
Fletcher, Heald & Hildreth, P.L.C.
1300 North 17th Street 11th floor

Arlington VA 22209
703-812-0400 (voice)
703-812-0486 (fax)

MITCHELL LAZARUS

703-812-0440
LAZARUS@FHH-TELCOMLAW.COM

April 25, 2001

Ms. Magalie R. Salas, Secretary
Federal Communications Commission
445 12th Street SW

Washington DC 20554

Re: ET Docket No. 00-47, Authorization and Use of

Software Defined Radios

Ex Parte Filing

Dear Ms. Salas:

Pursuant to Section 1.1206(b)(1) of the Commission's Rules, I enclose the original and

one copy of the attached written communication for inclusion in the above-referenced docket.

The document is titled, "SDR Platform Mechanisms for Enforcing Transmission Limits

on Signal Processing Software," and is authored by Dr. John M. Chapin, CTO of Vanu, Inc.

Ms. Magalie R. Salas
April 25, 2001
Page 2

If there are any questions about this filing, please call me at the number above.

Respectfully submitted,

Mitchell Lazarus

Counsel for Vanu, Inc.

cc: Bruce A. Franca, FCC

Lisa Gaisford, FCC

Julius P. Knapp, FCC

Michael J. Marcus, FCC

Karen Rackley, FCC

Alan R. Stillwell, FCC

Hugh L. van Tuyl, FCC

John Chapin, Vanu, Inc.

SDR Platform Mechanisms for Enforcing Transmission Limits
on Signal Processing Software

Dr. John M. Chapin
CTO

Vanu, Inc.
One Porter Square, Suite 18

Cambridge, MA 02140
617-864-1711

April 23, 2001

1. Summary

This white paper describes mechanisms by which a communications device and the platform
software that controls it can cooperate to limit the behavior of signal processing software downloaded to
that platform. These mechanisms are designed to enable the platform to prevent the signal processing
software from causing transmissions outside the approved power level and frequency range, without
creating excessive performance or cost overheads. A platform that provides these mechanisms could be
certified by the FCC separately from the signal processing software that implements a particular
communications standard.

2. Background

The Federal Communications Commission is currently considering rules for the certification of
Software Defined Radios (FCC Docket 00-47). A Software Defined Radio (SDR) is “a radio that
includes a transmitter in which the operating parameters of the transmitter, including the frequency
range, modulation type or maximum radiated or conducted output power can be altered by making a
change in software without making any hardware changes” (Authorization and Use of Software Defined
Radios, FCC-00-430, 12/08/2000, p. 9)

The Commission has proposed a regulatory approach in which each combination of hardware
and software must be tested and certified jointly, because the Commission believes that “this is the only
way at the present time to ensure that equipment complies with the technical standards in our rules to
prevent interference and to protect users from excessive RF radiation” (ibid., p. 7).

Vanu, Inc. filed a comment on the Commission’s proposal, describing a design technique that
ensures compliance with FCC standards even with separate testing of SDR platforms and signal
processing software (Vanu, Inc. comment, 03/19/2001, available by searching the FCC’s Electronic
Comments Filing System, http://www.fcc.gov/e-file/ecfs.html). We believe that permitting
separate testing is necessary for the development of a thriving market in signal-processing software,
which is in turn a precondition for achieving the spectrum efficiency and other benefits inherent in
software defined radio technology.

This document provides technical details of the mechanisms described in our previous comments
to the Commission. Our intent is to argue to the Commission and to other interested parties that it is
feasible to design systems that economically and efficiently enforce transmission limits, and thereby
support our argument that the Commission should permit separate certification of signal processing
software.

3. Signal processing software vs platform software

We divide the software on an SDR into two parts. The signal processing software implements a
particular communication standard, including such tasks as modulation, state machines, source and
channel coding. The platform software provides supervisory and control functions, such as downloading
and authenticating signal processing software, booting and shutting down the device, and controlling
various hardware components.

This division is analogous to the division between application and operating system in a general-
purpose computer. Sophisticated hardware and software mechanisms have been developed that enable
an operating system to efficiently and economically limit the behavior of general-purpose applications.
We propose to reuse these mechanisms to allow platform software to limit the behavior of signal
processing software.

