless 1 million site measurement in

January 2016 (Section 5), we observe over 90 million re-

quests and nearly 300 million Javascript calls. A single

OpenWPM browser can visit around 3500 sites per day,

requiring no manual interaction during that time. This

represents a significant improvement over the 800 page

limit mentioned previously. The scale and speed of the

overall measurement depends on the hardware used and

the measurement configuration (See “Resource Usage”

below).

Completeness. OpenWPM reproduces a human

user’s web browsing experience since it uses a full-

fledged browser. However, researchers have often used

stripped-down browsers such as PhantomJS for studies,

trading off fidelity for speed and simplicity.

To test the importance of using a full-fledged browser,

we examined the differences between OpenWPM and

PhantomJS (version 2.1.1) on the top 100 Alexa sites.

We averaged our results over 6 measurements of each

site with each tool. Both tools were configured with a

time-out of 10 seconds and we excluded a small number

of sites that didn’t complete loading.

Unsurprisingly, PhantomJS does not load Flash,

HTML5 Video, or HTML5 Audio objects (which it does

not support); OpenWPM loads nearly 300 instances of

those across all sites. More interestingly, PhantomJS

loads about 30% fewer HTML files, and about 50%

fewer resources with plain text and stream content types.

Upon further examination, one major reason for this is

that many sites don’t serve ads to PhantomJS. This makes

tracking measurements using PhantomJS problematic.

We also tested PhantomJS with the user-agent string

spoofed to look like Firefox, so as to try to prevent

sites from treating PhantomJS differently. Here the

differences were less extreme, but still present (10%

fewer requests of html resources, 15% for plain text,

and 30% for stream). However, many sites (such as

dropbox.com) seem to break when PhantomJS presents

the incorrect user-agent string. This is because sites may

6

Study Year B
ro

w
se

r au
to

m
at

io
n

Sta
te

fu
l c

ra
w

ls

Per
si
st
en

t p
ro

file
s

Fin
e-

gr
ai

ne
d

pr
ofi

le
s

A
dv

an
ce

d
pl

ug
in

su
pp

or
t

A
ut

om
at

ed
lo

gi
n

D
et

ec
t t

ra
ck

in
g

co
ok

ie
s

M
on

ito
r st

at
e
ch

an
ge

s

Ja
va

sc
rip

t I
ns

tru
m

en
ta

tio
n

C
on

te
nt

ex
tra

ct
io

n

Persistent tracking mechanisms [1] 2014 • • • • • • •
FB Connect login permissions [45] 2014 • • ◦
Surveillance implications of web tracking [12] 2015 • • • •
HSTS and key pinning misconfigurations [20] 2015 • • • ◦ •
The Web Privacy Census [4] 2015 • • • •
Geographic Variations in Tracking [15] 2015 • •
Analysis of Malicious Web Shells [52] 2016 •
This study (Sections 5 & 6) 2016 • • • • • • • •

Table 1: Seven published studies from five separate research groups which utilize OpenWPM.

An unfilled circle indicates that the feature was useful but application-specific programming or manual effort was still required.

expect certain capabilities that PhantomJS does not have

or may attempt to access APIs using Firefox-specific

names. One site, weibo.com, redirected PhantomJS

(with either user-agent string) to an entirely different

landing page than OpenWPM. In conclusion, these

findings support our view that OpenWPM enables

significantly more complete and realistic web measure-

ment and tracking measurement than do stripped-down

browsers like PhantomJS.

Resource usage. When using the headless config-

uration, we are able to run up to 10 stateful browser

instances on an Amazon EC2 “c4.2xlarge” virtual ma-

chine6. This virtual machine costs around $300 per

month using price estimates from May 2016. Due to

Firefox’s memory consumption, stateful parallel mea-

surements are memory-limited while stateless parallel

measurements are typically CPU-limited and can support

a higher number of instances. On the same machine we

can run 20 browser instances in parallel if the browser

state is cleared after each page load.

Generality. Table 1 highlights the generality of the

platform, where it is used to study both web privacy and

web security questions, ranging from the measurement

of the variation of tracking in different countries to the

analyzing the deployment of HSTS.

The platform minimizes code duplication both across

studies and across configurations of a specific study.

For example, the Javascript monitoring instrumentation

is about 340 lines of Javascript code. Each additional

API monitored takes only a single additional line of

code. The instrumentation necessary to measure canvas

fingerprinting (Section 6.1) is just three additional lines

of code, while the WebRTC measurement (Section 6.3)

is just a single line of code.

6https://aws.amazon.com/ec2/instance-types/

Similarly, the code to add support for new extensions

or privacy settings is relatively low: 7 lines of code were

required to support Ghostery, 8 lines of code to support

HTTPS Everywhere, and 7 lines of codes to control

Firefox’s cookie blocking policy.

Even measurements themselves require very little ad-

ditional code on top of the platform. Each configuration

listed in Table 2 requires between 70 and 108 lines of

code. By comparison, the core infrastructure code and

included instrumentation is over 4000 lines of code,

showing that the platform saves a significant amount of

engineering effort between studies.

3.3 Applications

Seven academic studies have been published in journals,

conferences, and workshops, utilizing OpenWPM to

perform a variety of web privacy and security mea-

surements. Table 1 summarizes the advanced features

of the platform each research group utilized in their

measurements.

In addition to browser automation and HTTP data

dumps, the platform has several advanced capabilities

used by both our own measurements and those in other

groups. Measurements can keep state, such as cookies

and localStorage, within each session via stateful mea-
surements, or persist this state across sessions with per-
sistent profiles. Persisting state across measurements has

been used to measure cookie respawning [1] and to pro-

vide seed profiles for larger measurements (Section 5).

In general, stateful measurements are useful to replicate

the cookie profile of a real user for tracking [4, 12] and

cookie syncing analysis [1] (Section 5.6). In addition to

recording state, the platform can detect tracking cookies.

The platform also provides programmatic control

over individual components of this state such as Flash

7

cookies through fine-grained profiles as well as plug-ins

via advanced plug-in support. Applications built on top

of the platform can monitor state changes on disk to

record access to Flash cookies and browser state. These

features are useful in studies which wish to simulate

the experience of users with Flash enabled [4, 15] or

examine cookie respawning with Flash [1].

Beyond just monitoring and manipulating state, the

platform provides the ability to capture any Javascript

API call with the included Javascript instrumentation.

This is used to measure device fingerprinting (Section 6).

Finally, the platform also has a limited ability to

extract content from web pages through the content
extraction module, and a limited ability to automatically

log into websites using the Facebook Connect automated
login capability. Logging in with Facebook has been

used to study login permissions [45].

4 Methodology

We run measurements on the homepages of the top 1

million sites to provide a comprehensive view of web

tracking and web privacy. These measurements provide

updated metrics on the use of tracking and fingerprinting

technologies, allowing us to shine a light onto the

practices of third parties and trackers across a large

portion of the web. We also explore the effectiveness of

consumer privacy tools at giving users control over their

online privacy.

Measurement Configuration. We run our measure-

ments on a “c4.2xlarge” Amazon EC2 instance, which

currently allocates 8 vCPUs and 15 GiB of memory per

machine. With this configuration we are able to run 20

browser instances in parallel. All measurements col-

lect HTTP Requests and Responses, Javascript calls, and

Javascript files using the instrumentation detailed in Sec-

tion 3. Table 2 summarizes the measurement instance

configurations. The data used in this paper were col-

lected during January 2016.

All of our measurements use the Alexa top 1 million

site list (http://www.alexa.com), which ranks sites

based on their global popularity with Alexa Toolbar

users. Before each measurement, OpenWPM retrieves

an updated copy of the list. When a measurement

configuration calls for less than 1 million sites, we

simply truncate the list as necessary. For eash site, the

browser will visit the homepage and wait until the site

has finished loading or until the 90 second timeout is

reached. The browser does not interact with the site or

visit any other pages within the site. If there is a timeout

we kill the process and restart the browser for the next

page visit, as described in Section 3.1.

Stateful measurements. To obtain a complete picture

of tracking we must carry out stateful measurements in

addition to stateless ones. Stateful measurements do not

clear the browser’s profile between page visits, meaning

cookie and other browser storage persist from site to site.

For some measurements the difference is not material,

but for others, such as cookie syncing (Section 5.6), it is

essential.

Making stateful measurements is fundamentally at

odds with parallelism. But a serial measurement of

1,000,000 sites (or even 100,000 sites) would take

unacceptably long. So we make a compromise: we first

build a seed profile which visits the top 10,000 sites in a

serial fashion, and we save the resulting state.

To scale to a larger measurement, the seed profile

is loaded into multiple browser instances running in

parallel. With this approach, we can approximately

simulate visiting each website serially. For our 100,000

site stateless measurement, we used the “ID Detection

2” browser profile as a seed profile.

This method is not without limitations. For example

third parties which don’t appear in the top sites if the

seed profile will have different cookies set in each of the

parallel instances. If these parties are also involved in

cookie syncing, the partners that sync with them (and

appear in the seed profile) will each receive multiple

IDs for each one of their own. This presents a trade-off

between the size the seed profile and the number of

third parties missed by the profile. We find that a seed

profile which has visited the top 10,000 sites will have

communicated with 76% of all third-party domains

present on more than 5 of the top 100,000 sites.

Handling errors. In presenting our results we only

consider sites that loaded successfully. For example, for

the 1 Million site measurement, we present statistics for

917,261 sites. The majority of errors are due to the site

failing to return a response, primarily due to DNS lookup

failures. Other causes of errors are sites returning a non-

2XX HTTP status code on the landing page, such as a

404 (Not Found) or a 500 (Internal Server Error).

