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Post-merger market shares of cable, DIRECTV and EchoStar in small DMAs 
(ranked 71-210): These fields (which are located in the ‘Welfare Changes: 

Consumer Counts in DMAs 71-210 table) display shares in small DMAs 

following the merger. The shares are taken from the “post-cable-share”, 

“post-dtv-share”, and “post-es-share” fields in Scaled-diu[ 

/-Output-MC-*.csu output files (we calculate the average share in these 

DMAs, weighted by adj-hh). 

Effects of LIL introduction on DBS shares: These are in the “Inputs for LIL 

Value” table, and they are taken from the regression results in Table 2 

Addendum 1. 

The value of a (the logit price coefficient) is in the “General Inputs” table, and 

it’s taken from the regression results in Table 1 in Addendum 1. 

b. Output Fields (Zisted in Output Tables) 

The output fields are calculations based on data in the input fields. Key output fields 

include the following: 

0 Value of LIL service: The methodology for calculating the dollar value of LIL 

service is described in Section 3. The historical value of LIL @e., the value of 

LIL based on the share lift experienced by the parties over the past few 

years) is calculated in the “Outputs for Historical LIL Value” table and the 

“Auxiliary LIL Calculations: Historical Estimates” table. Note that the value 

of LIL is allowed to differ across various categories of households. For 

example, the historical value of LIL to an existing EchoStar subscriber is $[ 

1. Ths value is listed in cell 531. In contrast, the value of EchoStar having 

LIL to someone who moves from cable to EchoStar in response to EchoStar’s 

introduction of LIL is listed as “Cable to E S  and the corresponding dollar 

amount ($[ 

who move from antenna to EchoStar is listed as “Antenna to ES” and the 

corresponding dollar amount ($[ 1) is in cell 543. Note that in each case, 

examining the formula used in each cell allows the user to trace the exact 

method for calculating these LIL values. 

Share changes in response to LIL These calculations are in the “Auxiliary 
LIL Calculations”, and “Outputs for Historical LIL Value” tables. E.g. cells 

535 and 537 show that-net of the cable price reaction to LIL introduction- 

EchoStar gains [ ] percentage points share from cable and [ ] percentage 

I) is in cell 541. Similarly, the value of EchoStar LIL to those 

40 
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points from antenna in response to both EchoStar and DIRECTV introducing 

LIL post merger.‘s 

c. Welfare Changes fields (in the Welfare Changes table) 

These fields use data from the output and input fields to calculate the welfare effects 

of the merger. To illustrate how this table works, we delineate the analysis for the 

case where marginal costs decline following the merger include SAC savings (Le, 

EchoStar marginal costs declines by $[ ] and DIRECTV by $[ I). The welfare 

calculation begins with the consumer welfare change before LIL Introduction i e . ,  

welfare changes only due to the price effects of the merger. Since prices decline 

because of the marginal cost decreases, the initial effect of the merger is to increase 

consumer welfare by $[ 

the direct effects of LIL introduction on existing DBS subscribers (post-merger) of $[ 

. 

price reduction) on existing cable subscribers of $[ 

welfare effect of households switching to DBS in response to LIL introduction post 

merger is $[ 

switching from antenna to cable in response to the cable price drop is $[ 

cell G44. The sum of these four (which equals the monthly consumer welfare change 

due to LIL introduction) equals $[ 1, which is in cell G45. Annualizing this 

figure and adding to the initial (pre-LIL expansion) change in welfare generates a 

total welfare increase of $[ 

1 a month, which is seen in cell G24. Next, we include 

] a month in cell G41 and the indirect effect of LIL introduction (ie., the cable 

] in cell G42. Finally, the 

] per month, which is in cell G43; the welfare effect of households 

1 is in 

] (which is in cell G53). 

Key results are summarized in the “Summary of Results” table. 

Note that the predicted percentage point increase in EchoStar share due to LIL introduction post- 
merger is [ 1 rather than the [ I in the LIL regressions in Table 3 in Addendum 1. The reason is that 
the [ I percentage point increase is the effect of EchoStar introducing LIL without conditioning on 
DIRECTV’s LIL service status, whereas the [ ] percentage point increase is the share lift to EchoStar 
when it mtroduce LLL sunultaneously with DIHECTV. 
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ADDENDUM 5: DESCRIPTION OF RESCALING PROCESS TO ALLIGN SAMPLE 
CABLE FRANCHISE AREA SHARES WITH NATIONAL JANUARY 2002 MARKET 
SHARES 

The final dataset that we use to simulate the merger includes cable franchise areas 

that account for 76 million households, and the national average shares of DBS products in 

our data are very close to their national shares in 2002. However, the share of cable is less 

than its national share. 

To test the robustness of our  simulation results, we re-weighted our data such that 

weighted average shares equal their national shares. The weight of each area is the number 

of households in that area multiplied by a rescaling factor. In other words, the goal of the 

rescaling exercise was to create a rescaled household count for each area such that (a) the 

weighted average shares of MVPD products equal their known national shares, and (b) the 

total number of households in the nation equals 106.3 million&. To minimize distorting the 

origmal data, the rescaling procedure did not alter any characteristics of a cable franchise 

area, such as the cable franchise area share of each product. Instead, the rescaling 

procedure simply rescaled the household count in cable franchise areas. Also, to minimize 

the distortion of the original data, the change in the observed households count in an area 

was constrained (i .e, ,  we try to minimize (numerically) the range of rescaling factors). 

In short, the goal of the rescaling is to create a vector of household 

numbers, N = { N ,  ,..., iH } , such that: 

where 7?, denotes the rescaled number of households in cable franchise area C, and 

actual national household count, and 

is the 

4 6  Census Bureau data show iO6.3 miiiion housenoids in the U.6. in 2uO1. 
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where S! represents the share of productj in cable franchise area i , and F’ is the true 

national share of product;. 

