
Internet Draft

1. INTRODUCTION

CPIM Message Format June 2001

This memo defines the mime content-type 'message!cpim. This is a
common message format for CPIM-compliant messaging protocols [14].

While being prepared for CPIM, this format is quite general and may
be reused by other applications with similar requirements.
Application specifications that adopt this as a base format should
answer the questions rasied in section 6 of this document.

1.1 Motivation

The Common Profile for Instant Messaging (CPIM) [14J specification
defines a number of operations to be supported and criteria to be
satisfied for interworking diverse instant messaging protocols. The
intent is to allow a variety of different protocols interworking
through gateways to support cross-protocol messaging that meets the
requirements of RFC 2779 [15].

To adequately meet the security requirements of RFC 2779, a common
message format is needed so that end-to-end signatures and encryption
may be applied. This document describes a common canonical message
format that must be used by any CPIM-compliant message transfer
protocol, and over which signatures are calculated for end-to-end
security.

1.2 Background

RFC 2779 requires that an instant message can carry a MIME payload
[3,4]; thus some level of support for MIME will be a common element
of any CPIM compliant protocol. Therefore it seems reasonable that a
common message format should use a MIME!RFC822 syntax, as protocol
implementations must already contain code to parse this.

Unfortunately, using pure RFC822!MIME [2J can be problematic:

o Irregular lexical structure RFC822 allows a number of optional
encodings and multiple ways to encode a particular value. For
example RFC822 comments may be encoded in multiple ways. For
security purposes, a single encoding method must be defined as a
basis for computing message digest values. Protocols that
transmit data in a different format would otherwise lose
information needed to verify a signature.

o Weak internationalization -- RFC822 requires header values to use
7-bit ASCII, which is problematic for encoding international
character sets. Mechanisms for language tagging in RFC822 headers
[16] are awkward to use and have limited applicability.

Atkins & Klyne [Page 3J

Internet Draft CPIM Message Format June 2001

o Mutability -- addition, modification or removal of header
information. Because it is not explicitly forbidden, many
applications that process MIME content (e.g. MIME gateways)
rebuild or restructure messages in transit. This obliterates most
attempt at achieving security (e.g. signatures), leaving receiving
applications unable to verify the received data.

o Message and payload separation -- there is not a clear syntactic
distinction between message metadata and message content.

o Limited extensibility (X-headers are problematic) .

o No support for structured information (text string values only).

o Some processors impose line length limitations The message format
defined by this memo overcomes some of these difficulties by
having a syntax that is generally compatible with the format
accepted by MIME!RFC822 parsers, but simplified, and having a
stricter syntax. It also defines mechanisms to support some
desired features not covered by the RFC822!MIME format
specifications.

1.3 Goals

This specification aims to satisfy the following goals:

o a securable end-to-end format for a message (a canonical message
format for signature calculation)

o independent of any specific application

o capable of conveying a range of different address types

o assumes an 8-bit clean message-transfer protocol

o evolvable: extensible by multiple parties

o to clearly separate message metadata from message content

o a simple, regular, easily parsed syntax

o a compact, low-overhead format for simple messages

Atkins & Klyne [Page 4]

Internet Draft CPIM Message Format June 2001

1.4 Terminology and conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [1].

NOTE: Comments like this provide additional nonessential
information about the rationale behind this document.
Such information is not needed for building a conformant
implementation, but may help those who wish to understand
the design in greater depth.

[[[Editorial comments and questions about outstanding issues are
provided in triple brackets like this. These working comments should
be resolved and removed prior to final publication.]]]

2. OVERALL MESSAGE STRUCTURE

The message/cpim format encapsulates an arbitrary MIME message
content, together with message- and content-related metadata. This
can optionally be signed or encrypted using MIME security multiparts
in conjunction with an appropriate security scheme.

A message/cpim object is a multipart entity, where the first part
contains the message metadata and the second part is the message
content. The two parts are syntactically separated by a blank line,
to keep the message header information (with its more stringent
syntax rules) separate from the MIME message content headers.

Thus, the complete message looks something like this:

m: Content-type: message/cpim
s:
h: (message-metadata-headers)
s:
e: (encapsulated MIME message-body)

The end of the message body is defined by the framing mechanism of
the protocol used. The tags 'm:', 's:', 'h:', 'e:', and 'x:' are not
part of the message format and are used here to indicate the
different parts of the message, thus:

m: MIME headers for the overall message
s: a blank separator line
h: message headers
e: encapsulated MIME object containing the message content
x: MIME security multipart message wrapper

Atkins & Klyne [Page 5]

Internet Draft CPIM Message Format June 2001

2.1 Message/cpim MIME headers

The message MIME headers identify the message as a CPIM-formatted
message. The only required header is:

Content-type: message/cpim

Other MIME headers may be used as appropriate for the message
transfer environment.