Detecting ID cookies. Detecting cookies that store

unique user identifiers is a key task that enables many of

the results that we report in Section 5. We build on the

methods used in previous studies [1, 12]. Browsers store

cookies in a structured key-value format, allowing sites

to provide both a name string and value string. Many

sites further structure the value string of a single cookie

to include a set of named parameters. We parse each

cookie value string assuming the format:

(name1=)value1|...|(nameN =)valueN

where | represents any character except a-zA-Z0-9_

-=. We determine a (cookie-name, parameter-name,

parameter-value) tuple to be an ID cookie if it meets

the following criteria: (1) the cookie has an ex-

piration date over 90 days in the future (2) 8 ≤
length(parameter-value) ≤100, (3) the parameter-value

8

Configuration # Sites # Success Timeout % Fla
sh

Ena
bl

ed

Sta
te

fu
l

Par
al

le
l

H
TTP

D
at

a

Ja
va

sc
rip

t F
ile

s

Ja
va

sc
rip

t C
al

ls

D
is
k

Sca
ns

Time to Crawl
Default Stateless 1 Million 917,261 10.58% • • • • 14 days

Default Stateful 100,000 94,144 8.23% ◦ • • • • 3.5 days

Ghostery 55,000 50,023 5.31% • • • • 0.7 days

Block TP Cookies 55,000 53,688 12.41% • • • • 0.8 days

HTTPS Everywhere 55,000 53,705 14.77% • • • • 1 day

ID Detection 1* 10,000 9,707 6.81% • • • • • • 2.9 days

ID Detection 2* 10,000 9,702 6.73% • • • • • • 2.9 days

Table 2: Census measurement configurations.

An unfilled circle indicates that a seed profile of length 10,000 was loaded into each browser instance in a parallel measurement. “# Success”

indicates the number of sites that were reachable and returned a response. A Timeout is a request which fails to completely load in 90 seconds.

*Indicates that the measurements were run synchronously on different virtual machines.

remains the same throughout the measurement, (4) the

parameter-value is different between machines and has

a similarity less than 66% according to the Ratcliff-

Obershelp algorithm [7]. For the last step, we run two

synchronized measurements (see Table 2) on separate

machines and compare the resulting cookies, as in pre-

vious studies.

What makes a tracker? Every third party is poten-
tially a tracker, but for many of our results we need a

more conservative definition. We use popular tracking-
protection lists for this purpose: EasyList, EasyPrivacy,

and a commercial privacy tool’s list. All three lists con-

sist of regular expressions and URL sub-strings which

are matched against resource loads to determine if a re-

quest should be blocked.

Note that we are not simply classifying domains as

trackers or non-trackers, but rather classify each instance

of a third party on a particular website as a tracking or

non-tracking context. We consider a domain to be in the

tracking context if a consumer privacy tool would have

blocked that resource. Resource loads which wouldn’t

have been blocked by these extensions are considered

non-tracking.

While there is agreement between the extensions

utilizing these lists, we emphasize that they are far from

perfect. They contain false positives and especially

false negatives. That is, they miss many trackers —

new ones in particular. Indeed, much of the impetus

for OpenWPM and our measurements comes from the

limitations of manually identifying trackers. Thus,

tracking-protection lists should be considered an under-

estimate of the set of trackers, just as considering all

third parties to be trackers is an overestimate.

Finally, for readers interested in further details or in

reproducing our work, we provide further methodolog-

ical details in the Appendix: what constitutes distinct

domains (C.1), how to detect the landing page of a

site using the data collected by OpenWPM (C.2), how

we detect cookie syncing (C.3), why obfuscation of

Javascript doesn’t affect our ability to detect finger-

printing (C.4), and a minor limitation of our method of

instrumenting JavaScript calls (C.5).

5 Results of our 1-million site census

5.1 The long but thin tail of online tracking

During our January 2016 measurement of the Top 1

million sites, our tool made over 90 million requests,

assembling the largest dataset on web tracking to our

knowledge.

Our large scale allows us to answer a rather basic

question: how many third parties are there? In short, a

lot: the total number of third parties present on at least

two first parties is over 81,000.

What is more surprising is that the prevalence of third

parties quickly drops off: only 123 of these 81,000 are

present on more than 1% of sites. This suggests that the

number of third parties that a regular user will encounter

on a daily basis is relatively small. The effect is accentu-

ated when we consider that different third parties may be

owned by the same entity. All of the top 5 third parties,

as well as 12 of the top 20, are Google-owned domains.

In fact, Google, Facebook, and Twitter are the only
third-party entities present on more than 10% of sites.

Further, if we use the definition of tracking based

on tracking-protection lists, as defined in Section 4,

then trackers are even less prevalent. This is clear

from Figure 2, which shows the prevalence of the top

third parties (a) in any context and (b) only in tracking

contexts. Note the absence or reduction of content-

delivery domains such as gstatic.com, fbcdn.net,

and googleusercontent.com.

These results might come as a bit of a surprise to

9

the reader jaded by endless reports of an explosion in

third-party tracking. Our data suggest that there is a

trend toward economic consolidation in the third-party

ecosystem, in line with both some press [30] and some

of the academic literature [16]. For the hundred or so

third parties that are prevalent on 1% or more of sites, we

might expect that they are large enough entities that their

behavior can be regulated by public-relations pressure

and the possibility of legal or enforcement actions.

Indeed, measurement research has repeatedly proved

capable of bringing about these outcomes [1, 6, 33].

go
og

le-
an

aly
tic

s.c
om

gst
ati

c.c
om

do
ub

lec
lick

.ne
t

go
og

le.
com

fon
ts.

go
og

lea
pis

.co
m

fac
eb

oo
k.c

om

fac
eb

oo
k.n

et

aja
x.g

oo
gle

ap
is.c

om

go
og

les
yn

dic
ati

on
.co

m

fbc
dn

.ne
t

tw
itte

r.c
om

go
og

lea
dse

rvi
ces

.co
m

ad
nx

s.c
om

go
og

leu
ser

con
ten

t.c
om

blu
eka

i.c
om

math
tag

.co
m

you
tub

e.c
om

yti
mg.c

om

go
og

let
ag

man
ag

er.
com

yah
oo

.co
m

0
10
20
30
40
50
60
70

%
Fi

rs
t-

Pa
rt

ie
s Tracking Context

Non-Tracking Context

Figure 2: Top third parties on the top 1 million sites. Not all instances

of third parties are classified as tracking by our methodology, and in

fact the same third party can be classified differently depending on the

context. (Section 4).

5.2 Prominence: a metric to rank third
parties

In Section 5.1 we ranked third parties by the number

of first party sites they appear on. This simple count

is a good first approximation, but it has two related

drawbacks. A major third party that’s present on (say)

90 of the top 100 sites would have a low score if its

prevalence drops off outside the top 100 sites. A related

problem is that the rank can be sensitive to the number

of websites visited in the measurement. Thus different

studies may rank third parties differently.

We also lack a good way to compare third parties (and

especially trackers) over time, both individually and in

aggregate. Some studies have measured the total number

of cookies [4], but we argue that this is a misleading

metric, since cookies may not have anything to do with

tracking.

To avoid these problems, we propose a principled

metric. We start from a model of aggregate browsing

behavior. There is some research suggesting that the

website traffic follows a power law distribution, with

the frequency of visits to the Nth ranked website being

proportional to 1
N [3, 21]. The exact relationship is not

important to us; any formula for traffic can be plugged

into our prominence metric below.

Definition:.

Prominence(t)=Σedge(s,t)=1

1

rank(s)

where edge(s,t) indicates whether third party t is present

on site s. This simple formula measures the frequency

with which an “average” user browsing according to the

power-law model will encounter any given third party.

The most important property of prominence is

that it de-emphasizes obscure sites, and hence can

be adequately approximated by relatively small-scale

measurements, as shown in Figure 3. We propose that

prominence is the right metric for:

1. Comparing third parties and identifying the top third

parties. We present the list of top third parties by

prominence in Table 14 (in the Appendix). Promi-

nence ranking produces interesting differences com-

pared to ranking by a simple prevalence count. For

example, Content-Distribution Networks become less

prominent compared to other types of third parties.

2. Measuring the effect of tracking-protection tools, as

we do in Section 5.5.

3. Analyzing the evolution of the tracking ecosystem

over time and comparing between studies. The

robustness of the rank-prominence curve (Figure 3)

makes it ideally suited for these purposes.

0 200 400 600 800 1000

Rank of third-party

10−3

10−2

10−1

100

101

P
ro
m
in
en

ce
(l
o
g
)

1K-site measurement

50K-site measurement

1M-site measurement

Figure 3: Prominence of third party as a function of prominence rank.

We posit that the curve for the 1M-site measurement (which can be

adequately approximated by a 50k-site measurement) presents a useful

aggregate picture of tracking.

5.3 Third parties impede HTTPS adoption
Table 3 shows the number of first-party sites that support

HTTPS and the number that are HTTPS-only. Our

results reveal that HTTPS adoption remains rather low

despite well-publicized efforts [11]. Publishers have

claimed that a major roadblock to adoption is the need to

move all embedded third parties and trackers to HTTPS

to avoid mixed-content errors [54, 59].

Mixed-content errors occur when HTTP sub-resources

are loaded on a secure site. This poses a security prob-

lem, leading to browsers to block the resource load or

warn the user depending on the content loaded [37].

Passive mixed content, that is, non-executable resources

loaded over HTTP, cause the browser to display an

insecure warning to the user (Figure 4) but still load

10

Firefox 47

Chrome 47

HTTPS HTTPHTTPS w\ Passive
Mixed Content

Figure 4: Secure connection UI for Firefox Nightly 47 and Chrome 47.

The UI portrays a site with mixed content as less secure than an HTTPS

site without mixed content; clicking on the lock icon in Firefox reveals

the text ”Connection is not secure” when mixed content is present.