Each cable franchise area was assigned a scalar proportional to the difference 

between cable franchise area-specific and true national cable franchise area shares. The 

scalar for cable franchise area i is given by: 

Scalar I = Cw’cs;  - F J )  
J E  (DTV,ECHO,C#LEI 

Where w’ is a product-specific weight defined below. The rescaling was accomplished 

through an exponential rescaling function, r,  given by: 

exp{ scala? 1 
r, =a  + B  

1 + exp( scalar, ) 

Where a and E bound the minimum and maximum scaling for a cable franchise area; they are 

scaling parameters which control how much cable franchise areas are allowed to “grow” and 

“shrink.” Given the scaling function, r: 

Where N ,  is the original number of households in cable franchise area i. 

Hence, the above rescaling procedure requires assigning values for two scaling 

parameters, a and 8, and three product-specific parameters, d , j E {DP,ECHO,CABLE}. In 

order to find appropriate values for these parameters, a loss function was constructed: 
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The loss function represents the difference between the rescaled cable franchise area 

shares and the actual cable franchise area shares. The parameters in the above loss function 

as well as the values of a and E were obtained by trial and error. Since the vector N depends 

on the values of the O' s, we solve for o/ by solving the following optimization problem: 

I 

rnin L 
o/ , j E  {DTV,ECHO,CABLE) 

The minimization problem is solved using a numerical reduced gradient algorithm. 

This is done using the "Excel Solver" add-in functionality. The trial-and-error pattern for a 

and E Is aimed to minimize the differences between original and rescaled numbers of 

households within each cable franchise area. It was found that some cable franchise areas 

need to be scaled at  least [ ] fold (or by [ 1) to allow the rescaling procedure to match 

national cable franchise area shares. That is, a "tighter" bound on the ratio of unscaled to 

scaled cable franchise area sizes did not allow for rescaling that met the objective of equating 

the data to observed national cable franchise area shares. The obtained parameter values 

were: 

CABLE El  
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The resulting rescaling factor, N ;  / N ; ,  ranged from [ ] to [ 

household count matched the actual household count, and rescaled product shares matched 

actual national shares to within four decimal places. 

1, the resulting national 

The spreadsheet used to do the rescaling is in the file DataScoling_Spreadsheet.xZs. 

This file includes a worksheet that has instructions on how to use the workbook. 

53 
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While the averages of the  estimated asymptotic variances are never iden- 
tical-in fact ,  that of the  e.g.f. estimator is always smaller-they converge 
as T increases. 

These results illustrate that the c.g.f. is a valid and  indeed a sensible alter- 
native t o  the e.c.f. estimator, especially in cases where the c.f. is given as the 
exponential of some function of t he  parameters. 

JOHN L. KNIGHT AND STEPHEN E. SATCHELL 

NOTE 

I .  Although one of the referees commcntcd that intuitively one would expect asymptotic 
equivalence between e.c,f. and c.8.f.. this theorem proves this equivalence. 
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VARIANCE COMPONENTS 
STRUCTURES FOR THE 

DISTRIBUTIONS WITH 
APPLICATION TO MODELS 

OF HETEROGENEITY 

EXTREME-VALUE AND LOGISTIC 

i 
I 
I 

N. SCOTT CARDELL 
Salford Systems 

Two new classes of probability distributions are introduced that radically s i m  
plify the process of developing variance components structures for extreme- 
value and logistic distributions. When one of t h a e  new variates is added to an 
extreme-value (logistic) variare. the resulting distribution is also extreme value 
(logistic). Thus, quite complicated variance structures can be generated by recur- 
sively adding components ha\ing this new distribution, and the result will retain 
a marginal extreme-value (logistic) distribution. It is demonstrated that the 
computational simplicity of extreme-value error structures extends to the intro- 
duction of heterogeneity in duration. selection bias, limited-dependent- and 
qualitative-variable models. The usefulness 01 these new classes of distributions 
is illustrated with the examples of nested logit, multivariate risk. and compet- 
ing risk models. where important generalizations t o  conventional stochastic 
structures are developed, The new models are shown t o  be computationally Sim- 
pler and far more tractable than alternatives such as estimation by simulated 
moments. These results will be of considerable use to applied microeconomic 
researchers who have been hampcred by computational difficulties in COnStrUCI- 
ing more sophisticated estimators. 

1. INTRODUCTION 

Econometricians and statisticians have long been concerned with t h e  prob-  
lems of unobserved heterogeneity in cross-sectional studies, where systematic 
differences a m o n g  economic agents cannot be cap tu red  with demographic  

This pap, is bawd in pan on my unputlishhcd Ph.0.  dirtension (Harvard Univrrrily. 1989). I !hank h i  
Grilichn and G u y  Chnmbrrldn. who & r i d  and mmmrnlcd an 11mt carlicr w o r k  Ems Slromsdarlcr. Ron 
Miiiclhammn. Dm Sicink& md John Trimblc. who m m e m r d  on this ppcr: and p.rIicuIarIy JCrrY Haur- 
man and Audrey Carddl. who advircd sod madc many uxful ~y~gcslions on both my dissertation and !hi5 
papcr. Finally. I thank the rnanymoui r c f n m .  each o l  whom contribuccd valuabk Commtnll. and Pelcr 
Phillips. Ediwr. who rupplicd the kcy c~lnrnrnii for the find revidon of  this pipcr. Address correrwndcncr 
IO: N. Scott Carddl. 1730 Krnny Drive. Pullman. WA 59163. USA. 
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and other available data. At a minimum, failing to account for such hetero- 
geneity will result in inefficient estimation. It may also result in biased and 
inconsistent model estimates. There have been major impediments to accom- 
modating heterogeneity in applied empirical work, however. First, without 
sufficient data in the form of repeated measures of some type, models may 
not be identified. Second, even with adequate data, tractable estimators 
based on reasonable rather than computationally convenient assumptions are 
rare. With the advent of new microeconomic databases consisting of lengthy 
panels in which endogenous variables are repeatedly measured, and cross- 
sections containing a large number of related endogenous variables, data sets 
capable of supporting quite complex heterogeneity modeling are now rou- 
tinely available. It is therefore of considerable importance to find methods 
that are practicably usable by applied researchers and theoretically general 
enough to accommodate a wide range of heterogeneity structures. This paper 
derives two new classes of conjugate distributions and utilizes them to de- 
velop a variety of broadly applicable variance components structures. 