2.2 Message headers

Message headers carry information relevant to the end-to-end transfer
of the message from sender to receiver. Message headers MUST NOT be
modified, reformatted or reordered in transit, but in some
circumstances they MAY be examined by a CPIM message transfer
protocol.

The message headers serve a similar purpose to RFC822 message headers
in email [2], and have a similar but restricted allowable syntax.

The basic header syntax is:

Key: Value

where "Key" is a header name and "Value" is the corresponding header
value. The following considerations apply:

o The entire header MUST be contained on a single line. The line
terminator is not considered part of the header value.

o Only one header per line. Multiple headers MUST NOT be included
on a single line.

o Processors SHOULD NOT impose any line-length limitations.

o There MUST NOT be any whitespace at the beginning or end of a
line.

o UTF-8 character encoding [21] MUST be used throughout.

o The character sequence CR,LF (13,10) MUST be used to terminate
each line.

o The header name contains only US-ASCII characters (see later for
the specific syntax)

Atkins & Klyne [Page 6]

Internet Draft CPIM Message Format June 2001

o The header MUST NOT contain any control characters (0-31). If a
header value needs to represent control characters then the escape
mechanism described below MUST be used.

a There MUST be a single space character (32) following the header
name and colon.

a Multiple headers using the same key (header name) are allowed.
(Specific header semantics may dictate only one occurrence of any
particular header.)

a Headers names MUST match exactly (i.e. "From:" and "from:" are
different headers) .

o If a header name is not recognized or not understood, the header
should be ignored. But see also the "Requires:" header.

o Interpretation (e.g. equivalence) of header values is dependent on
the particular header definition. Message processors MUST
preserve exactly all octets of all headers (both name and value) .

a Message processors MUST NOT change the order of message headers.

Examples:

To: Pooh Bear <im:pooh@100akerwood.com>
From: <im:piglet@100akerwood.com>
Date: 2001-02-02T10:48:54-05:00

2.3 Character escape mechanism

This mechanism MUST be used to code control characters in a header,
having Unicode code points in the range U+OOOO to U+001f or U+007f.
(The escape mechanism is as used by the Java programming language.)
Note that the escape mechanism is applied to a UCS-2 character, NOT
to the octets of its UTF-8 coding. Mapping from/to UTF-8 coding is
performed without regard for escape sequences or character coding.
(The header syntax is defined so that octets corresponding to control
characters other than CR and LF do not appear in the output.)

Atkins & Klyne [Page 7J

Internet Draft CPIM Message Format June 2001

An arbitrary UCS-2 character is escaped using the form:

\uxxxx

where:

\ is U+005c (backs lash)
u is U+0075 (lower case letter U)
xxxx is a sequence of exactly four hexadecimal digits

(0-9, a-f or A-F) or
(U+0030-U+0039, U+0041-U+0046, or U+0061-0066)

The hexadecimal number 'xxxx' is the UCS code-point value of the
escaped character.

Further, the following special sequences introduced by "\,, are used:

\\ for \ (backslash, U+005c)
\" for " (double quote, U+0022)

\' for , (single quote, U+0027)
\b for backspace (U+0008)
\t for tab (U+0009)
\n for linefeed (U+OOOa)
\r for carriage return (U+OOOd)

2.3.1 Escape mechanism usage

When generating messages conformant with this specification:

o The special sequences listed above MUST be used to encode any
occurrence of the following characters that appear anywhere in a
header: backs lash (U+005c), backspace (U+0008), tab (U+0009),
linefeed (U+OOOa) or carriage return (U+OOOd).

o The special sequence \' MUST be used for any occurrence of a
single quote (U+0027) that appears within a string delimited by
single quotes.

o The special sequence \" MUST be used for any occurrence of a
double quote (U+0022) that appears within a string delimited by
double quotes.

+ Quote characters that delimit a string value MUST NOT be escaped.

o The general escape sequence \uxxxx MUST be used for any other
control character (U+OOOO to U+0007, U+OOOb to U+OOOc, U+OOOe to
U+001f or u+007f) that appears anywhere in a header.

Atkins & Klyne [Page 8]

Internet Draft CPIM Message Format June 2001

o All other characters MUST NOT be represented using an escape
sequence.