55K Sites 1M Sites
HTTP Only 82.9% X

HTTPS Only 14.2% 8.6%

HTTPS Opt. 2.9% X

Table 3: First party HTTPS support on the top 55K and top 1M sites.

“HTTP Only” is defined as sites which fail to upgrade when HTTPS

Everywhere is enabled. ‘HTTPS Only” are sites which always redirect

to HTTPS. “HTTPS Optional” are sites which provide an option to

upgrade, but only do so when HTTPS Everywhere is enabled. We

carried out HTTPS-everywhere-enabled measurement for only 55,000

sites, hence the X’s.

the content. Active mixed content is a far more serious

security vulnerability and is blocked outright by modern

browsers; it is not reflected in our measurements.

Third-party support for HTTPS. To test the hypoth-

esis that third parties impede HTTPS adoption, we first

characterize the HTTPS support of each third party. If a

third party appears on at least 10 sites and is loaded over

HTTPS on all of them, we say that it is HTTPS-only. If

it is loaded over HTTPS on some but not all of the, we

say that it supports HTTPS. If it is loaded over HTTP on

all of them, we say that it is HTTP-only. If it appears on

less than 10 sites, we do not have enough confidence to

make a determination.

Table 4 summarizes the HTTPS support of third

party domains which appear on more than 5 sites. A

large number of third-party domains are HTTP-only

(54%). However, when we weight third parties by

prominence, only 5% are HTTP-only. In contrast,

94% of prominence-weighted third parties support both

HTTP and HTTPS. This statistic supports our thesis that

consolidation of the third-party ecosystem is a plus for

security and privacy.

Impact of third-parties. We find that a significant

fraction of HTTP-default sites (26%) embed resources

from third-parties which do not support HTTPS. These

sites would be unable to upgrade to HTTPS without

browsers displaying mixed content errors to their users,

the majority of which (92%) would contain active con-

tent which would be blocked.

Similarly, of the 78,000 first-party sites that are

HTTPS-only, 6,000 (7.75%) load with mixed passive

content warnings. However, only 11% of these warnings

HTTPS Support Percent
Prominence
weighted %

HTTP Only 54% 5%

HTTPS Only 5% 1%

Both 41% 94%

Table 4: Third party HTTPS support. “HTTP Only” is defined as

domains from which resources are only requested over HTTP across all

sites on our 1M site measurement. ‘HTTPS Only” are domains from

which resources are only requested over HTTPS. “Both” are domains

which have resources requested over both HTTP and HTTPS. Results

are limited to third parties embedded on at least 10 first-party sites.

Class
Top 1M

% FP
Top 50k
% FP

Own 25.4% 29.6%

Favicon 1.4% 2.9%

Tracking 12.2% 27.0%

CDN 1.4% 2.9%

Non-tracking 43.4% 29.6%

Multiple causes 16.2% 8.1%

Table 5: A breakdown of causes of passive mixed-content warnings on

the top 1M sites and on the top 50k sites. “Non-tracking” represents

third-party content not classified as a tracker or a CDN.

(650) are caused by HTTP-only third parties, suggesting

that many domains may be able to mitigate these

warnings by ensuring all resources are being loaded

over HTTPS when available. We examined the causes

of mixed content on these sites, summarized in Table 5.

The majority are caused by third parties, rather than the

site’s own content, with a surprising 27% caused solely

by trackers.

5.4 News sites have the most trackers

The level of tracking on different categories of websites

varies considerably — by almost an order of magnitude.

To measure variation across categories, we used Alexa’s

lists of top 500 sites in each of 16 categories. From each

list we sampled 100 sites (the lists contain some URLs

that are not home pages, and we excluded those before

sampling).

In Figure 5 we show the average number of third

parties loaded across 100 of the top sites in each Alexa

category. Third parties are classified as trackers if

they would have been blocked by one of the tracking

protection lists, as discussion in Section 4.

Why is there so much variation? With the exception

of the adult category, the sites on the low end of the

spectrum are mostly sites which belong to government

organizations, universities, and non-profit entities. This

suggests that websites may be able to forgo advertising

and tracking due to the presence of funding sources

11

new
s
art
s
spo
rts
hom
e
gam
es

sho
ppi
ng

ave
rag
e

rec
rea
tio
n

reg
ion
al

kid
s a
nd
tee
ns
soc
iety

bus
ine
ss

com
put
ers
hea
lth
scie
nce

refe
ren
ce
adu
lt

0

10

20

30

40

50
Tracker
Non-Tracker

Figure 5: Average number of third parties in each Alexa category.

external to the web. Sites on the high end of the spectrum

are largely those which provide editorial content. Since

many of these sites provide articles for free, and lack an

external funding source, they are pressured to monetize

page views with significantly more advertising.

5.5 Does tracking protection work?

Users have two main ways to reduce their exposure

to tracking: the browser’s built in privacy features and

extensions such as Ghostery or uBlock Origin.

Contrary to previous work questioning the effective-

ness of Firefox’s third-party cookie blocking [12], we

do find the feature to be effective. Specifically, only 237

sites (0.4%) have any third-party cookies set during our

measurement set to block all third-party cookies (“Block

TP Cookies” in Table 2). Most of these are for benign

reasons, such as redirecting to the U.S. version of a non-

U.S. site. We did find exceptions, including 32 that con-

tained ID cookies. For example, there are six Australian

news sites that first redirect to news.com.au before

re-directing back to the initial domain, which seems to

be for tracking purposes. While this type of workaround

to third-party cookie blocking is not rampant, we suggest

that browser vendors should closely monitor it and make

changes to the blocking heuristic if necessary.

Another interesting finding is that when third-party

cookie blocking was enabled, the average number of

third parties per site dropped from 17.7 to 12.6. Our

working hypothesis for this drop is that deprived of

ID cookies, third parties curtail certain tracking-related

requests such as cookie syncing (which we examine in

Section 5.6).

We also tested Ghostery, and found that it is effective

at reducing the number of third parties and ID cookies

(Figure 6). The average number of third-party includes

went down from 17.7 to 3.3, of which just 0.3 had

third-party cookies (0.1 with IDs). We examined the

prominent third parties that are not blocked and found

almost all of these to be content-delivery networks like

cloudflare.com or widgets like maps.google.com,

which Ghostery does not try to block. So Ghostery

gs
ta
tic
.c
om

fo
nt
s.g
oo
gl
ea
pi
s.c
om

aj
ax
.g
oo
gl
ea
pi
s.c
om

go
og
le
.c
om

bo
ot
st
ra
pc
dn
.c
om

yt
im
g.
co
m

cl
ou
dfl
ar
e.
co
m

yo
ut
ub
e.
co
m

jq
ue
ry
.c
om

w
p.
co
m

s3
.a
m
az
on
aw
s.c
om

go
og
le
us
er
co
nt
en
t.c
om

ba
id
u.
co
m

m
ap
s.g
oo
gl
ea
pi
s.c
om

qq
.c
om

bp
.b
lo
gs
po
t.c
om

ak
am
ai
hd
.n
et

cd
ni
ns
ta
gr
am
.c
om

tw
im
g.
co
m

jw
pc
dn
.c
om

0
5

10
15
20
25
30
35

%
F
ir
st
-P

ar
ti
es

Figure 6: Third-party trackers on the top 55k sites with Ghostery

enabled. The majority of the top third-party domains not blocked are

CDNs or provide embedded content (such as Google Maps).

10−4 10−3 10−2 10−1 100

Prominence of Third-party (log)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra
ct
io
n
o
f
T
P

B
lo
ck
ed

Figure 7: Fraction of third parties blocked by Ghostery as a function

of the prominence of the third party. As defined earlier, a third party’s

prominence is the sum of the inverse ranks of the sites it appears on.

works well at achieving its stated objectives.

However, the tool is less effective for obscure trackers

(prominence < 0.1). We see a similar trend in the

detection of fingerprinting scripts (Section 6.6); less

prominent scripts are not blocked as frequently by block-

ing tools. This makes sense given that the block list is

manually compiled and the developers are less likely to

have encountered obscure trackers. It suggests that large-

scale measurement techniques like ours will be useful

for tool developers to minimize gaps in their coverage.

5.6 How common is cookie syncing?
Cookie syncing, a workaround to the Same-Origin Pol-

icy, allows different trackers to share user identifiers with

each other. Besides being hard to detect, cookie syncing

enables back-end server-to-server data merges hidden

from public view, which makes it a privacy concern.

Our ID cookie detection methodology (Section 4)

allows us to detect instances of cookie syncing. If

tracker A wants to share its ID for a user with tracker

B, it can do so in one of two ways: embedding the ID in

the request URL to tracker B, or in the referer URL. We

therefore look for instances of IDs in referer, request,

and response URLs, accounting for URL encoding and

other subtleties. We describe the full details of our

methodology in Appendix C.3, with an important caveat

12

that our methodology captures both intentional and

accidental ID sharing.

Most third parties are involved in cookie syncing.
We run our analysis on the top 100,000 site stateful mea-

surement. The most prolific cookie-syncing third party

is doubleclick.net — it shares 108 different cook-

ies with 118 other third parties (this includes both events

where it is a referer and where it is a receiver).

More interestingly, we find that the vast majority of

top third parties sync cookies with at least one other

party: 45 of the top 50, 85 of the top 100, 157 of the

top 200, and 460 of the top 1,000. This adds further

evidence that cookie syncing is an underappreciated and

under-researched privacy concern.

We also find that third parties are highly connected by

synced cookies. Specifically, of the top 50 third parties

that are involved in cookie syncing, the probability that

a random pair will have at least one cookie in common

is 85%. The corresponding probability for the top 100 is

66%.