Heterogeneity has been discussed widely in the hazard function literature 
and in the literature on cross-equation correlation, including correlated lin- 
ear and discrete equations. However, heterogeneity has rarely been consid- 
ered when modeling multiple discrete decisions. Furthermore, empirical 
investigations have often ignored important aspects of heterogeneity. The 
focus of this paper is on three situations in which heterogeneity is important: 
(1) multiple hazard processes. (2) multiple discrete decisions, and (3) com- 
binations of discrete decisions and continuous stochastic processes. In each 
situation, heterogeneity will affect multiple decisions and thus can induce cor- 
relations among the decisions, resulting in inconsistent conventional estima- 
tors. For both hazard function and discrete choice models, heterogeneity can 
be parsimoniously represented by variance components. 

Since the 1920’s, logit models have been the preferred method for dealing 
with binomial and multinomial discrete choice for reasons of computational 
simplicity, parsimony, and robustness. The logit specification is based on an 
indicator equation that includes a logistically distributed additive stochastic 
term. If the indicator is positive, one choice is made; if not, the other choice 
is made. Because the difference of two independent Type 1 extreme-value 
variates is logistically distributed, binomial logit is equivalent to a utility max- 
imization problem, with each utility having an independent Type I extreme- 
value additive stochastic term. In the multinomial logit model, the utility for 
each of the multiple alternatives has an independent Type I extreme-value 
additive stochastic term. O f t e n ,  multinomial logit is the only computation- 
ally feasible multinomial choice model.’ 

The chief practical advantage of the extreme-value and logistic variance 
components structures introduced here is that they combine computational 
simplicity and flexibility, a combination for which there is a very real need. 
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Applied modeling is often restricted by the computational difficulty Of e m -  
uating the cumulative multivariate distribution functions involved. AS a 
result. a large and growing literature on simulation-based methods has devel- 
oped? The variance components structures in this paper avoid such compu- 
tational problems altogether by providing closed-form expressions for the 
multivariate cumulative probabilities. 

An important advantagi: of the methods introduced here is that they can be 
used in combination with nonparametric approaches. For example, in dura- 
tion models they can be combined with the nonparametric baseline hazard 
Of Han and Hausman (1590). In large samples, heterogeneity distributions 
could be modeled as a convolution of a finite points-of-support distribution 
and a parametric distribution of the type introduced in this paper. The result- 
ing estimator would combine consistent estimation of general heterogeneity 
distributions with the practical advantage of computational simplicity. Such 
approaches avoid the perils of a “have distribution will fit” mentality that 
can occur when modeling becomes too complex to allow appropriate speci- 
fication searches. 

The remainder of the paper is organized as follows. Section 2 presents the 
main theoretical results, deriving the two new classes of distribution func- 
tions, denoted C ( h )  and G L ( h ) ,  and showing how they can be used to 
develop variance components structures for Type  1 extreme-value and logis- 
tic random variables. The remaining sections are  devoted to applications. 
Section 3 utilizes variance components to derive the nested logit model, Sec- 
tion 4 develops cumulati\e distribution functions for vectors with variance 
components structures b s e d  on C ( h )  and GL(X), and Section 5 utilizes 
these cumulative distribul.ions to apply the variance components models to 
some of the leading econometric problems in the literature. These include 
( I )  correlated, multiple discrete decision models, (2) hazard models with her- 
erogeneity, and (3) simu1t;~neous equations models with discrete endogenous 
equations. Concluding remarks are contained in the last section. All proofs 
appear in the Appendix. 

2. VARIANCE COMPONENTS STRUCTURES 

This section derives the classes of distribution functions C(XI and GL(X) and 
their properties necessary for constructing extreme-value variance compo- 
nents structures. In general, a linear structure for  the random p-vector II has 
the form q = p + Av. where p is a vector of constants, v is a q-vector Of non- 
degenerate independent random variables, and A is a constant p X q matrix. 
Kagan. Linnik. and Rao (1973) extensively discuss the use of linear St rUC-  

turer. When 11 has a finite variance. the linear structure is referred to as a 
variance components structure. 
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2.2. The Existence of C(AI and G L h I  

This investigation began by hypothesizing that a distribution C ( h )  exists 
for all A. 0 5 h 5 I ,  such that Y - C(A) and E - Type 1 extreme value im- 
plies that Y + A c  - Type 1 extreme value. Obviously, C ( 0 )  is the Type 1 
extreme-value distribution. Theorem 2. I shows that C( A )  exists for 0 < < 1.  
The motivation here can be understood by analogy to the normal distri- 
bution. The normal distribution is self-conjugate because, for Y and c in- 
dependently distributed, Y + c is normal i f f  Y and E are normally distributed 
(Cramer, 1937). Therefore, given e - N(0.o;). v and E independent, v + c - 
N(0.o: + u $ )  iff Y - Nt0,o:). Similarly, Theorem 2.1 shows that for e 
extreme value with scale parameter 6 (i.e,, c - C(0.6). 6 > 0). for v indepen- 
dently distributed, Y + E i:s extreme value with scale parameter y (y > 6) iff 
Y - C((6/y),6). Thus, C(X,6) is the class of conjugate distributions to the 
extreme value. 