When processing a message based on this specification, the escape
sequence usage described above MUST be recognized.

Further, any other occurrence of any escape sequence described above
SHOULD be recognized and treated as an occurrence of the
corresponding Unicode character.

Any backslash ('\') character SHOULD be interpreted as introducing an
escape sequence. Any unrecognized escape sequence SHOULD be treated
as an instance of the character following the backs lash character.
An isolated backslash that is the last character of a header SHOULD
be ignored.

2.4 Message content

The final section of a message/cpim is the MIME-encapsulated message
content, which follows standard MIME formatting rules (3,4].

The MIME content headers MUST include at least a Content-Type header.
The content may be any MIME type.

Example:

e: Content-Type: text/plain; charset=utf-8
e: Content-ID: <1234567890@foo.com>
e:
e: This is my encapsulated text message content

3. MESSAGE HEADER SYNTAX

A header is made of two parts, a name and a value, separated by a
colon character (. :') followed by a single space (32), and terminated
by a sequence of CR,LF (13,10).

Headers use UTF-8 character encoding thoughout, per RFC 2279 (21].

3.1 Header names

The header name is a sequence of US-ASCII characters, excluding
control characters, SPACE or separator characters. Use of the
character "." in a header name is reserved for a namespace prefix
separator.

Atkins & Klyne (Page 9]

Internet Draft CPIM Message Format June 2001

separator characters are:

SEPARATORS If (II / ff) II / "<" / If >11 / "@tt

/ " " / " i II / ".11 / ",
/ II/II / II [II / "] tl / II?" / II:"

/ " { II / " } II / SP

NOTE: the range of allowed characters was determined by
examination of HTTP and RFC822 header name formats and
choosing the more resticted. The intent is to allow CPIM
headers to follow a syntax that is compatible with the
allowed syntax for both RFC 822 [2] and HTTP [18]
(including HTTP-derived protocols such as SIP) .

3.2 Header Value

A header value has a structure defined by the corresponding header
specification. Implementations that use a particular header must
adhere to the format and usage rules thus defined when creating or
processing a message containing that header.

The other general constraints on header formats MUST also be followed
(one line, UTF-8 character encoding, no control characters, etc.)

3.3 Language Tagging

Full internationalization of a protocol requires that a language can
be indicated for any human-readable text [6,19].

A message header may indicate a language for its value by including
1 ;lang=tag' after the header name and colon, where 'tag' is a
language identifying token per RFC 3066 [7].

Example:

SUbject:;lang=fr Objet de message

If the language parameter is not applied a header, any human
readable text is assumed to use the language identified as
'i-default' [19].

3.4 Namespaces for header name extensibility

NOTE: this section defines a framework for header
extensibility whose use is optional. If no header
extensions are allowed by an application then these
structures may never be used.

Atkins & Klyne [Page 10]

Internet Draft CPIM Message Format June 2001

An application that uses this message format is expected to define
the set of headers that are required and allowed for that
application. This section defines a header extensibility framework
that can be used with any application.

The extensibility framework is based on that provided for XML (11) by
XML namespaces (12). All headers are associated with a "namespace" ,
which is in turn associated with a globally unique URI.

Within a particular message instance, header names are associated
with a particular namespace through the presence or absence of a
namespace prefix, which is a leading part of the header name followed
by a period ("."); e.g.

prefix.header-name: header-value

Here, 'prefix' is the header name prefix, 'header-name' is the header
name within the namespace associated with 'prefix', and
'header-value' is the value for this header.

header-name: header-value

In this case, the header name prefix is absent, and the given
'header-name' is associated with a default namespace.

An application that uses this format designates a default namespace
for any headers that are not more explicitly associated with any
namespace. In many cases, the default namespace may be all that is
needed.

A namespace is identified by a URI. In this usage, the URI is used
simply as a globally unique identifier, and there is no requirement
that it can be used for any other purpose. Any legal globally unique
URI MAY be used to identify a namespace. (By "globally unique", we
mean constructed according to some set of rules so that it is
reasonable to expect that nobody else will use the same URI for a
different purpose.) A URI used as an identifier MUST be a full
absolute-URI, per RFC 2396 [10). (Relative URIs and URI- references
containing fragment identifiers MUST NOT be used for this purpose.)