Implications of “promiscuous cookies” for surveil-
lance. From the Snowden leaks, we learnt that that NSA

“piggybacks” on advertising cookies for surveillance and

exploitation of targets [17, 51, 53]. How effective can

this technique be? We present one answer to this ques-

tion. We consider a threat model where a surveillance

agency has identified a target by a third-party cookie (for

example, via leakage of identifiers by first parties, as de-

scribed in [12, 22, 24]). The adversary uses this identi-

fier to coerce or compromise a third party into enabling

surveillance or targeted exploitation.

We find that some cookies get synced over and

over again to dozens of third parties; we call these

promiscuous cookies. It is not yet clear to us why

these cookies are synced repeatedly and shared widely.

This means that if the adversary has identified a user

by such a cookie, their ability to surveil or target

malware to that user will be especially good. The

most promiscuous cookie that we found belongs to the

domain adverticum.net; it is synced or leaked to 82

other parties which are collectively present on 752 of

the top 1,000 websites! In fact, each of the top 10 most

promiscuous cookies is shared with enough third parties

to cover 60% or more of the top 1,000 sites.

6 Fingerprinting: a 1-million site view

OpenWPM significantly reduces the engineering re-

quirement of measuring device fingerprinting, making

it easy to update old measurements and discover new

techniques. In this section, we demonstrate this through

several new fingerprinting measurements, two of which

have never been measured at scale before, to the best of

our knowledge. We show how the number of sites on

which font fingerprinting is used and the number of third

parties using canvas fingerprinting have both increased

by considerably in the past few years. We also show

how WebRTC’s ability to discover local IPs without user

permission or interaction is used almost exclusively to

track users. We analyze a new fingerprinting technique

utilizing AudioContext7 found during our investiga-

tions. Finally, we discuss the use of the Battery API by

two fingerprinting scripts.

Our fingerprinting measurement methodology uti-

lizes data collected by the Javascript instrumentation

described in Section 3.1. With this instrumentation, we

monitor access to all built-in interfaces and objects we

suspect may be used for fingerprinting. By monitoring

on the interface or object level, we are able to record

access to all method calls and property accesses for each

interface we thought might be useful for fingerprinting.

This allows us to build a detection criterion for each

fingerprinting technique after a detailed analysis of

example scripts.

Although our detection criteria currently have neg-

ligible low false positive rate, we recognize that this

may change as new web technologies and applications

emerge. However, instrumenting all properties and

methods of an API provides a complete picture of each

application’s use of the interface, allowing our criteria

to also be updated. More importantly, this allows us

to replace our detection criteria with machine learning,

which is an area of ongoing work (Section 7).

% of First-parties
Rank Interval Canvas Canvas Font WebRTC
[0,1K) 5.10% 2.50% 0.60%

[1K,10K) 3.91% 1.98% 0.42%

[10K,100K) 2.45% 0.86% 0.19%

[100K,1M) 1.31% 0.25% 0.06%

Table 6: Prevalence of fingerprinting scripts on different slices of the

top sites. More popular sites are more likely to have fingerprinting

scripts.

6.1 Canvas Fingerprinting
Privacy threat. The HTML Canvas allows web applica-

tion to draw graphics in real time, with functions to sup-

port drawing shapes, arcs, and text to a custom canvas

element. In 2012 Mowery and Schacham demonstrated

how the HTML Canvas could be used to fingerprint de-

vices [36]. Differences in font rendering, smoothing,

anti-aliasing, as well as other device features cause de-

vices to draw the image differently. This allows the re-

sulting pixels to be used as part of a device fingerprint.

7https://developer.mozilla.org/en-US/docs/Web/API/

AudioContext

13

Detection methodology. We build on a 2014 mea-

surement study by Acar et.al. [1]. Since that study,

the canvas API has received broader adoption for non-

fingerprinting purposes, so we make several changes

to reduce false positives. In our measurements we

record access to nearly all of properties and meth-

ods of the HTMLCanvasElement8 interface and of the

CanvasRenderingContext2D9 interface. We filter

scripts according to the following criteria:

1. The canvas element’s height and width properties

must not be set below 16 px.10

2. Text must be written to canvas with least two colors

or at least 10 distinct characters.

3. The script should not call the save, restore,

or addEventListener methods of the rendering

context.

4. The script extracts an image with toDataURL or with

a single call to getImageData that specifies an area

with a minimum size of 16px × 16px.

This heuristic is designed to filter out scripts which are

unlikely to have sufficient complexity or size to act as an

identifier. We manually verified the accuracy of our de-

tection methodology by inspecting the images drawn and

the source code. We found a mere 4 false positives out of

3493 scripts identified on a 1 million site measurement.

Each of the 4 is only present on a single first-party.

Results. We found canvas fingerprinting on 14,371

(1.6%) sites. The vast majority (98.2%) are from third-

party scripts. These scripts come from about 3,500 URLs

hosted on about 400 domains. Table 7 shows the top

5 domains which serve canvas fingerprinting scripts or-

dered by the number of first-parties they are present on.

Domain # First-parties
doubleverify.com 7806

lijit.com 2858

alicdn.com 904

audienceinsights.net 499

boo-box.com 303

407 others 2719
TOTAL 15089 (14371 unique)

Table 7: Canvas fingerprinting on the Alexa Top 1 Million sites. For

a more complete list of scripts, see Table 11 in the Appendix.

Comparing our results with a 2014 study [1], we find

three important trends. First, the most prominent track-

ers have by-and-large stopped using it, suggesting that

the public backlash following that study was effective.

Second, the overall number of domains employing it

8https://developer.mozilla.org/en-US/docs/Web/API/

HTMLCanvasElement
9https://developer.mozilla.org/en-US/docs/Web/API/

CanvasRenderingContext2D
10The default canvas size is 300px × 150px.

has increased considerably, indicating that knowledge of

the technique has spread and that more obscure trackers

are less concerned about public perception. As the

technique evolves, the images used have increased in

variety and complexity, as we detail in Figure 11 in the

Appendix. Third, the use has shifted from behavioral

tracking to fraud detection, in line with the ad industry’s

self-regulatory norm regarding acceptable uses of

fingerprinting.

6.2 Canvas Font Fingerprinting
Privacy threat. The browser’s font list is very useful for

device fingerprinting [10]. The ability to recover the list

of fonts through Javascript or Flash is known, and exist-

ing tools aim to protect the user against scripts that do

that [2, 39]. But can fonts be enumerated using the Can-

vas interface? The only public discussion of the tech-

nique seems to be a Tor Browser Bundle ticket from

201411. To the best of our knowledge, we are the first

to measure its usage in the wild.

Detection methodology. The

CanvasRenderingContext2D interface provides a

measureText method, which returns several metrics

pertaining to the text size (including its width) when

rendered with the current font settings of the rendering

context. Our criterion for detecting canvas font finger-

printing is: the script sets the font property to at least

50 distinct, valid values and also calls the measureText

method at least 50 times on the same text string. We

manually examined the source code of each script found

this way and verified that there are zero false positives

on our 1 million site measurement.

Results. We found canvas-based font fingerprinting

present on 3,250 first-party sites. This represents less

than 1% of sites, but as Table 6 shows, the technique is

more heavily used on the top sites, reaching 2.5% of the

top 1000. The vast majority of cases (90%) are served

by a single third party, mathtag.com. The number of

sites with font fingerprinting represents a seven-fold in-

crease over a 2013 study [2], although they did not con-

sider Canvas.

6.3 WebRTC-based fingerprinting
Privacy threat. WebRTC is a framework for peer-to-

peer Real Time Communication in the browser, and ac-

cessible via Javascript. To discover the best network path

between peers, each peer collects all available candidate

addresses, including addresses from the local network in-

terfaces (such as ethernet or WiFi) and addresses from

the public side of the NAT and makes them available to

11https://trac.torproject.org/projects/tor/ticket/

13400

14

the web application without explicit permission from the
user. This has led to serious privacy concerns: users be-

hind a proxy or VPN can have their ISP’s public IP ad-

dress exposed [55]. We focus on a slightly different pri-

vacy concern: users behind a NAT can have their local IP

address revealed, which can be used as an identifier for

tracking. A detailed description of the discovery process

is given in Appendix B.

Detection methodology. To detect WebRTC local

IP discovery, we instrument the RTCPeerConnection12

interface prototype and record access to its method

calls and property access. After the measurement

is complete, we select the scripts which call the

createDataChannel and createOffer APIs, and ac-

cess the event handler onicecandidate13. We manu-

ally verified that scripts that call these functions are in

fact retrieving candidate IP addresses, with zero false

positives on 1 million sites. Next, we manually tested if

such scripts are using these IPs for tracking. Specifically,

we check if the code is located in a script that contains

other known fingerprinting techniques, in which case we

label it tracking. On the other hand, if we manually as-

sess that the code has a clear non-tracking use, we label

it non-tracking. If neither of these is the case, we la-

bel the script as ‘unknown’. We emphasize that even the

non-tracking scripts present the abovementioned privacy

concern related to leakage of private IPs.

Results. We found WebRTC being used to discover

local IP addresses without user interaction on 715 sites

out of the top 1 million. The vast majority of these (659)

were done by third-party scripts, loaded from 99 differ-

ent locations. A large majority (625) were used for track-

ing. The top 10 scripts accounted for 83% of usage, in

line with our other observations about the small number

of third parties responsible for most tracking. We provide

a list of scripts in Appendix Table 13.

The number of confirmed non-tracking uses of unso-

licited IP candidate discovery is small, and based on our

analysis, none of them is critical to the application. We

therefore suggest that WebRTC IP discovery should be

private by default, in contrast to the recommendation of

a Working Group that recently reviewed the security and

privacy concerns [55].

6.4 AudioContext Fingerprinting

The scale of our data gives us a new way to systemat-

ically identify new types of fingerprinting not previously

reported in the literature. The key insight is that finger-

printing techniques typically aren’t used in isolation but

12https://developer.mozilla.org/en-US/docs/Web/API/

RTCPeerConnection
13Although we found it unnecessary for current scripts, instrument-

ing localDescription will cover all possible IP address retrievals.