THEOREM 2.1. For 0 < X < I and E ,  a random variable distributed 
as Type I extreme value, there exists a unique distribution, denoted C(A), 
such that for Y ,  a mndont variable, Y and c independenf, then Y + Xc is (I 
random variable dirtribured as Type I extreme value, iff v is distributed as 
C(X) where the probability density function ( p . d . 5 )  of C ( h )  i s f ~ ( v )  = 
( l / A ) C . " = o [ ( ( - l ) " e - " ' ) / ' ( n ! r ( - h n ) ) ] .  The cumulative distribufionfunc- 
tion ( c . d . 5 )  of the C ( h )  does not have a closed-form representation. 

It is interesting to note that as a consequence of Theorem 2.1 C(A) are 
infinitely divisible distributions. Thus, other decompositions exist for Type I 
extreme-value random variates and logistic random variates. for example, in 
terms of sums of independent and identically distributed (i.i.d.) random vari- 
ables. Furthermore, the self-decomposability of the Type I extreme-value dis- 
tribution is independently interesting. The stable distributions (stable under 
convolution) are a subclass of the self-decomposable distributions. and the 
exponential distribution is well known to be self-decomposable. However. 
the Type I extreme-value ;and exponential distributions are stable under m a -  
imization but not stable under convolution. 'Thus. Theorem 2.1 demonstrates 
an interesting relationship between the stable and the extreme-value Or  may- 

I f  a C ( h )  variate is added to extreme-value variates. the resulting sum is an 
extreme-value random variate. The extreme-value distribution is itself a mem- 
ber of the C(X) class. Therefore, one can derive extreme-value variables 
recursively, which are themselves sums of C ( h )  random variables. Then. in 
a factor components framework in which various C(X) random variables 
appear in the construction of several extreme-value variables, quite compli- 

variance Components structures may be developed while retaining the 
assumption that the marginal distributions are extreme value. Thus, the selec- 
tion of the shape of the marginal distributions is kept separate from the sta- 
tistical determination of the covariance between them. Corresponding results 
hold for the GL(X) Class, allowing one to build sophisticated logistic vari- 
ante components structures. These structures are particularly appropriate 
for modeling heterogeneity. 

Cardell (1975) conjectured a class of distributions that could form the 
basis for useful variance components structures for the Type I extreme-value 
distribution. For all A, 0 I A 5 I, let C ( h )  denote a member of that class. 

i 

i 
! 
i 
I 

I i 

I I  2.1. Overview 

.~ 
statistical properties for logit-type discrete choice models with very large sam- 
ples (Cardell, 1989). 

For the C(A) and GL(X)  distributions, the single parameter A determines 
the mean, the shape, and the scale of the distribution. It is sometimes use- 
ful to generalize the C(X) a n d  GL(X)  distributions to include a scale param- 
eter. Accordingly, if c is distributed as C(X) and 6 is a fixed scalar, 6e is said 
to be distributed as C(X.6). Similarly, if E is distributed as GL(X) and 6 is 
a fixed scalar, 6c is said to b e  distributed as GL(X,161).' 

stable distributions. 
While many useful results can be computed in closed form using the C(X) 

distribution, the c.d.f. for C(X) does not have a general closed-form repre- 
sentation and the p.d.f. appears not to as well. By contrast, both the c.d.f. 
and p.d.f. for the generalized logistic distribution have simple closed-form 
expressions. Clearly, C(1) represents the degenerate case v = 0 with proba- 
bility 1. Also, Var(c) = Var(u + Xe) = Var(u) + A'Var(c), and C ( h )  can- 
not be defined for I X I  > 1. Furthermore, C(X) cannot be defined for X < 0 
(Cardell, 1989); thus, C(X) is defined iff 0 d A 5 1. 
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LEMMA 2.1. If v I  ,v2'-Ld' Type1 extreme value, then 'I, - v2 - logistic. Fur- 
thermore, the G L ( h )  distribution exists for 0 < h< I ,  ond,forv, , ~ 2 ~ ? 5 ' .  C(X), 
? I  - 112 - G L ( h ) .  

Just as Theorem 2.1 provides a unique class of conjugate distributions to 
the extreme-value distribution, so Lemma 2.1 extends Theorem 2.1 to pro- 
vide a unique class of conjugate distributions to the logistic distribution. 
c(X.6) and GL(X,G) can now be simply defined: C(h.6) is the distribution 
of Bu for 6. a fixed scalar, and v - C ( h )  and GL(h,6) is the distribution of 
6u for 6, a positive fixed scalar, and v - GL(X). 
2.3. Nesting the Logistic Distribution 

THEOREM 2.2. The p.d . f .  ofgenemked logistic distribution isfA(2)  = 
[ ( s i n r h ) / ( r h ) l / ( e '  + Z c o s r h  + e-') and fhe c .d . f .  is FA(Z)  = 
(I/*h) tan-'((sin rh) / (e - '  + cos *A) ) ,  where rhemngeoftan-' istaken 
to be LO.*). 