Atkins & Klyne [Page 11]

Internet Draft CPIM Message Format June 2001

Within a specific message, a 'NS' header is used to declare a
namespace prefix and associate it with a URI that identifies a
namespace. Following that declaration, within the scope of that
message, the combination of namespace prefix and header name
indicates a globally unique identifier for the header (consisting of
the namespace URI and header name). For example:

NS: MyFeatures <mid:MessageFeatures@id.foo.com>
MyFeatures.WackyMessageOption: Use-silly-font

This defines a namespace prefix 'MyFeatures' associated
namespace identifier 'mid:MessageFeatures@id.foo.com'.
the prefix indicates that the WackyMessageOption header
referenced is associated with the identified namespace.

with the
Subsequently
name

A namespace prefix declaration MUST precede any use of that prefix.

With the exception of any application-specific predefined namespace
prefixes (see section 6), a namespace prefix is strictly local to the
message in which it occurs. The actual prefix used has no global
significance. This means that the headers:

xxx.name: value
yyy.name: value

in two different messages may have exactly the same effect if
namespace prefixes 'xxx' and 'yyy' are associated with the same
namespace URI. Thus the following have exactly the same meaning:

NS: acme <http://id.acme.widgets/wily-headers/>
acme.runner-trap: set

and

NS: widget <http://id.acme.widgets/wily-headers/>
widget. runner-trap: set

A 'NS' header without a header prefix name specifies a default
namespace for subsequent headers; that is a namespace that is
associated with header names not having a prefix. For example:

NS: <http://id.acme.widgets/wily-headers/>
runner-trap: set

has the same meaning as the previous examples.

Atkins & Klyne (Page 12J

Internet Draft CPIM Message Format June 2001

This framework allows different implementers to create
headers without the worry of header name duplication;
headers within their own namespace.

3.5 Mandatory-to-recognize features

extension
each defines

sometimes it is necessary for the sender of a message to insist that
some functionality is understood by the recipient. By using the
mandatory-to-recognize indicator, a sender is notifying the recipient
that it MUST understand the named header or feature in order to
properly understand the message.

A header or feature is indicated as being mandatory-to-recognize by a
'Require:' header. For example:

Require: MyFeatures.VitalMessageOption
MyFeatures.VitalMessageOption: Confirmation-requested

Multiple required header names may be listed in a single 'Require'
header, separated by commas.

NOTE: indiscriminate use of 'Require:' headers could
harm interoperability. It is suggested that any
implementer who defines required headers also publish the
header specifications so other implementations can
succesfully interoperate.

The 'Require:' header MAY also be used to indicate that some non
header semantics must be implemented by the recipient, even when it
does not appear as a header. For example:

Require: Locale.MustRenderKanji

might be used to indicate that message content includes characters
from the Kanji repertoire, which must be rendered for proper
understanding of the message. In this case, the header name is just
a token (using header name syntax and namespace association) that
indicates some desired behaviour.

3.6 Collected message header syntax

The following description of message header syntax uses ABNF, per RFC
2234 [17]. Most of this syntax can be interpreted as defining UCS
character sequences or UTF-8 octet sequences. Alternate productions
at the end allow for either interpretation.

Atkins & Klyne [Page 13]

Internet Draft CPIM Message Format June 2001

Header Header-name ":" *(";" Parameter) SP
Header-value
CRLF

Header-name
Name-prefix

[Name-prefix " "] Name
Name

Parameter
Lang-param
Ext-param
Param-name
Param-value

Lang-param / Ext-param
"lang." Language-tag
Param-name "." Param-value
Name
Token / Number / String

Header-value *HEADERCHAR

Str-char / Escape) DQUOTE
%x23-SB / %xSD-7E / UCS-high
4 (HEXDIG) UCS codepoint

Backspace
Tab
Linefeed
Return
Double quote
Single quote
Backslash

1*NAMECHAR
1*TO KENCHAR
l*DIGIT
DQUOTE * (
%x20-21 /
"\ II (Jlu"

/ "b"
/ "t"
/ "nil
/ UrI!

/ DQUOTE
I "I"
/ "\,,

Name
Token
Number
String
Str-char
Escape

Formal-name
URI
Language-tag

1*(Token SP) / String
<defined as absolute-URI by RFC 2396>
<defined by RFC 3066>

HEADERCHAR
Any ues character except CTLs, or escape
UCS-no-CTL / Escape

NAMECHAR
Any US-ASCII char except ".", CTLs or SEPARATORS:
%21 / %23-26 / %2a-2b / %2d / %Se-60 / %7c / %7e

/ ALPHA / DIGIT

TOKENCHAR
Any UCS char except CTLs or SEPARATORS:
NAMECHAR / " " / DCS-high

Atkins & Klyne [Page 14]