We have deliberately chosen the new terms signal processing software and platform software
rather than the existing terms application and operating system. It is likely that the platform software of
an SDR will consist of the operating system together with a set of applications that perform higher-level
functions such as authentication of downloaded software. The signal processing software, on the other
hand, may consist of multiple applications, or alternately may not be an executable application from the
point of view of the device’s operating system, as in the case that it is a Java applet. Finally, the term
application software is generally used in SDR systems to refer to software such as user-interface code
that does not implement radio functions such as transmission or reception. The terms application and
operating system would be misleading if used in the SDR context.

4. Memory protection

This section may be skipped by those familiar with virtual memory, device drivers, memory-
mapped devices, and DMA.

The fundamental mechanism from general-purpose computing needed to enforce transmission
limits is memory protection, usually implemented by virtual memory hardware. Virtual memory is an
efficient mechanism for limiting which physical memory addresses may be read or written by
application programs. Virtual memory has been supported by workstation-class processors since the
early 1980s, PC-class processors since the early 1990s, and low-power embedded processors for several
years.

 In a processor that supports virtual memory, the physical memory accessible to the processor is
divided into pages of a fixed size, typically 4,096 bytes in current systems. Each memory address
therefore consists of a page number and an offset within that page. When an application issues a read or
write instruction, the page number of the target address is modified by the hardware, while the offset
remains unchanged. The modification performed on the page number is arbitrary: the operating system
may store any physical page number it likes into the hardware as the translation for a particular page

number issued by the application. We say that the application executes in a virtual address space
because the operating system has complete control over which physical addresses are visible to the
application, and where each physical page appears to be as far as the application is concerned. If the
operating system does not install a particular physical page number into the translation hardware, the
application cannot access it. Moreover, the processor limits use of the instructions that modify the
translation tables. They may only be used when the processor is executing in priveleged mode, and
transition from application mode to priveleged mode can only occur when the processor transfers into
the operating system.

The net result of this mechanism is that an application cannot access or affect any part of the
hardware if the operating system does not grant its permission. At the same time, the application can do
its work, using the processor and accessing memory, at full hardware speed.

It is straightforward to arrange the hardware design so that memory protection also provides
protection for I/O and other system hardware devices. To do this, the control registers for the devices in
the system are memory-mapped. The control registers of a memory-mapped device are accessed through
normal memory read and write transactions on the processor’s memory bus. Traditionally the devices
are mapped to addresses far enough apart from each other that each device is on its own physical address
page. This enables the operating system, on a processor which supports virtual memory, to precisely
control which applications may interact with each device.

Normally, the operating system will not allow applications to directly interact with the hardware
registers of a device. Instead, that functionality is reserved to a device driver inside the operating system.
The application interacts with the device driver as if it were the device, with two significant differences.
First, the device driver has a standard interface, making the application portable across different devices
that perform the same function. Usually this interface hides most of the details required to interact with
the device. Second, the device driver carefully checks all operations performed by the application,
defending the system against misbehaving or malicious applications. In general, a bug in a device driver
might cause the device to behave in an unexpected manner, but bugs in applications are prevented from
doing so.

In some rare cases, an application needs direct access to a device. This occurs when the
performance overhead of invoking the operating system to make a request to the device driver is too
high, because of the number of interactions that must be performed per second between the application
and the device. In cases where direct hardware access is needed, the system designer memory-maps the
control registers used by applications on a separate physical page from the other control registers of the
device. This enables the operating system to grant applications direct access to only the relevant subset
of the control registers. Devices designed to be used this way typically include features that allow the
operating system to limit the behavior of the application, through setting values in the control registers
that are not accessible to the application.

For example, one case that requires direct hardware access is the tightly-coupled interconnect of
a message-passing multiprocessor. Applications send messages across the interconnect so frequently that
designers have found it valuable to allow them to request message transmission through a direct write to
a control register of the network interface. To make this safe, the network interface has a control
register, on a separate physical page, in which the operating system stores information about which part
of the supercomputer the application has been assigned. An application request to send a message to a

processor number outside the assigned range is rejected by the network interface, causing an error
interrupt that transfers control to the operating system, which typically terminates the application
immediately.