An interesting consequence of Theorem 2.2 is' 

sin * X  

TO nest the logistic distribution in a broader class, it is convenient to define 
a class of distributions that includes GL(X) as a subset. Define the extended 
generalized logistic distribution GL'(a) by its p.d.f. and c.d.f. as follows: 

@T 

and 

Letting logs and square roots be defined to take their principal values, for 
- 1  5 a 5 I .  CL'(a) = G L ( (  I/*)cos-'(o)). Therefore, GL'(o) is defined 
for (1 > - 1 ,  and the logistic distribution corresponds to an interior point in 
the allowed range of a. This family of distributions thus provides a way to 
nest the logistic distribution a n d  to test it statistically (i.e.. H o : o  = I ) .  For 
situations where the mean a n d  variance are free parameters, the generalized 
logistic distribution with m e a n  p and variance m2 has a p.d.f. of 
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2.4. Building Variance Components Structures Recursively 

LEMMA 2.2. For ut - C(X,), v2 - C(h,),  U ,  and v2  independent, 

Repeatedly applying Theorem 2.1 allows one to create recursively a vari- 
ance components structure for the Type 1 extreme-value distribution that 
has any number of terms. For instance, if v I ,  v2.  u,, and c are indepen- 
dent, v I  - C(X,), u2 - C ( h 2 ) ,  Y ,  - C(A,), and E is  extreme value. Then, 
( v ,  + h,c) is extreme value. Thus, u2 + X2(v1 + Ale) = v2 + A ~ V I  + h 2 h c  
is extreme value, and v I  + h , ( u 2  + h 2 v ,  + h 2 h , c )  = uI + X , u ,  + A I A ~ Y )  + 
X l h 2 X , c  is extreme value. 

THEOREM 2.3. Let Q be the number ojterms in the uariance compo- 
nents structure. Given 0 s; hk < I for I s k s Q, AO = 1. E x  = n;=o A I .  I t  
follows lhal 

C ( C X ) .  

C ( t K ) .  

V I  + A 1 ~ 2  - C(Xi .Xz ) .  

A. IJv,isifldependenrly~lisIributedasC(X,)JorK= I, . . . .  Q.C:==ICk-I"r - 

E. Allernatiwly. for qk independently disrributed os c(hk,b-r).xt=o ?I( - 

Using hk. E x ,  v k ,  and vk as in Theorem 2.3 with h~ = 0, 0 < h k  < 1, I 5 
k < Q, E:='=, t k - , v k  or Xi: ,  vk is a Q term variance Components StruClUre 
for a single Type I extreme-value random variable. Now consider a Vector 
of J Type 1 extreme-value random variables denoted 1; for I 5 .i 5 J. Let Q, 
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denote the number of terms in  the variance components structure for 6,. Let 
Ak,, be fixed constants, 0 5 < I for 1 5 j 5 J and I c k c Q,. Similarly 
10 Theorem 2.3. let v k . j  be distributed as C(Ak, j ) ,  set = I .  and define 
h,, = n!=o A , , j .  For all j, the set [ Y , , ~ ]  1 5 I5 Qjl is assumed to consist of 
mutually independent random variables. Thus, for all j ,  I c j s J, k = 
1,. . . ,Qj, ck=l E X - 1 . j U X . j  - C(Ek, j ) .  In particular, if Ap,,j = 0, then r = 
C ~ L I  t k - l . j t ' k . j  - C(0), the Type I extreme-value distribution. Clearly. if all 
vk,,'s are mutually independent, then rj'.Ld' C(0) .  However, by thinking of 
h = C,%I E x - I . , ~ ~ . ,  as a simultaneous equations system (or as the stochastic 
Structure of the error terms in a simultaneous equations system) and applying 
cross-equation restrictions t o  this system, one can develop a wide variety of 
complex variance components structures. The terms in the sum are analogous 
to autoregressive terms in simple time-series models, whereas the E's are fac- 
tor loadings. Each variance components structure is a representation of a 
multivariate Type I extreme-value distribution. Each restriction takes the 
form A,, = A k ~ j  alone or A,,,, = Ak,j  and v , ,  = vk,,. The set of distinct v's is 
assumed to be mutually independent; thus. v,,,,, vk, ,  are either independent 
or v,,,, v ~ , ~ . '  

1 
I 

I 

i 
i 
I 
I 

K 

For example, if one sets QI = e2 = Q, = 2,  Q~ = = Q~ = 3, = 
A Z , Z  = A2,3 
v =  1.4 - 

v2.4 = VI.S, v2 . !  = v , , ~  = e l ,  v2.2 = el+ 
"2.3 E "3,4 = ~ 3 ,  and q . 5  = c4, then the following variance components struc- 
lure results: 

A3.4 = A3.5 =  AI^^ = 0. AI,! = h1.2 = Ai.4 = h2.1, VI.I vi.2 ze 
AI,, = A2.4  AI,^, VI.] 

~ ~ = ~ ' I . I + ~ I , I v z , I = ~ I , I + A ~ , ~ c ~ .  

I ~ = ~ I . z + ~ I , ~ ~ z , ~ = ~ I , I  + A , , I C ~ ,  

(3 = ~ i . 3  + A 1 . 1 ~ 2 . 3  = v1.3 + X ~ , ] C , ,  

S ~ = " ~ , ~ + A I , ~ ~ ~ Z . I + A ~ , ~ ~ Z . ~ Y ~ . ~ = V I . I  + A ~ , i v , , , + A i , ~ h ~ , i ~ i ,  

l 5  = v1.5 + A1.sv2 .5  + A i , ~ A z . ~ ~ i , s  = VI., + A i . 3 ~ 1 . 1  + A i . 3 A i . 1 ~ 4 ,  

(6 = "1.6 + A 1 . 6 ~ 2 . 6  + A I . ~ A Z , ~ U ~ , ~  = ~ 1 . 6  + Ai,e.v,,n + Ai.6 A z , ~ c , .  