Internet Draft CPIM Message Format June 2001

SEPARATORS "(" ! ") If ! 11<11 ! It >11 ! n@1I 28!29!3c!3e!40
! " " ! tI i II / ". II / II \ 11 / <II> 2c!3b/3a/Sc/22,
/ "/" / " [" / "] II ! It?" ! "=11 2f!5b!5d!3f!3d
! " { II / n } n ! SP 7b!7d!20

CTL <Defined by RFC 2234 \xO - txlf, tx7f>
CRLF <Defined by RFC 2234 CR, LF>
SP <defined by RFC 2234 tx20>
DIGIT <defined by RFC 2234 '0' - '9' >
HEXDIG <defined by RFC 2234 10' _ '9 t , fA' _I Fr 1 'a' - 'f I >
ALPHA <defined by RFC 2234 'A' - I Z I, 'a'_'z'>
DQUOTE <defined by RFC 2234 tx22>

To interpret the syntax in a general UCS character environment, use
the following productions:

UCS-no-CTL
UCS-high

tx20-7e ! UCS-high
%'x80-ffffffff

To interpret the syntax as defining UTF-8 coded octet sequences, use
the following productions:

UCS-no-CTL
UCS-high
UTF8-no-CTL
UTF8-multi

UTF8-no-CTL
UTF8-multi
\x20-7e ! UTF8-multi
txCO-DF tx80-BF

! txEO-EF tx80-BF \x80-BF
! \xFO-F7 \x80-BF \x80-BF tx80-BF
! \xF8-FB \x80-BF tx80-BF \x80-BF \x80-BF
! \xFC-FD \x80-BF tx80-BF \x80-BF \x80-BF \x80-BF

4. HEADER DEFINITIONS

This specification defines a core set of headers that are defined and
available for use by applications: the application specification
must indicate the headers that may be used, those that must be
recognized and those that must appear in any message (see section 6) .

The header definitions that follow fall into two categories:

(a) those that are part of the CPIM format extensibility framework,
and

(b) some that have been based on similar headers in RFC 822,
specified here with corresponding semantics.

Header names and syntax are given without a namespace qualification,
and the associated namespace URI is listed as part of the header

Atkins & Klyne [Page 15]

Internet Draft CPIM Message Format June 2001

description. Any of the namespace associations already mentioned
(implied default namespace, explicit default namespace or implied
namespace prefix or explicit namespace prefix declaration) may be
used to identify the namespace.

All headers defined here are associated with the namespace URI
<[[[urn:iana:cpim-headers]JJ>, which is defined according to [221.

4.1 The 'From' header

Indicates the sender of a message.

Header name: From

Namespace URI: <[[[urn:iana:cpim-headers1J1>

Syntax: (see also section 3.6)

From-header = "From" ": " [Formal-name J "<" URI ">"

Description:

Indicates the sender or originator of a message.

If present, the 'Formal-name' identifies the person or "real
world" name for the originator.

The URI indicates an address for the originator.

Examples:

From: Winnie the Pooh <im:pooh@100akerwood.com>

From: <im:tigger@100akerwood.com>

Atkins & Klyne [Page 16]

Internet Draft

4.2 The 'To' header

CPIM Message Format June 2001

Specifies an intended recipient of a message.

Header name: To

Namespace URI: <[[[urn:iana:cpim-headerslll>

Syntax: (see also section 3.6)

To-header = "To" ". " [Formal-name 1 "<" URI ">"

Description:

Indicates the recipient of a message.

If present, the 'Formal-name' identifies the person or "real
world" name for the recipient.

The URI indicates an address for the recipient.

Multiple recipients may be indicated by including multiple 'To'
headers.

Examples:

To: Winnie the Pooh <im:pooh@100akerwood.com>

To: <im:tigger@100akerwood.com>

4.3 The 'cc' header

Specifies a non-primary recipient ("courtesy copy") for a message.

Header name: cc

Namespace URI: <[[[urn:iana:cpim-headerslll>

Syntax: (see also section 3.6)

Cc-header

Description:

= "cc" ". " [Formal-name "<II 'URI II>"

Indicates a courtesy copy recipient of a message.

If present, the 'Formal-name', if present, identifies the person
or "real world" name for the recipient.

Atkins & Klyne [Page 17]

Internet Draft CPIM Message Format June 2001

The URI indicates an address for the recipient.

Multiple courtesy copy recipients may be indicated by including
multiple 'cc' headers.

Examples:

cc: Winnie the Pooh <im:pooh@100akerwood.com>

cc: <im:tigger@100akerwood.com>

4.4 The 'DateTime' header

Specifies the date and time a message was sent.