Classification # Scripts # First-parties
Tracking 57 625 (88.7%)

Non-Tracking 10 40 (5.7%)

Unknown 32 40 (5.7%)

Table 8: Summary of WebRTC local IP discovery on the top

1 million Alexa sites.

rather in conjunction with each other. So we monitor

known tracking scripts and look for unusual behavior

(e.g., use of new APIs) in a semi-automated fashion.

Using this approach we found several fingerprinting

scripts utilizing AudioContext and related inter-

faces. A manual analysis of these scripts suggest

that trackers are attempting to utilize the Audio API

to fingerprint users in multiple ways. Their use

ranges from simply checking for the API’s existence

to deriving a fingerprint from the underlying audio

processing. We provide a live demonstration page to

compute and visualize a device’s audio fingerprint at:

https://webtap.princeton.edu/audio-fp.

In the simplest case, a script from the company Liv-

erail14 checks for the existence of an AudioContext and

OscillatorNode to add a single bit of information to

a broader fingerprint. More sophisticated scripts process

an audio signal generated with an OscillatorNode to

fingerprint the device. This technique appears concep-

tually similar to that of canvas fingerprinting. Audio

signals processed on different machines or browsers

may have slight differences due to hardware or software

differences between the machines, while the same

combination of machine and browser will produce the

same output.

Figure 8 shows two alternate audio fingerprinting

configurations found in three scripts. Both configura-

tions process an audio signal from an OscillatorNode,

before reading the resulting signal and hashing it to

create a device audio fingerprint. Full details of the

configurations are given in Appendix D.

We tested the output of the scripts on a small sample

of machines, and confirmed the values returned are

largely stable on the same machine and different for

different machines. We did observe a couple examples

of instability for the top technique of Figure 8, and

several examples of collisions for machines with similar

hardware for the bottom technique of Figure 8. We leave

a full evaluation of the effectiveness of the technique to

future work. See Figure 9 for a visualization of the tail

end of the processed FFT from several browsers.

Using a follow-up measurement of the Alexa top

1 million sites from March 2016, we find that this

technique is very infrequently used. The Liverail scripts

14https://www.liverail.com/

15

Oscillator GainAnalyser Destination

FFT

[-121.36, -121.19, ...]SHA1() eb8a30ad7...

=0

Oscillator
Dynamics

Compressor Destination

Triangle Wave

Sine Wave

Bu er

MD5() ad60be2e8...[33.234, 34.568, ...]

Figure 8: AudioContext node configuration used to generate a

fingerprint. Top: Used by www.cdn-net.com/cc.js in an

AudioContext. Bottom: Used by client.a.pxi.pub/*/

main.min.js and js.ad-score.com/score.min.js in an

OfflineAudioContext. Full details in Appendix D.

700 750 800 850 900 950 1000 1050
220
200
180
160
140
120
100
80

dB

Frequency Bin Number

Chrome Linux 47.0.2526.106
Firefox Linux 41.0.2
Firefox Linux 44.0b2

Figure 9: Visualization of processed OscillatorNode output from

the fingerprinting script https://www.cdn-net.com/cc.js for

three different browsers on the same machine. We found these values

to remain constant for each browser after several checks.

are present on just 512 sites, and the remaining scripts

are present on even less. The cdn-net.com scripts are

included on 49 sites, however the audio fingerprinting

section appears to be disabled. The pxi.pub and

ad-score.com scripts are present and actively finger-

printing users on 12 and 6 sites respectively. This shows

that, even with very low usage rates, we can successfully

bootstrap off of currently known fingerprinting scripts to

discover and measure new techniques.

6.5 Battery API Fingerprinting

As a second example of bootstrapping, we analyze

the Battery Status API15, which allows a site to query

the browser for the current battery level or charging

status of a host device. It was previously identified as

15https://www.w3.org/TR/2016/PR-battery-status-

20160329/

a potential fingerprinting vector [41]. We discovered

two fingerprinting scripts utilizing the API during our

manual analysis of other fingerprinting techniques.

One script, https://go.lynxbroker.de/eat_

heartbeat.js, retrieves the current charge level

of the host device and combines it with several

other identifying features. These features include

the canvas fingerprint and the user’s local IP ad-

dress retrieved with WebRTC as described in

Section 6.1 and Section 6.3. The second script,

http://js.ad-score.com/score.min.js, queries

all properties of the BatteryManager interface, retriev-

ing the current charging status, the charge level, and the

time remaining to discharge or recharge. As with the

previous script, these features are combined with other

identifying features used to fingerprint a device.

6.6 The wild west of fingerprinting scripts
In Section 5.5 we found the various tracking protection

measures to be very effective at reducing third-party

tracking. In Table 9 we show how blocking tools miss

many of the scripts we detected throughout Section 6,

particularly those using lesser-known techniques. Al-

though blocking tools detect the majority of instances

of well-known techniques, only a fraction of the total

number of scripts are detected.

Ghostery EasyList + EasyPrivacy
Technique % Scripts % Sites % Scripts % Sites

Canvas 8.4% 80.5% 25.1% 88.3%

Canvas Font 10.3% 90.6% 10.3% 90.6%

WebRTC 1.9% 1.0% 4.8% 5.6%

Audio 11.1% 53.1% 5.6% 1.6%

Table 9: Percentage of fingerprinting scripts blocked by Ghostery

or the combination of EasyList and EasyPrivacy for all techniques

described in Section 6. Included is the percentage of sites with

fingerprinting scripts on which scripts are blocked.

Fingerprinting scripts pose a unique challenge for

manually curated block lists. They don’t typically

change the rendering of a page and may not be included

by an advertising entity. The script content may be

obfuscated to the point where manual inspection is

difficult and the purpose of the script unclear.

OpenWPM’s active instrumentation (see Section 3.1)

detects a large number of scripts not blocked by the

current privacy tools. Ghostery and a combination of

EasyList and EasyPrivacy both perform similarly in their

block rate. The privacy tools block canvas fingerprinting

on over 80% of sites, and block canvas font fingerprint-

ing on over 90%. However, only a fraction of the total

number of scripts utilizing the techniques are blocked

(between 8% and 25%) showing that less popular third

16

parties are missed. Lesser-known techniques, like

WebRTC IP discovery and Audio fingerprinting have

even lower rates of detection.

10−6 10−5 10−4 10−3 10−2

Prominence of Script (log)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra
ct
io
n
o
f
S
cr
ip
ts

B
lo
ck
ed

Figure 10: Fraction of fingerprinting scripts with prominence above a

given level blocked by Ghostery, EasyList, or EasyPrivacy.

In fact, fingerprinting scripts with a low prominence

are blocked much less frequently than those with high

prominence. Figure 10 shows the fraction of scripts

which are blocked by Ghostery, EasyList, or Easypri-

vacy for all techniques analyzed in this section. All

scripts with a prominence above 0.0125 are detected and

blocked by one of the blocking tools, while only 38% of

those with a prominence above 0.0001 are. The long tail

of fingerprinting scripts are largely unblocked by current

privacy tools.

7 Conclusion and future work

Web privacy measurement has the potential to play a

key role in keeping online privacy incursions and power

imbalances in check. To achieve this potential, measure-

ment tools must be made available broadly rather than

just within the research community. In this work, we’ve

tried to bring this ambitious goal closer to reality.

The analysis presented in this paper represents a snap-

shot of results from ongoing, monthly measurements.

OpenWPM and census measurements are the first two

stages of a multi-year project. We are currently working

on two directions that build on the work presented here.

The first is the use of machine learning to automatically

detect and classify trackers. If successful, this will

greatly improve the effectiveness of browser privacy

tools. Today such tools use tracking-protection lists that

need to be created manually and laboriously, and suffer

from significant false positives as well as false negatives.

Our large-scale data provide the ideal source of ground

truth for training classifiers to detect and categorize

trackers.

The second line of work is a web-based analysis

platform that makes it easy for a minimally technically

skilled analyst to investigate online tracking based on

the data we make available. In particular, we are aiming

to make it possible for an analyst to save their analysis

scripts and results to the server, share it, and for others

to build on it.

8 Acknowledgements

We would like to thank Shivam Agarwal for contributing

analysis code used in this study, Christian Eubank and

Peter Zimmerman for their work on early versions of

OpenWPM, and Gunes Acar for his contributions to

OpenWPM and helpful discussions during our investiga-

tions, and Dillon Reisman for his technical contributions.

We’re grateful to numerous researchers for useful

feedback: Joseph Bonneau, Edward Felten, Steven

Goldfeder, Harry Kalodner, and Matthew Salganik at

Princeton, Fernando Diaz and many others at Microsoft

Research, Franziska Roesner at UW, Marc Juarez at KU

Leuven, Nikolaos Laoutaris at Telefonia Research, Vin-

cent Toubiana at CNIL, France, Lukasz Olejnik at IN-

RIA, France, Tanvi Vyas at Mozilla, Chameleon devel-

oper Alexei Miagkov, Joel Reidenberg at Fordham, An-

drea Matwyshyn at Northeastern, and the participants of

the Princeton Web Privacy and Transparency workshop.

This work was supported by NSF Grant CNS

1526353, a grant from the Data Transparency Lab, and

by Amazon AWS Cloud Credits for Research.

References
[1] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M.,

NARAYANAN, A., AND DIAZ, C. The web never forgets: Per-

sistent tracking mechanisms in the wild. In Proceedings of the
21st ACM Conference on Computer and Communications Secu-
rity (CCS 2014) (2014).