Multivariate Type I extreme-value distributions may also be developed by 
using the maximum operation t o  combine distinct Type I extreme-value ran- 
dom variables. Such distributions occur naturally in competing hazard mod- 
els of duration data and switching regression models. Using both multiple 
variance components structures and a maximum operation to combine them 
yields a generalization of the GEV model of McFadden (1981, 1984; see also 
T a w ,  1990). The distributions of the maxima are also needed to develop the 
probability formulae for discrete choice models such as nested logit. To dem- 
onstrate that these structures produce Type I extreme-value variates, the fol- 
lowing theorem is needed. 
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THEOREM 2.4. I f  E , Y  am i.i.d. extreme ualue (C(0)). then for OnY con- 
stants a and h. 

f I max(o + c ,b  + v )  - log(e" + e b )  - C(O), 

f h e p r o h a b i l i r y f h a f a + e > b + v i s e " / ( e " + e * ) u n d l ) ( a + c >  b + v ) -  
C(0) - t j ( b  + w >  a + E). 

leads to multinomial logit (McFadden. 1974). 
Theorem 2.4 is a slight generalization of the fundamental theorem that 

COROLLARY 2.1. If E, i. i. d. extreme value, j = 1, . . . , J. then, for any 

I .  I, = (maxls,s,(a, + c,) -. log(C{=, e")) is extreme value. 
2.  Pmbuhilify (aj + ti b 0, + F,. all I, I 5 Is,) = (e',)/(E/=, e") 
3. (t, \aj + ej 2 a, + c,, all I ) .  1 c Is j) is extreme vdue.  

Note that part 2 of Corollary 2.1 is the multinomial logit model, whereas 
parts 1 and 3 can be combined with Theorem 2.3 to generalize from the 
multinomial logit model IO the nested logit model. Applying parts I and 3 
of Corollary 2.1 recursively yields the ranked logit model (Beggs. Cardell, 
and Hausman. 1981). 

conslants aj ,  we have fhe fdlowing: 

3. THE NESTED LOGIT MODEL 

In both multinomial logit and nested logit models, the total stochastic term 
for each alternative is assumed to obey a Type I extreme-value distribution. 
In multinomial logit, the stochastic terms are independent, whereas in the 
nested logit model the altern.ative specific stochastic terms are correlated Via 
a special case of the variance components structure described in Section 2 
(Cardell. 1975, 1989). Disjoint subsets of the set of alternatives can each have 
a common variance component, and each of these subsets can have one Or 
more disjoint subsets, each with a further common variance component. This 
process can be repeated indefinitely. 

Assume that the utility to choosing the j t h  alternative (4)  has a System- 
atic component that is linear in the independent variables. (To allow for a 
nonlinear functional form, one need only replace X j p  withf(X,.p) through- 
out.) In this section, the j t a  random variable in the variance comPOnents 
structure will be an additive stochastic term in the utility to the j t h  alterna- 
tive. Using and v k , j  as in Section 2 ,  let E, , j  = n:=oA,.j. The utility 10 
choosing the j t h  alternative is 

(2) 
0, 

= xja + c E / - l , j v / , j .  
I I I  



i 
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The only legal restrictions for the nested logit model involved A k , ,  and 
b,,, and possibly U k , j  and Yk,,,,. No restrictions are allowed between Ah,; and 
A,,,, for k t l .  Furthermore, i f  vh,, E v k , , , .  then, for I 5 I S  k, V I , ,  = VI.,,,. 

Similarly, if  Ah,,  = is a restriction, then so is AI,, = AI, , ,  for 1 5 I S  k. 
Of course, the nested logit model is based on Type I extreme-value additive 
stochastic terms; thus, Ao,,i 0. 

Using the notation developed above, the general form of the nested logit 
model is 

u; = x,a + E,. 

(3) 

where 

I. VI j is distributed CIA. \ 
~ ~ I .,.’, . 

2. u, is the utility to choosing the j t h  alternative (and the j t h  alternative is cho- 
sen i f f  U, 5 U,, for all 1. I 5 I S  1). 

~ - .. 
3. XI is the vector of independent variables associated with alternativej, and 
4. B is the vector of utility function coefficients. 

Depending on the situation. any  of (II. XJ and 17 may be considered to be 
also indexed by a suppressed individual index. The nested logit model could 
be combined with the hedonic demand model (Cardell and Dunbar, 1980; 
Cardell, 1989). in which case f i  would be a stochastic vector with the param- 
eters of its distribution the estimable parameters of the model. 

The distribution of E, is Type I extreme value, the same distribution as for 
mdtinomial logit. Thus, from (3) one can see that the preceding assumptions 
define a variance components structured multinomial logit model. The name 
“nested logit” has sometimes led to an inappropriate presumption that the 
group of alternatives is chosen first and the alternative within the group is 
chosen last. Such hierarchical models are, in fact, quite different (McFad- 
den. 1981; Tversky, 1972). T h e  original name for the nested logit model was 
“non-independent logit” (Cardell, 1975). Because each variance component 
can be associated with a node in a tree. variance components structure (3) 
is a tree-type structure. McFadden (1981) introduced the name “tree extreme 
value” for nested logit models. The appropriateness of this name can be made 
more evident by rewriting (3) as 

(4) 
For each variance component, v I . ] ,  a set S,,] can be defined consisting 

of all alternatives that contain vI,, in their variance components structure. 
In other words, this is the set of alternatives grouped with j at the l th level. 
For example, if v2,1 = v2 ,3  i s  a constraint and there is no other constraint 