Header name: Date

Namespace URI: <[[[urn:iana:cpim-headers111>

Syntax:

DateTime-header "DateTime" ": " date-time

(where the syntax of 'date-time' is a profile of 1508601, defined
in "Date and Time on the Internet" [231)

Description:

The 'Date' header supplies the current date and time at which the
sender sent the message.

One purpose of the this header is to provide for protection
against a replay attack, by allowing the recipient to know when
the message was intended to be sent. The value of the date header
is the current time at the sender when the message was
transmitted, using ISO 8601 date and time format as profiles in
"Date and Time on the Internet: Timestamps" [23).

Example:

Date: 2001-02-01T12:16:49-05:00

Atkins & Klyne [Page 18)

Internet Draft

4.5 The 'Subject' header

CPIM Message Format June 2001

Contains a description of the topic of the message.

Header name: Subject

Namespace URI: <[[[urn:iana:cpim-headersJJJ>

Syntax: (see also section 3.6)

Subject-header = "Subject"

Description:

II. " [lang-param J SP *HEADERCHAR

The 'Subject' header supplies the sender's description of the
topic or content of the message.

The sending agent should specify the language parameter if it has
any reasonable knowledge of the language used by the sender to
describe the message.

Example:

Subject:;lang=en Eeyore's feeling very depressed today

4.6 The 'NS' header

The "NS" header is used to declare a local namespace prefix.

Header name: NS

Namespace URI: <[[[urn:iana:cpim-headersJJJ>

Syntax: (see also section 3.6)

NS-header = "NS" ". " [Name-prefix 1 "<" URI ">"

Description:

Declares a namespace prefix that may be used in subsequent header
names. See section 3.4 for more details.

Example:

NS: MyAlias <mid:MessageFeatures@id.foo.com>
MyAlias.MyHeader: private-extension-data

Atkins & Klyne [Page 19J

Internet Draft

4.7 The 'Require' header

CPIM Message Format June 2001

Specify a header or feature that must be implemented by the receiver
for correct message processing.

Header name: NS

Namespace URI: <[[[urn:iana:cpim-headersJJJ>

Syntax: (see also section 3.6)

Require-header = "Require" ": " Header-name *("," Header-name)

Description:

Declares a namespace prefix that may be used in subsequent header
names. See section 3.5 for more details.

Note that there is no requirement that the required header
actually be used, but for brevity it is recommended that an
implemention not use issue require header for unused headers.

Example:

Require: MyAlias.VitalHeader

5. EXAMPLES

The examples in the following sections use the following per-line
tags to indicate different parts of the overall message format:

m: MIME headers for the overall message
s: a blank separator line
h: message headers
e: encapsulated MIME object containing the message content
x: MIME security multipart message wrapper

The following examples also assume that <[[[urn:iana:cpim
headersJ]]> is the implied default namespace for the application
concerned.

Atkins & Klyne [Page 20J

Internet Draft CPIM Message Format June 2001

5.1 An example message/cpim message

The following example shows a message/cpim message:

m: Content-type: message/cpim
s:
h: From: MR SANDERS <im:piglet@100akerwood.com>
h: To: Depressed Donkey <im:eeyore@100akerwood.com>
h: Date: 2000-12-13T13:40:00-08:00
h: Subject: the weather will be fine today
h: Subject:;lang=fr beau temps prevu pour aujourd'hui
h: NS: MyFeatures <mid:MessageFeatures@id.foo.com>
h: Require: MyFeatures.VitalMessageOption
h: MyFeatures.VitalMessageOption: Confirmation-requested
h: MyFeatures.WackyMessageOption: Use-silly-font
s:
e: Content-type: text/xml; charset=utf-8
e: Content-ID: <1234567890@foo.com>
e:
e: <body>
e: Here is the text of my message.
e: </body>

5.2 An example using MIME multipart/signed

In order to secure a message/cpim, an application or implementation
should use RFC 1847 and some appropriate cryptographic scheme.

using S/MIME and pkcs7, the above message would look like this:

x: Content-Type: multipart/signed; boundary=next;
MDALG=SHA-1; type=application/pkcs

x:
x: - -next
m: Content-Type: message/cpim
s:
h: From: MR SANDERS <im:piglet@100akerwood.com>
h: To: Dopey Donkey <im:eeyore@100akerwood.com>
h: Date: 2000-12-13T13:40:00-08:00
h: Subject: the weather will be fine today
h: Subject:;lang=fr beau temps prevu pour aujourd'hui
h: NS: MyFeatures <mid:MessageFeatures@id.foo.com>
h: Require: MyFeatures.VitalMessageOption
h: MyFeatures.VitalMessageOption: Confirmation-requested
h: MyFeatures.WackyMessageOption: Use-silly-font
s:

Atkins & Klyne (Page 21J

Internet Draft CPIM Message Format June 2001

e: Content-type: text/xrnl; charset=utf-8
e: Content-ID: <1234567890@foo.com>
e:
e: <body>
e: Here is the text of my message.
e: </body>
x: --next
x: Content-Type: application/pkcs7
x:
x; (signature stuff)

x: --next--

6. APPLICATION DESIGN CONSIDERATIONS

Applications using this specification must specify:

o a default namespace URI for messages created and processed by that
application

o any namespace prefixes that are implicitly defined for messages
created and processed by that application

o all headers that must be recognized by implementations of the
application

o any headers that must be present in messages created by that
application.

o any headers that may appear more than once in a message, and how
they are to be interpreted (e.g. how to interpret multiple
'subject:' headers with different language parameter values).

Within a network of message transfer agents, an intermediate gateway
MUST NOT change the message/cpim content in any way. This implies
that headers cannot be changed or reordered, transfer encoding cannot
be changed, languages cannot be changed, etc.

Because message/cpim messages are immutable, any transfer agent that
wants to modify the message should create a new message/cpim message
with the modified header and containing the original message as its
content. (This approach is similar to real-world bill-of-Iading
handling, where each person in the chain attaches a new sheet to the
message. Then anyone can validate the original message and see what
was changed and who changed it by following the trail of amendments.
Another metaphor is inclUding the old message in a new envelope.)

Atkins & Klyne [Page 22J

Internet Draft

7. lANA CONSIDERATIONS

CPIM Message Format June 2001

[[[Registration template for message/cpim content type] JJ

[[[Registration of namespace URN for CPIM headers]]]

8. INTERNATIONALIZATION CONSIDERATIONS

Message headers use UTF-8 character encoding throughout, so can
convey the full UCS-4 (Unicode, ISO/IEC 10646) character repertoire.

Language tagging is provided for message headers using the "Language"
parameter.

Message content is any MIME-encapsulated content, and normal MIME
content internationalization considerations apply.

9. SECURITY CONSIDERATIONS

The message/cpim format is designed with security in mind. In
particular it is designed to be used with MIME security multiparts
for signatures and encryption. To this end, message/cpim messages
must be considered immutable once created.

Because message/cpim messages are binary messages (due to UTF-8
encoding), if they are transmitted across non-8-bit-clean transports
then the transfer agent must tunnel the entire message. Changing the
message data encoding is not an allowable option. This implies that
the message/cpim must be encapsulated by the message tranfer system
and unencapsulated at the receiving end of the tunnel.

The resulting message must have no data loss due to the encoding and
unencoding of the message. For example, an application may choose to
apply the MIME base64 content-transfer-encoding to the message/cpim
object to meet this requirement.

10. ACKNOWLEDGEMENTS

The authors thank the following for their helpful comments: Harald
Alvestrand, Walter Houser, Leslie Daigle, [[[....]]]

Atkins & Klyne [Page 23]

Internet Draft

11. REFERENCES

CPIM Message Format June 2001

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", RFC 2119, March 1997.

(2) Crocker, D., "Standard for the format of ARPA Internet text
messages", RFC 822, STD 11, August 1982.

[3] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies",
RFC 2045, November 1996.

[4] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046 November
1996.

(5) Freed, N., Klensin, J., and J. Postel, "Multipurpose Internet
Mail Extensions (MIME) Part Four: Registration Procedures", RFC
2048, BCP 13, November 1996.

(6) Weider, C., Preston, C., Simonsen, K., Alvestrand, H., Atkinson,
R., Crispin, M., Svanberg, P., "Report from the lAB Character
Set Workshop", RFC 2130, April 1997.

[7] Alvestrand, H., "Tags for the Identification of Languages", RFC
3066, January 2001. (Defines Content-language header.)

[S) RamsdelL a., "S/MIME Version 3 Message Specification", RFC
2633, June 1999.

[9] Callas, J., Donnerhacke, L., Finney, H. and R. Thayer, "OpenPGP
Message Format", RFC 2440, November 1998.

(10) Berners-Lee, T., Fielding, R.T. and L. Masinter, "Uniform
Resource Identifiers (URI): Generic Syntax", RFC 2396, August
1998.