There is an alternative to giving direct control register access to an application, based on the
direct memory access (DMA) capability of some devices. A DMA-capable device can issue read and
write requests to the system RAM. Rather than making device registers directly accessible to an
application, the operating system instructs the device to use a certain region of system RAM as a
memory buffer for data transfers and/or a control queue of job requests and return results. The operating
system then grants access to this portion of RAM, called the shared DMA region, to the application.
This gives similar capabilities to the application as direct control-register access, and is usually managed
in a similar way by reserving some supervisory functions to the operating system. However it usually
provides a higher-performance connection between the application and the device than direct control
register access does.

5. Limiting the behavior of signal-processing software

Signal-processing software downloaded to a SDR platform will need to configure the transmit
and receive hardware chains appropriately for the desired communication standard, and then begin
exchanging high-speed data streams with those chains. We recommend that the SDR platform limit the
behavior of the signal-processing software using the same approach that a general-purpose operating
system uses to limit the behavior of an application. This will require the use of processors that have
virtual memory support, which we believe is not a significant restriction given the wide availability of
these processors today.

Configuration operations, such as setting parameters on a frequency upconverter or power
amplifier, are control functions that fit neatly into the traditional device-driver model. Configuration
operations occur at low rates and so the overhead of a system call will be negligible. The signal-
processing software can issue a system call or other priveleged operation to the device driver, which
configures the devices on behalf of the signal-processing software. The driver can check the
configuration requests issued by the signal processing software and reject them if necessary.

Data transmission and reception is likely to have latency and throughput requirements that
prevent the use of the system call interface, especially if the data streams are sampled representations of
baseband or IF waveforms for high-rate communications standards. In this case, either direct device
access or a shared DMA region can be set up to give the signal processing software access to the
transmit and receive chains that is just as fast as if the system had no protection.

The effect of this approach is that the platform software can check and reject behaviors
expressed as control and configuration operations, but the platform software cannot check the data
values exchanged in the high-speed streams between the signal processing software and the transmit and
receive hardware chains. Any transmission limits that require monitoring or modifying those sample
streams will have to be implemented by platform hardware, under the control of the platform software.

6. Types of transmission limits

There are several transmission limits that the Comission has identified as necessary to prevent
interference and harmful radiation.

Frequency limits restrict the portion of the spectrum in which a device is permitted to transmit
useful RF energy. The frequency limit consists of several sublimits

• Permissible frequency band: The overall range within which the transmitter may be
tuned.

• Center frequency of transmission: The specific value or values used for transmissions.
Multiple center frequencies may be allowed for a given service if the device has multi-
channel or frequency hopping capability.

• Bandwidth of transmission: The occupied bandwidth used for transmission around a
given center frequency.

Power limits restrict the RF energy radiated in the useful transmission band or bands. There are
two sublimits:

• In-band power: The average radiated power.

• Peak-to-average power ratio: Limits instantaneous power transmitted.

Out-of-band emissions are the frequencies at which the device radiates that are outside the useful
transmission band. Out-of-band emissions are inherent in RF transmission due to the limitations of
realizable hardware devices: filters are imperfect, mixers have harmonics, etc. Limits on out-of-band
emissions are expressed as an envelope that gives maximum acceptable radiated power as a function of
distance from the edge of the intended transmission band.

Modulation type is the approach used to encode information transmitted within the intended
transmission band (FM, AM, etc.). The primary concern motivating modulation type restrictions is the
effect of choice of modulation type on peak-to-average power ratio.

7. Enforcing transmission limits

Frequency limits: Transmission frequency is controlled by a combination of control commands
issued by the signal processing software, for example setting the center frequency of the upconverter,
the bandwidth of the front end, and so on. These commands can be expressed as system calls and
checked by the device drivers, preventing invalid settings from reaching the hardware and causing an
unapproved transmission.

It may be important for all device settings to be changed together, or for all configuration values
to be checked as a group, to avoid intermediate states in which the signal processing software could
cause an unapproved transmission. In such cases, the platform can be designed with a single system call
which includes requests for all device settings. Alternately, to reduce the complexity of the operating
system, this functionality can be implemented by an application that is part of the platform software.