E, = V I . I  + A I . J ( V Z , ,  + A I . ) ( .  . . + Ap,_l,,~p,,,)...) . 
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involving v2,i (or v ~ . ~ ) .  then = S2,3 = 1.31. To locate the nodes below 
/ , j ,  create from SI,, by removing from SI,, all rn such that V I + I . ~  = V i + i . j  

and then selecting a new index j * ,  j’ E Using the new index, repeat the 
removal operation, continuing to select new indices, until. for all m.n E 
GI,;, m # n, and v,+,,,,, is not equivalent to v ~ . + ~ , ~ .  For example, if j = 1, 2,  
3, 4, and 5 represent drive alone to work, carpool to work, take a bus to 
work, take a subway to work. and walk to work, respectively. then one 
logical approach would be to select QI = Q2 = Q, = Q4 = 3, Q, = 1 and 
the constraints v I . I  = v1.2 = = VI+, Ai,l =A i , *  = A1.3 = Al ,4?  v2.1 = ~ 2 . 2 ,  

VZ., = ~ 2 , ~ .  X2.1 = X2.2, and b,, = X2,,? Then, SI., = 11,2,3,4), but Gi.1 = 
11.31. In this example, is a common component for commuting in a 
vehicle, V Z , ~  is a common component for commuting by car, and vz.3 is a 
common component for commuting by public transit. The tree graph of this 
example is shown in Figure 1. 

Let K = max(Q,) and define Zl.j by 

for Q, 5 Is K, 

For all 0 C / < Q,, define UI..;.~ = (xkfi + c%,+i [ , , - I ,  k %, k ) / t l , k s  0 I <  Q,* 
andUl , j=max~ , s , , , (U l , j ,~ ) forO~I~Qi .Note that  U,= U0,,,,.Thissets 
the stage for the following theorem. which is the fundamental theorem of  
nested logit. 

THEOREM 3.1.  Ul,j - log Z,,, is on exrrerne-unlue random uoriable. The 
probobilifyfhof Ul , j , j=  U , , j . O s / ~ Q , i s P l , j , , =  i+)/(I&T1 z k , , ) .  

Theprobobilify fhof U, > Ul, oll I # j .  is P, = (nEi Z ~ ~ ) / ( I I &  Zh,,) .  

Because they are relatively easy to compute, limited information maximum 
likelihood (LIML) estimates of nested logit models are quite common.’ 
However, the parameters estimated at a given stage are based only on the 
identifying variation between alternatives that are grouped together at that 
level of the tree. When that variation is a small part of the total. the LIML 
estimates will have high variances and will not be robust to specification 
errors, a well-known phenomenon in the linear regression literature. The 
solution in linear regression is to specify an explicit variance components 
structure and use all the variation to compute an asymptotically efficient esti- 
mator (see, e.&!., Swamy, 1974; Mundlak, 1978). Similarly. with nested logit, 
the .full information maximum likelihood (FIML) estimates use all the vari- 
ation between all the alterniltives and are asymptotically efficient. Further- 
more, FIML estimates do riot require that XI,, = AI,*. These questions are 
further addressed in Cardell (1989). Cardell (1989) and Cardell and Steinberg 
(1992) discuss one practical method for computing FIML estimates and a 
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duration data due to the inherent complexity. In  general, a single common 
variance component is a statistically useful alternative to a null hypothesis 
of independent stochastic terms. 

THEOREM 4.1. For0  < h < I .  6 -C(X), Y, dislributed extreme value; 
IF. \ 

FIGURE 1. Tree diagram for a nested logit model of travel mode choice 

Simple method for computing "one-step'' estimators that are asymptotically 
equivalent to FIML. 

4. THE MULTINOMIAL c.d.f.'s 

4.1. Structures with a Single Common Variance Component 

Researchers are often interested in only a single common variance compo- 
nent. Most often only a single heterogeneity factor is used when modeling 

9,  u I  l . .  . , vJ  independenl, el = B + Xuj. Thec.d.f. of (7 ) is F~,j(ci,. . . I C J )  = 

e 
-(c;-,.-'q E /  

Johnson and Kotz (1972) list three possible forms, including Fh.2 for 
the limiting joint distribution of an appropriate linear transformation Of 
XMax = max(Xt) and YMax =: max( V , )  for ( X I ,  Y,) i.i.d. pairs of random 
variables with some continu(3us joint c.d.f. In their typology,  FA.^ is the 
Type B bivariate extreme-value distribution. I t  follows that this distribution 
is maw-stable. Thus, for ordered pairs ( c , , , ~ , ~ )  distributed with c.d.f. FA.z. 
with ( q l , c t 2 )  independent o f t h e  set of all ( C , ~ , C ~ ~ ) ' s ,  j # I, then for any 
positive integer N(max(ct,),max(e,,)) is distributed as FA,2 plus a constant 
vector (equal to (Alog N,AlogN)). By comparison, for (cjI,ej2). distrib- 
uted N ( p , C )  with any nonsingular E, the limiting joint distribution Of 

Max(cj,). Max(cjl) has M=(F,,) independent of M=(F,,)! These results 
generalize directly from the bivariate to the multinomial case. 

! 

I 
i 
I 
i 
I 

THEOREM 4.2. For 0 < A < I ,  B - GL( X),  vj - logistic; 8,  q, . . . . Y J  

independent, e, = B + XV, .  7hen, the c.d./.  of the mndom vector (::) is 

where e,,. , . . ,e l ,  are the dislinct F,'s, m, is the mulftplmcity of e,,, and the 
C,,'s are easily computed recursively. 

Note that for F, all distinct. Theorem 4.2 reduces IO 

4.2. Tree-Type Variance Components Structures 

Theorem 4.1 can be used to develop the c.d.f. for variance components StrUC- 
lure (3). 