[11) Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, "Extensible
Markup Language (XML) 1.0", W3C recommendation:
<http://www.w3.org/TR/REC-xml>, 10 February 1998.

[12] Tim Bray, Dave Hollander, and Andrew Layman "Namespaces in XML",
W3C recommendation: <http://www.w3.org/TR/REC-xml-names>, 14
January 1999.

[13] "Data elements and interchange formats - Information interchange
- Representation of dates and times" ISO 8601:1988(E)
International Organization for Standardization June 1988.

Atkins & Klyne [Page 24]

Internet Draft CPIM Message Format June 2001

[14J Crocker, D.H., Diacakis, A., Mazzoldi, F., Huitema, C., Klyne,
G., Rose, M. T., Rosenberg, J., Sparks, R. and H. Sugano, "A
Common Profile for Instant Messaging (CPIM)", draft-thenine-im
common-OO (work in progress), August 2000.

[15J Day, M., Aggarwal, S., Mohr, G., and J. Vincent "Instant
Messaging / Presence Protocol Requirements" RFC 2779 February
2000.

[16J N. Freed, K. Moore "MIME Parameter Value and Encoded Word
Extensions: Character Sets, Languages, and Continuations" RFC
2231 November 1997.

[17] D. Crocker, P. Overell "Augmented BNF for Syntax Specifications:
ABNF" RFC 2234 November 1997.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee "Hypertext Transfer Protocol -- HTTP/l.l"
RFC 2616 June 1999.

[19] Alvestrand, H, "IETF Policy on Character Sets and Languages",
RFC 2277, BCP 18, January 1998.

[20J Freed, N., and J. Postel, "IANA Charset Registration
Procedures", BCP 19, RFC 2278, January 1998.

[21] F. Yergeau "UTF-8, a transformation format of ISO 10646" RFC
2279 January 1998.

[22] M. Mealling "A URN Namespace for IANA Registered Protocol
Elements" draft-mealling-iana-urn-OO.txt (work in progress)
November 2000

[23] C. Newman, G. Klyne "Date and Time on the Internet: Timestamps"
draft-ietf-impp-datetime-03.txt (work in progress) May 2001.

12. AUTHORS' ADDRESSES

Derek Atkins
Telcordia Technologies
6 Farragut Ave
Somerville, MA 02144
USA.
Telephone: +1 617 623 3745
E-mail: warlord@research.telcordia.com
E-mail: warlord@alum.mit.edu

Atkins & Klyne [Page 25]

Internet Draft CPIM Message Format June 2001

Graham Klyne
Baltimore Technologies - Content Security Group,
1310 Waterside,
Arlington Business Park
Theale
Reading, RG7 4SA
United Kingdom.
Telephone: +44 118 903 8000
Facsimile: +44 118 903 9000
E-mail: GK@ACM.ORG

Appendix A: Amendment history

OOa 01-Feb-2001 Memo initially created.

OOb 06-Feb-2001 Editorial review. Reworked namespace framework
description. Deferred specification of mandatory
headers to the application specification, allowing
this document to be less application-dependent.
Expanded references. Replaced some text with ABNF
syntax descriptions. Reordered some major sections.

OOc 07-Feb-2001 Folded in some review comments. Fix up some syntax
problems. Other small editorial changes. Add some
references.

01a 29-Mar-200l Incorporate review comments. State (simply) that
this is a canonical end-to-end format for the purpose
of signature calculation. Defined escape mechanism
for control characters. Header name parameters
placed after the ":". Changed name of Date: header
to DateTime:. Revised syntax to separate character
level syntax from UTF-B octet- level syntax.

alb 30-Mar-200l State explicitly that unrecognized header names
should be ignored. Remove text about
(non)significance of header order: simply say that
order must be preserved.

02a 30-May-200l updated reference to date/time draft. Editorial
changes.

03a 13-Jun-2001 Tighten up application of escape sequences.

TODO:

Atkins & Klyne [Page 26J

Internet Draft CPIM Message Format June 2001

o confirm urn namespace for headers (currently depends on a work
in-progress) .

o Complete lANA considerations

REVIEW CHECKLIST:

(Points to be checked or considered more widely on or before final
review.)

o The desirability of a completely rigid syntax.

o Escape mechanism details.

Full copyright statement

Copyright (C) The Internet Society 2001. All Rights Reserved. This
document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works.

However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the Internet
Society or other Internet organizations, except as needed for the
purpose of developing Internet standards in which case the procedures
for copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns. This
document and the information contained herein is provided on an "AS
IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

Atkins & Klyne (Page 27J