[2] ACAR, G., JUAREZ, M., NIKIFORAKIS, N., DIAZ, C.,

GÜRSES, S., PIESSENS, F., AND PRENEEL, B. FPDetective:

dusting the web for fingerprinters. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (2013), ACM.

[3] ADAMIC, L. A., AND HUBERMAN, B. A. Zipfs law and the

internet. Glottometrics 3, 1 (2002), 143–150.

[4] ALTAWEEL I, GOOD N, H. C. Web privacy census. Technology
Science (2015).

[5] ANGWIN, J. What they know. The Wall Street Journal.

http://online.wsj.com/public/page/what-they-

know-digital-privacy.html, 2012.

[6] AYENSON, M., WAMBACH, D. J., SOLTANI, A., GOOD, N.,

AND HOOFNAGLE, C. J. Flash cookies and privacy II: Now with

HTML5 and ETag respawning. World Wide Web Internet And
Web Information Systems (2011).

[7] BLACK, P. E. Ratcliff/Obershelp pattern recognition. http://

xlinux.nist.gov/dads/HTML/ratcliffObershelp.html,

December 2004.

17

[8] DATTA, A., TSCHANTZ, M. C., AND DATTA, A. Automated

experiments on ad privacy settings. Proceedings on Privacy En-
hancing Technologies 2015, 1 (2015), 92–112.

[9] DAVIS, W. KISSmetrics Finalizes Supercookies Settlement.

http://www.mediapost.com/publications/article/

191409/kissmetrics-finalizes-supercookies-

settlement.html, 2013. [Online; accessed 12-May-2014].

[10] ECKERSLEY, P. How unique is your web browser? In Privacy
Enhancing Technologies (2010), Springer.

[11] ELECTRONIC FRONTIER FOUNDATION. Encrypting the Web.

https://www.eff.org/encrypt-the-web.

[12] ENGLEHARDT, S., REISMAN, D., EUBANK, C., ZIMMERMAN,

P., MAYER, J., NARAYANAN, A., AND FELTEN, E. W. Cook-

ies that give you away: The surveillance implications of web

tracking. In Proceedings of the 24th International Conference
on World Wide Web (2015), International World Wide Web Con-

ferences Steering Committee, pp. 289–299.

[13] FEDERAL TRADE COMMISSION. Google will pay $22.5

million to settle FTC charges it misrepresented privacy

assurances to users of Apple’s Safari internet browser.

https://www.ftc.gov/news-events/press-releases/

2012/08/google-will-pay-225-million-settle-ftc-

charges-it-misrepresented, 2012.

[14] FIFIELD, D., AND EGELMAN, S. Fingerprinting web users

through font metrics. In Financial Cryptography and Data Se-
curity. Springer, 2015, pp. 107–124.

[15] FRUCHTER, N., MIAO, H., STEVENSON, S., AND BALEBAKO,

R. Variations in tracking in relation to geographic location. In

Proceedings of W2SP (2015).

[16] GILL, P., ERRAMILLI, V., CHAINTREAU, A., KRISHNA-

MURTHY, B., PAPAGIANNAKI, K., AND RODRIGUEZ, P. Follow

the money: understanding economics of online aggregation and

advertising. In Proceedings of the 2013 conference on Internet
measurement conference (2013), ACM, pp. 141–148.

[17] GORMAN, S., AND VALENTINO-DEVRIES, J.

New Details Show Broader NSA Surveillance

Reach. http://online.wsj.com/news/articles/

SB10001424127887324108204579022874091732470,

2013.

[18] HANNAK, A., SOELLER, G., LAZER, D., MISLOVE, A., AND

WILSON, C. Measuring price discrimination and steering on e-

commerce web sites. In Proceedings of the 14th Internet Mea-
surement Conference (IMC 2014) (2014).

[19] HOOFNAGLE, C. J., AND GOOD, N. Web privacy census. Avail-
able at SSRN 2460547 (2012).

[20] KRANCH, M., AND BONNEAU, J. Upgrading HTTPS in midair:

HSTS and key pinning in practice. In NDSS ’15: The 2015
Network and Distributed System Security Symposium (February

2015).

[21] KRASHAKOV, S. A., TESLYUK, A. B., AND SHCHUR, L. N.

On the universality of rank distributions of website popularity.

Computer Networks 50, 11 (2006), 1769–1780.

[22] KRISHNAMURTHY, B., NARYSHKIN, K., AND WILLS, C. Pri-

vacy leakage vs. protection measures: the growing disconnect. In

Proceedings of the Web (2011), vol. 2.

[23] KRISHNAMURTHY, B., AND WILLS, C. Privacy diffusion on

the web: a longitudinal perspective. In Proceedings of the 18th
international conference on World wide web (2009), ACM.

[24] KRISHNAMURTHY, B., AND WILLS, C. E. On the leakage of

personally identifiable information via online social networks. In

Proceedings of the 2nd ACM workshop on Online social networks
(2009), ACM.

[25] LAPERDRIX, P., RUDAMETKIN, W., AND BAUDRY, B. Beauty

and the beast: Diverting modern web browsers to build unique

browser fingerprints. In 37th IEEE Symposium on Security and
Privacy (S&P 2016) (2016).

[26] LÉCUYER, M., DUCOFFE, G., LAN, F., PAPANCEA, A., PET-

SIOS, T., SPAHN, R., CHAINTREAU, A., AND GEAMBASU, R.

Xray: Enhancing the webs transparency with differential correla-

tion. In USENIX Security Symposium (2014).

[27] LECUYER, M., SPAHN, R., SPILIOPOLOUS, Y., CHAINTREAU,

A., GEAMBASU, R., AND HSU, D. Sunlight: Fine-grained

targeting detection at scale with statistical confidence. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 554–566.

[28] LEYDEN, J. Sites pulling sneaky flash cookie-snoop. http://

www.theregister.co.uk/2009/08/19/flash_cookies/,

2009.

[29] LIBERT, T. Exposing the invisible web: An analysis of third-

party http requests on 1 million websites. International Journal
of Communication 9, 0 (2015).

[30] MARSHALL, J. Burst of M&A in Online Advertising as Shakeout

Begins. http://blogs.wsj.com/cmo/2015/01/07/burst-

of-ma-in-online-advertising-as-shakeout-begins/,

2015.

[31] MATTIOLI, D. On Orbitz, Mac users steered to pricier

hotels. http://online.wsj.com/news/articles/

SB10001424052702304458604577488822667325882,

2012.

[32] MAYER, J. R., AND MITCHELL, J. C. Third-party web tracking:

Policy and technology. In Security and Privacy (SP), 2012 IEEE
Symposium on (2012), IEEE.

[33] MCDONALD, A. M., AND CRANOR, L. F. Survey of the use of

Adobe Flash Local Shared Objects to respawn HTTP cookies, a.

ISJLP 7 (2011).

[34] MIKIANS, J., GYARMATI, L., ERRAMILLI, V., AND

LAOUTARIS, N. Detecting price and search discrimination on

the internet. In Proceedings of the 11th ACM Workshop on Hot
Topics in Networks (2012), ACM.

[35] MOHAMED, N. You deleted your cookies? think

again. http://www.wired.com/2009/08/you-deleted-

your-cookies-think-again/, 2009.

[36] MOWERY, K., AND SHACHAM, H. Pixel perfect: Fingerprinting

canvas in html5. Proceedings of W2SP (2012).

[37] MOZILLA DEVELOPER NETWORK. Mixed content - Se-

curity. https://developer.mozilla.org/en-US/docs/

Security/Mixed_content.

[38] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A.,

VAN ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F.,

AND VIGNA, G. You are what you include: Large-scale eval-

uation of remote javascript inclusions. In Proceedings of the
2012 ACM conference on Computer and communications secu-
rity (2012), ACM, pp. 736–747.

18

[39] NIKIFORAKIS, N., KAPRAVELOS, A., JOOSEN, W., KRUEGEL,

C., PIESSENS, F., AND VIGNA, G. Cookieless monster: Explor-

ing the ecosystem of web-based device fingerprinting. In Security
and Privacy (SP), 2013 IEEE Symposium on (2013), IEEE.

[40] OCARIZA, F., PATTABIRAMAN, K., AND ZORN, B. Javascript

errors in the wild: An empirical study. In Software Reliability
Engineering (ISSRE), 2011 IEEE 22nd International Symposium
on (2011), IEEE, pp. 100–109.

[41] OLEJNIK, L., ACAR, G., CASTELLUCCIA, C., AND DIAZ, C.

The leaking battery. Cryptology ePrint Archive Report 2015/616
(2015).

[42] OLEJNIK, L., CASTELLUCCIA, C., ET AL. Selling off privacy at

auction. In NDSS ’14: The 2014 Network and Distributed System
Security Symposium (2014).

[43] PHANTOM JS. Supported web standards. http://www.

webcitation.org/6hI3iptm5, 2016.

[44] RAFIQUE, M. Z., VAN GOETHEM, T., JOOSEN, W., HUYGENS,

C., AND NIKIFORAKIS, N. Its free for a reason: Exploring the

ecosystem of free live streaming services. In NDSS ’16: The 2016
Network and Distributed System Security Symposium (2016).

[45] ROBINSON, N., AND BONNEAU, J. Cognitive disconnect: Un-

derstanding Facebook Connect login permissions. In Proceedings
of the second edition of the ACM conference on Online social net-
works (2014), ACM, pp. 247–258.

[46] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detecting

and defending against third-party tracking on the web. In 9th
USENIX Symposium on Networked Systems Design and Imple-
mentation (2012).

[47] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detecting

and Defending Against Third-Party Tracking on the Web. In

Symposium on Networking Systems Design and Implementation
(2012), USENIX.

[48] SELENIUM BROWSER AUTOMATION. Selenium faq.

https://code.google.com/p/selenium/wiki/

FrequentlyAskedQuestions, 2014.