Any available mechanism for inter-process communication can be used to move a request message from
the signal processing software to the configuration application, which checks the request and then issues
a series of system calls or direct hardware configuration commands to implement the request.

There are two difficult issues in enforcing frequency limits. The first is in a high-rate frequency
hopping system, where reconfiguration of the front end happens so frequently that a system call or inter-
process communication request for each reconfiguration would create too much overhead. In this case,
the hardware must be designed for direct application access, as described earlier in section 4. The front
end configuration device will need to segregate the control registers intended for use by signal
processing software onto a separate physical page from those for use by platform software, and will
need to provide a control capability to the platform software that allows it to indicate which settings are
legal for the signal processing software to request. Such a design will add slightly but not significantly to
the system hardware cost.

The more challenging issue occurs in infrastructure systems with a wideband transmission chain.
In such a system the signal processing software is responsible for combining multiple transmit channels
together, for example producing a sample stream representing 10 MHz or more of spectrum. There is no
problem if the device is permitted to transmit on all frequencies within the full frequency range of the
transmission chain. However, if the device is not permitted to transmit on certain subranges within the
overall range, it is difficult to prevent the signal processing software from putting energy in those cutout
ranges. One possible mechanism is to include one or more filters, controlled by the platform software, in
the hardware or software of the transmission chain to reject any energy in the cutout ranges. This
approach is likely to be expensive and have limited flexibility. If the Commission adopts a certification
process allowing separate certification in cases where platform software can enforce transmission limits,
system designers who wish to take advantage of separate certification will likely avoid this problem by
building infrastructure systems with multiple narrower-band transmission chains, whose output is
combined in hardware under the control of the platform software.

Power limits: Average transmission power is controlled by configuration settings on the power
amplifier at the end of the transmit hardware chain. The settings change infrequently enough that the
signal processing software can use a system call or inter-process message request to make the change
without significant overhead. For example, even IS-95 systems only require 800 Hz power control.
Therefore the platform software can easily check and limit the power of transmissions made by the
signal processing software.

In sophisticated systems, the RF power radiated by the antenna is not determined solely by the
setting on the power amplifier, but also by settings such as smart antenna gain and directionality
controls. In such systems it will be appropriate to link changes to power and other settings together, that
is, for the signal processing software to issue a single configuration request which includes the new
values for all. The platform software can then compute the radiated power level, based on a stored
representation of the antenna behavior, when deciding whether to approve the new transmit
configuration.

Mechanisms to enforce limits on peak-to-average power ratio are discussed below under
modulation type.

Out-of-band emission limits: Out-of-band emissions are an artifact of the transmit hardware
chain and depend on the configuration settings of the devices in the chain. Most radio systems include

one or more filters in the chain whose primary purpose is to reduce out-of-band emissions. Part of the art
of RF device design is to achieve acceptably low out-of-band emissions with the least amount of
additional filtering, because such filters add cost and weight, and waste power.

Devices where the transmit chain configuration settings can be changed in the field require
higher quality filters to reject out-of-band emissions, because the transmit chain design cannot be as
tightly optimized as in a fixed system. Therefore software-defined radios will in general be more
expensive in this regard than legacy hardware radios.

Systems which seek to enforce out-of-band emission limits on signal-processing software not
tested jointly with the hardware represent a further step down this path, leading to another increment in
cost, weight, and/or power consumption. We are aware of three approaches to enforce the limits. The
device might include high-quality, tunable filters which can be employed by platform software to
eliminate energy outside the intended transmission band. The device might include a bank of fixed
filters which can be selectively activated as needed. Finally, the device might include monitoring
hardware that observes the transmitted signal and generates an error interrupt to the platform software if
out-of-band emissions exceed pre-set limits, enabling the platform software to halt transmission.

The filter approaches are implementable today, although they have associated costs which may
be non-trivial. This is an area where research is needed. It seems probable that cost-effective solutions
can be found for many common cases, but that certain cases will arise that are quite difficult to address.
The latter may require joint certification of hardware platform and signal-processing software.
Hopefully the cost-effectiveness of the solutions can be improved to enable separate certification of
most commercially interesting applications of software defined radios.