[49] SINGEL, R. Online Tracking Firm Settles Suit Over

Undeletable Cookies. http://www.wired.com/2010/12/

zombie-cookie-settlement/, 2010.

[50] SOLTANI, A., CANTY, S., MAYO, Q., THOMAS, L., AND

HOOFNAGLE, C. J. Flash cookies and privacy. In AAAI
Spring Symposium: Intelligent Information Privacy Management
(2010).

[51] SOLTANI, A., PETERSON, A., AND GELLMAN, B.

NSA uses Google cookies to pinpoint targets for hack-

ing. http://www.washingtonpost.com/blogs/the-

switch/wp/2013/12/10/nsa-uses-google-cookies-to-

pinpoint-targets-for-hacking, December 2013.

[52] STAROV, O., DAHSE, J., AHMAD, S. S., HOLZ, T., AND NIKI-

FORAKIS, N. No honor among thieves: A large-scale analysis of

malicious web shells. In Proceedings of the 25th International
Conference on World Wide Web (2016).

[53] THE GUARDIAN. ‘Tor Stinks’ presentation - read

the full document. http://www.theguardian.com/

world/interactive/2013/oct/04/tor-stinks-nsa-

presentation-document, October 2013.

[54] TOLLMAN, Z. Were Going HTTPS: Heres How WIRED Is

Tackling a Huge Security Upgrade. https://www.wired.com/

2016/04/wired-launching-https-security-upgrade/,

2016.

[55] UBERTI, J., AND WEI SHIEH, G. WebRTC IP Address Handling

Recommendations. https://datatracker.ietf.org/doc/

draft-ietf-rtcweb-ip-handling/.

[56] VAN ACKER, S., NIKIFORAKIS, N., DESMET, L., JOOSEN, W.,

AND PIESSENS, F. Flashover: Automated discovery of cross-site

scripting vulnerabilities in rich internet applications. In Proceed-
ings of the 7th ACM Symposium on Information, Computer and
Communications Security (2012), ACM, pp. 12–13.

[57] VAN GOETHEM, T., PIESSENS, F., JOOSEN, W., AND NIKI-

FORAKIS, N. Clubbing seals: Exploring the ecosystem of third-

party security seals. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (2014),

ACM, pp. 918–929.

[58] VISSERS, T., NIKIFORAKIS, N., BIELOVA, N., AND JOOSEN,

W. Crying wolf? on the price discrimination of online airline

tickets. HotPETS, 2014.

[59] WAZER, W. V. Moving the Washington Post to HTTPS. https:

//developer.washingtonpost.com/pb/blog/post/

2015/12/10/moving-the-washington-post-to-https/,

2015.

[60] XING, X., MENG, W., DOOZAN, D., FEAMSTER, N., LEE,

W., AND SNOEREN, A. C. Exposing inconsistent web search

results with bobble. In Passive and Active Measurement (2014),

Springer, pp. 131–140.

[61] YUE, C., AND WANG, H. A measurement study of insecure

javascript practices on the web. ACM Transactions on the Web
(TWEB) 7, 2 (2013), 7.

[62] ZARRAS, A., KAPRAVELOS, A., STRINGHINI, G., HOLZ, T.,

KRUEGEL, C., AND VIGNA, G. The dark alleys of madison

avenue: Understanding malicious advertisements. In Proceed-
ings of the 2014 Conference on Internet Measurement Conference
(2014), ACM, pp. 373–380.

Appendices

A HTTPS Mixed Content Classification

To classify URLs in the HTTPS mixed content analysis,

we used the block lists described in Section 4. Addition-

ally, we include a list of CDNs from the WebPagetest

Project16. The mixed content URL is then classfied

according to the first rule it satisfies in the following list:

1. If the requested domain matches the landing page do-

main, and the request URL ends with favicon.ico

classify as a “favicon”.

2. If the requested domain matches the landing page

domain, classify as the site’s “own content”.

3. If the requested domain is marked as “should block”

by the blocklists, classify as “tracker”.

16https://github.com/WPO-Foundation/webpagetest

19

Figure 11: Sample canvas fingerprinting images. These three images

represent the final canvas images created by fingerprinting scripts,

which are subsequently hashed and used to identify the device.

4. If the requested domain is in the CDN list, classify as

“CDN”.

5. Otherwise, classify as “non-tracking” third-party

content.

B WebRTC ICE Candidate Generation

It is possible for a Javascript web application to access

ICE candidates, and thus access a user’s local IP

addresses and public IP address, without explicit user

permission. Although a web application must request

explicit user permission to access audio or video through

WebRTC, the framework allows a web application to

construct an RTCDataChannel without permission. By

default, the data channel will launch the ICE protocol

and thus enable the web application to access the IP ad-

dress information without any explicit user permission.

Both users behind a NAT and users behind a VPN/proxy

can have additional identifying information exposed to

websites without their knowledge or consent.

Several steps must be taken to have the browser

generate ICE candidates. First, a RTCDataChannel

must be created as discussed above. Next, the

RTCPeerConnection.createOffer() must

be called, which generates a Promise that

will contain the session description once the

offer has been created. This is passed to

Content-Type Count
binary/octet-stream 8

image/jpeg 12664

image/svg+xml 177

image/x-icon 150

image/png 7697

image/vnd.microsoft.icon 41

text/xml 1

audio/wav 1

application/json 8

application/pdf 1

application/x-www-form-urlencoded 8

application/unknown 5

audio/ogg 4

image/gif 2905

video/webm 20

application/xml 30

image/bmp 2

audio/mpeg 1

application/x-javascript 1

application/octet-stream 225

image/webp 1

text/plain 91

text/javascript 3

text/html 7225

video/ogg 1

image/* 23

video/mp4 19

image/pjpeg 2

image/small 1

image/x-png 2

Table 10: Counts of responses with given Content-Type which cause

mixed content errors. NOTE: Mixed content blocking occurs based

on the tag of the initial request (e.g. image src tags are considered

passive content), not the response Content-Type. Thus it is likely that

the Javascript and other active content loads listed above are the result

of misconfigurations and mistakes that will be dropped by the browser.

For example, requesting a Javascript file with an image tag.

RTCPeerConnection.setLocalDescription(),

which triggers the gathering of candidate addresses. The

prepared offer will contain the supported configurations

for the session, part of which includes the IP addresses

gathered by the ICE Agent.17 A web application can

retrieve these candidate IP addresses by using the event

handler RTCPeerConnection.onicecandidate()

and retrieving the candidate IP address from

the RTCPeerConnectionIceEvent.candidate

or, by parsing the resulting Session De-

scription Protocol (SDP)18 string from

17https://w3c.github.io/webrtc-pc/#widl-

RTCPeerConnection-createOffer-Promise-

RTCSessionDescription--RTCOfferOptions-options
18https://tools.ietf.org/html/rfc3264

20

RTCPeerConnection.localDescription af-

ter the offer generation is complete. In our

study we only found it necessary to instrument

RTCPeerConnection.onicecandidate() to capture

all current scripts.

C Additional methodological details

All measurements are run with Firefox version 41. The

Ghostery measurements use version 5.4.10 set to block

all possible bugs and cookies. The HTTPS Everywhere

measurement uses version 5.1.0 with the default settings.

The Block TP Cookies measurement sets the Firefox

setting to “block all third-party cookies”

C.1 Classifying Third-party content
In order to determine if a request is a first-party or

third-party request, we utilize the URL’s “public suffix

+ 1” (or PS+1). A public suffix is “is one under

which Internet users can (or historically could) directly

register names. [Examples include] .com, .co.uk and

pvt.k12.ma.us.” A PS+1 is the public suffix with the

section of the domain immediately proceeding it (not

including any additional subdomains). We use Mozilla’s

Public Suffix List19 in our analysis. We consider a site

to be a potential third-party if the PS+1 of the site does

not match the landing page’s PS+1 (as determined by

the algorithm in Appendix C.2). Throughout the paper

we use the word “domain” to refer to a site’s PS+1.

C.2 Detection of landing pages from HTTP
data

Upon visiting a site, the browser may either be redi-

rected by a response header (with a 3XX HTTP response

code or “Refresh” field), or by the page content (with

javascript or a “Refresh” meta tag). Several redirects

may occur before the site arrives at its final landing

page and begins to load the remainder of the content.

To capture all possible redirects we use the following

recursive algorithm, starting with the initial request to

the top-level site. For each request:

1. If HTTP redirect, following it preserving referrer

details from previous request.

2. If the previous referrer is the same as the current

we assume content has started to load and return the

current referrer as the landing page.

3. If the current referrer is different from the previous

referrer, and the previous referrer is seen in future

requests, assume it is the actual landing page and

return the previous referrer.

19https://publicsuffix.org/

4. Otherwise, continue to the next request, updating the

current and previous referrer.

This algorithm has two failure states: (1) a site redi-

rects, loads additional resources, then redirects again, or

(2) the site has no additional requests with referrers. The

first failure mode will not be detected, but the second

will be. From manual inspection, the first failure mode

happens very infrequently. For example, we find that

only 0.05% of sites are incorrectly marked as having

HTTPS as a result of this failure mode. For the second

failure mode, we find that we can’t correctly label the

landing pages of 2973 first-party sites (0.32%) on the

top 1 million sites. For these sites we fall back to the

requested top-level URL.

C.3 Detecting Cookie Syncing
We consider two parties to have cookie synced if a

cookie ID appears in specific locations within the refer-
rer, request, and location URLs extracted from HTTP

request and response pairs. We determine cookie IDs

using the algorithm described in Section 4. To determine

the sender and receiver of a synced ID we use the fol-

lowing classification, in line with previous work [1, 42]:

• If the ID appears in the request URL: the requested

domain is the recipient of a synced ID.

• If the ID appears in the referrer URL: the referring

domain is the sender of the ID, and the requested

domain is the receiver.