Modulation type limits: Modulation type is a property of the high-rate sample stream sent from
the signal processing software to the transmit chain. For performance reasons, platform software cannot
observe or modify this sample stream.

The only modulation type property of the stream that transmit chain hardware can check easily is
peak-to-average power ratio. The options and tradeoffs for implementing this are the same as those for
limiting out-of-band emissions.

Checking other properties would require sophisticated signal processing hardware which would
add significantly to the cost of the system. Moreover, requiring such checking either in the platform
software or the transmit chain would significantly limit the variety of signal processing software that
could be downloaded to the system without change to the platform software. Therefore, the mechanisms
we propose cannot enforce modulation type limits other than peak-to-average power ratio on signal
processing software.

The Commission is moving rapidly away from service rules that limit the type of modulation that
can be used in particular frequency bands. We believe that a software defined radio which cannot limit
modulation type would be of significant value even today, and will become increasingly more applicable
as the Commission exercises less control over modulation type. This limitation should not prevent the
Commission from adopting a certification process that allows separate certification of platform and
signal processing software.

The Commission might consider a regulatory approach in which signal processing software,
tested on a representative platform and demonstrated to respect the modulation type in the service rules
for its intended frequency band, is permitted to execute on other platforms even though they cannot
enforce the service rules. The reason is that modulation type is a complex emergent property of the
entirety of the signal processing code. It is highly unlikely that a platform difference or undetected
software fault could convert an AM transmitter into a FM transmitter, or other similar change.
Alternately, the Commission could refuse to issue or approve tags that allow transmission in bands with
restrictive service rules by separately certified signal processing software, except on platforms where it
has been jointly tested.

8. Communicating transmission limits to the platform

The above discussion assumes that the platform software is aware of the transmission limits
appropriate for a given piece of signal processing software.

We recommend that this information be communicated to the platform software using the same
mechanism that would be built to satisfy the Commission’s requirement for authorization information
(Authorization and Use of Software Defined Radios, FCC-00-430, 12/08/2000, p. 12).

One such mechanism is the addition of a cryptographically-protected tag, such that neither the
tag nor the signal-processing software can be changed undetectably, and the platform software can
check that the tag was created by an authorized party. The tag could include the permitted frequency
range or ranges, radiated power levels in each range, out-of-band emissions envelope, etc.

It seems likely that the process of downloading and authorizing new signal-processing software
is complex enough that it is better encoded in an application that is part of the platform software, rather
than directly in the operating system

While there is substantial engineering work to be done in this area, and also substantial benefits
to standardizing the approach used by various manufacturers and software vendors, there is no question
that a mechanism can be built which satisfies the requirements of securely communicating transmission
limits to the platform software.

APPENDIX A

 Vanu was formed in 1998 to explore the feasibility of building software radios using
object oriented computer languages running on general purpose processors. This approach to software
radio was initially investigated by the founders of Vanu in the SpectrumWare Project at Massachusetts
Institute of Technology, which began in 1995. Project participants recognized that the rapid rate of
improvement in microprocessor speed would soon bring the implementation of complex signal
processing software systems into the realm of software. We believe this paradigm shift in the
implementation of wireless communications systems will enable more efficient spectrum use,
interoperation between historically incompatible radio systems, and much faster acceptance and
adoption of advances in digital communications.

 Vanu continues to focus on object oriented software that is portable across multiple
platforms, and that supports independent specification and download of software radio applications. But
the extent to which Vanu uses software to implement signal processing distinguishes us from other radio
developers. In the nomenclature of the SDR Forum, Vanu develops "software radios" as opposed to
"software defined radios." Pushing the digitization closer to the antenna permits our products much
greater flexibility to adapt the nature of the signal processing performed by the radio. Vanu is currently
involved in commercial partnerships to develop software radio products and is participating in Step 2B
of the armed services’ JTRS program. We are also engaged in a cooperative agreement with the
National Institute of Justice to develop a prototype software radio interoperability device targeted at law
enforcement needs.