• If the ID appears in the location URL: the original

requested domain is the sender of the ID, and the

redirected location domain is the receiver.

This methodology does not require reverse engineer-

ing any domain’s cookie sync API or URL pattern. An

important limitation of this generic approach is the lack

of discrimination between intentional cookie syncing

and accidental ID sharing. The latter can occur if a site

includes a user’s ID within its URL query string, causing

the ID to be shared with all third parties in the referring

URL.

The results of this analysis thus provide an accurate

representation of the privacy implications of ID sharing,

as a third party has the technical capability to use an

unintentionally shared ID for any purpose, including

tracking the user or sharing data. However, the re-

sults should be interpreted only as an upper bound on

cookie syncing as the practice is defined in the online

advertising industry.

C.4 Detection of Fingerprinting
Javascript minification is used to reduce the size of a

file for transit. Additionally, Javascript files can be ob-

fuscated, such that the majority of the script is stored in

21

one or several obfuscated strings which are transformed

and evaluated at run time using various string operations

and the eval function. This makes static analysis

difficult, if not impossible, for these scripts, as the script

can’t be re-constructed without executing the bundled

parser. Anecdotally, we have found that obfuscation is

not uncommon in fingerprinting and tracking scripts,

motivating the use of a dynamic approach. With our

detection methodology, we intercept and record access

to specific Javascript objects, which is not hindered by

minification or obfuscation of the source code.

The methodology builds on that used by Acar, et.al.

[1] to detect canvas fingerprinting. Using the Javascript

calls instrumentation described in Section 3.1, we record

access to specific APIs which have been found to be used

to fingerprint the browser. Each time an instrumented ob-

ject is accessed, we record the full context of the access:

the URL of the calling script, the top-level url of the site,

the property and method being accessed, any provided

arguments, and any properties set or returned. For each

fingerprinting method, we design a detection algorithm

which takes the context as input and returns a binary

classification of whether or not a script uses that method

of fingerprinting when embedded on that first-party site.

When manual verification is necessary, we have two

approaches which depend on the level of script obfusca-

tion. If the script is not obfuscated we manually inspect

the copy which was archived according to the procedure

discussed in Section 3.1. If the script is obfuscated

beyond inspection, we embed a copy of the script in iso-

lation on a dummy HTML page and inspect it using the

Firefox Javascript Deobfuscator20 extension. We also

occasionally spot check live versions of sites and scripts,

falling back to the archive when there are discrepancies.

C.5 Instrumenting JavaScript calls
Our instrumentation of JavaScript calls relies on overrid-

ing of getters and setters for all properties and methods

of each instrumented object. The scripts being measured

run at the same privilege level, so they might erase or

override our instrumentation changes, preventing us

from recording access to the object. Similarly, the script

could first check if a custom getter is present before

executing any fingerprinting code.

However, this would in turn be detectable since we

would observe access to the define{G,S}etter
or lookup{G,S}etter methods for the object

in question and could investigate the cause. In our

1 million site measurement, we only observe script

access to getters or setters for HTMLCanvasElement

and CanvasRenderingContext2D interfaces. All of

20https://addons.mozilla.org/en-US/firefox/addon/

javascript-deobfuscator/

these are benign accesses from 47 scripts total, with the

majority related to an HTML canvas graphics library.

D AudioContext Fingerprinting Configu-
ration

Figure 8 in Section 6.4 summarizes the two audio

fingerprinting configurations found in the wild.

The top configuration, used by a single script

(*.cdn-net.com/cc.js), utilizes AudioContext

to generate a fingerprint. First, the script generates

a triangle wave using an OscillatorNode. This

signal is passed through an AnalyserNode and a

ScriptProcessorNode (omitted from Figure 8).

Finally, the signal is passed into a through a GainNode

with gain set to zero to mute any output before being

connect to the AudioContext’s destination (e.g. the com-

puter’s speakers). The AnalyserNode provides access

to a Fast Fourier Transform (FFT) of the audio signal,

which is captured using the onaudioprocess event

handler added by the ScriptProcessorNode. The

resulting FFT is fed into a hash and used as a fingerprint.

The bottom configuration, used by two scripts

(client.a.pxi.pub/*/main.min.js and

http://js.ad-score.com/score.min.js),

uses a similar technique as the previous script

with two notable differences. The scripts use a

DynamicsCompressorNode, possibly to increase

differences in processed audio between machines.

Rather than access the FFT of a muted stream, it

uses OfflineAudioContext, which outputs the pro-

cessed audio to a buffer available to the script. This

removes the need for an AnalyserNode, GainNode, or

ScriptProcessorNode. The script uses a hash of the

sum of values from the buffer as the fingerprint.

22

Fingerprinting Script Count
cdn.doubleverify.com/dvtp_src_internal24.js 4588

cdn.doubleverify.com/dvtp_src_internal23.js 2963

ap.lijit.com/sync 2653

cdn.doubleverify.com/dvbs_src.js 2093

rtbcdn.doubleverify.com/bsredirect5.js 1208

g.alicdn.com/alilog/mlog/aplus_v2.js 894

static.audienceinsights.net/t.js 498

static.boo-box.com/javascripts/embed.js 303

admicro1.vcmedia.vn/core/fipmin.js 180

c.imedia.cz/js/script.js 173

ap.lijit.com/www/delivery/fp 140

www.lijit.com/delivery/fp 127

s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js 118

d38nbbai6u794i.cloudfront.net/*/platform.min.js 97

voken.eyereturn.com/ 85

p8h7t6p2.map2.ssl.hwcdn.net/fp/Scripts/PixelBundle.js 72

static.fraudmetrix.cn/fm.js 71

e.e701.net/cpc/js/common.js 56

tags.bkrtx.com/js/bk-coretag.js 56

dtt617kogtcso.cloudfront.net/sauce.min.js 55

685 others 1853

TOTAL
18283

14371 unique1

Table 11: Canvas fingerprinting scripts on the top Alexa 1 Million sites.

*: Some URLs are truncated for brevity.

1: Some sites include fingerprinting scripts from more than one domain.

Fingerprinting script # of sites Text drawn into the canvas
mathid.mathtag.com/device/id.js

mathid.mathtag.com/d/i.js 2941 mmmmmmmmmmlli

admicro1.vcmedia.vn/core/fipmin.js 243 abcdefghijklmnopqr[snip]

*.online-metrix.net1 75 gMcdefghijklmnopqrstuvwxyz0123456789

pixel.infernotions.com/pixel/ 2 mmmmmmmmmMMMMMMMMM=llllIiiiiii‘’.

api.twisto.cz/v2/proxy/test* 1 mmmmmmmmmmlli

go.lynxbroker.de/eat_session.js 1 mimimimimimimi[snip]

TOTAL
3263

(3250 unique2) -

Table 12: Canvas font fingerprinting scripts on the top Alexa 1 Million sites.

*: Some URLs are truncated for brevity.

1: The majority of these inclusions were as subdomain of the first-party site, where the DNS record points to a subdomain of online-metrix.net.

2: Some sites include fingerprinting scripts from more than one domain.

23

Fingerprinting Script First-party Count Classification
cdn.augur.io/augur.min.js 147 Tracking

click.sabavision.com/*/jsEngine.js 115 Tracking

static.fraudmetrix.cn/fm.js 72 Tracking

*.hwcdn.net/fp/Scripts/PixelBundle.js 72 Tracking

www.cdn-net.com/cc.js 45 Tracking

scripts.poll-maker.com/3012/scpolls.js 45 Tracking

static-hw.xvideos.com/vote/displayFlash.js 31 Non-Tracking

g.alicdn.com/security/umscript/3.0.11/um.js 27 Tracking

load.instinctiveads.com/s/js/afp.js 16 Tracking

cdn4.forter.com/script.js 15 Tracking

socauth.privatbank.ua/cp/handler.html 14 Tracking

retailautomata.com/ralib/magento/raa.js 6 Unknown

live.activeconversion.com/ac.js 6 Tracking

olui2.fs.ml.com/publish/ClientLoginUI/HTML/cc.js 3 Tracking

cdn.geocomply.com/101/gc-html5.js 3 Tracking

retailautomata.com/ralib/shopifynew/raa.js 2 Unknown

2nyan.org/animal/ 2 Unknown

pixel.infernotions.com/pixel/ 2 Tracking

167.88.10.122/ralib/magento/raa.js 2 Unknown

80 others present on a single first-party 80 -

TOTAL 705 -

Table 13: WebRTC Local IP discovery on the Top Alexa 1 Million sites.

*: Some URLs are truncated for brevity.

Site Prominence # of FP Rank Change
doubleclick.net 6.72 447,963 +2

google-analytics.com 6.20 609,640 −1

gstatic.com 5.70 461,215 −1

google.com 5.57 397,246 0

facebook.com 4.20 309,159 +1

googlesyndication.com 3.27 176,604 +3

facebook.net 3.02 233,435 0

googleadservices.com 2.76 133,391 +4

fonts.googleapis.com 2.68 370,385 −4

scorecardresearch.com 2.37 59,723 +13

adnxs.com 2.37 94,281 +2

twitter.com 2.11 143,095 −1

fbcdn.net 2.00 172,234 −3

ajax.googleapis.com 1.84 210,354 −6

yahoo.com 1.83 71,725 +5

rubiconproject.com 1.63 45,333 +17

openx.net 1.60 59,613 +7

googletagservices.com 1.52 39,673 +24

mathtag.com 1.45 81,118 −3

advertising.com 1.45 49,080 +9

Table 14: Top 20 third-parties on the Alexa top 1 million, sorted by prominence. The number of first-party sites each third-party is

embedded on is included. Rank change denotes the change in rank between third-parties ordered by first-party count and third-parties

ordered by prominence.

24