LEMMA 4.1. For q j  dejined by variance components slruclure ( 3 ) ,  
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In the nested logit model, in,, I 1 and yo,, E 0. because a variance com- 
ponent common to all alternatives will not affect a discrete choice model. 
However, such components are important in other circumstances, as, for 
example, in hazard function models. In such cases, (3) can be replaced by 

with 
c, may also have a free scale Darameter. 

= 1,  0 < io,, < 1. In equations containing cardinal information, 

Tree-type variance components structures are also potentially useful for 
logistic random variables. The c.d.f.'s for logistic random variables with such 
tree-tYPe variance components structures are easily derived using the same 
method used to prove Theorem 4.2.8 While such tree-type structures have 
only Positive correlations, structures with negative correlations are easily 
derived from tree-type logistic structures. The logistic and generalized logis- 
tic distributions are symmetric. Thus, let d, be a fixed scalar equal to ? l ,  

on the variance components structure to be developed, let e, 
be as in (3)- and let qj = djc,. Then, Var(7) can include negative correla- 
tions and the c.d.f. of (vl,. . . ,?,) is easily calculated from the c.d.f.'s of 
( C I , .  . . .e , )  and subsets of the E'S.  Huang and Cardell (1996) use this 
approach to investigate a heterogeneity factor that affects durations on  and 
off welfare in opposite ways. 

Tree-tYPe variance components structures are a natural and parsimonious 
way to allow for stochastic correlation with a small number of parameters. 
Often, the variance components themselves can be identified with unmea- 
sured factors that. from economic theory, should be important. Further- 
more. in hazard functions with heterogeneity, variance components structures 
Seem to be the only feasible way to include unmeasured factors. In most 
duration data, different individuals begin in different states and go through 
different sequences of states (i.e., spell types). Truly free correlations would 
require a different matrix for  every possible sequence of states. frequently 
involving more free parameters than could possibly be identified. For exam- 
ple, in a data set in which 4% of the individuals have 20 or more spells, esti- 
mation of even a single 21 x 21 covariance matrix would require estimating 
210 correlation parameters. By contrast. heterogeneity has in practice usu- 
ally been represented by only  a single variance component (see, e.g.. Heck- 
man and Singer, 1986). 

In some situations with a limited number of stochastic components and a 
large number of observations, one might wish to be able to approximate a 
free correlation matrix. While I find it implausible that this generalization 
would make the best use of finite data (as compared to, e.&, generalizing XS 
tof(X.b)) ,  others may consider the capability to approximate free correla- 
tion matrices important. Therefore, I generated all 4 x 4 correlation matri- 

VARIANCE COMPONENTS STRUCTURES 199 

ces R that follow from r'r = R with r upper triangular and the off-diagonal 
elements of r a multiple of .2. For each one, the variance components Struc- 
ture from (6)  that could most closely approximate R was found. For this 
case, the variance components structure has three or fewer unknown contin- 
uous parameters. whereas R has six correlations t o  be approximated. The 
overall mean squared error of R,. i # j ,  was .01. (The largest errors Occur 
when two of the stochastic terms are each highly correlated with a third term 
but uncorrelated or only slightly correlated with each other.) Thus, in this 
simulation experiment. the variance components structures of this paper pro- 
vided a reasonable approximation to a free correlation matrix. 

5. OTHER APPLICATIONS AND EXTENSIONS 

5.1. Correlated Discrete Decisions 

When the same individual makes multiple discrete decisions, these choices 
may be correlated. Although the nested logit approach is not a useful frame- 
work for handling this situation, the same type of variance components struc- 
ture can be used, but with a logistic rather than a Type 1 extreme-value 
stochastic distribution. Let Yk be an indicator variable and dk be a discrete 
response variable, where 0 c X 5 I ,  v - GL(X) .  and qk  - logistic. 

yk = X k o k  f + x ? k ,  

I i f  Yk 2 0, 

d k = [  0 if Yk < 0. 

x k  is a row vector of characters and Ox is a column vector of unknown 
parameters related to the k t h  binary decision. This variance components 
structure is a natural way to include a common interdecisions stochastic 
correlation in the case of multiple binary decisions. Obviously, the mar- 
ginal probability of dk = l is Pk = 1 / ( 1  + e - x * B * ) .  Therefore, a single 
model can incorporate data on individuals who face multiple decisions and 
also on other individuals who face only a single decision, allowing coeffi- 
cients to be directly compared between a study of correlated decisions and 
a simple binomial logit study. 

Applying Theorem 4.2. the joint probability of dk = 1 and d/ = 1 for 
I # k is Pk, = F ( X k p k , X , & ) ,  where 
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The formulae for the joint probability of multiple binary decisions can be 
determined from Theorem 4.2 or the extensions to it already discussed. See 
Cardell. Huang, and Brown (1995) for an empirical study of correlated 
binary decisions. Some correlated multinomial cases can be solved in the 
same way. See Cardell (1989) for a multinomial case with X fixed across 
individuals. 
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gaard, 1986, Sect. 7; Tawn. 1990, equations 3.3 a n d  3.10). Other bivariate 
distributions in Johnson and Kotz (1972) are discussed in Tawn (19881.9 The 
general multifactor case given in Lemma 4.1 is discussed in Cardell (1989). 

5.2. Hazard Functions with Heterogeneity 

Econometric modeling of duration data is based on both hazard and survival 
functions. The hazard function h ( t , X )  is defined as the probability of a spell 
ending per unit time, conditional on it not having ended previously. The sur- 
vival function s ( f , X )  is defined as the probability that a spell will last at least 
a time of 1. The definitions imply that h(1 .X)  = - [d log (S( f ,X) ) l /d f  or that 

For a proportional hazard function, the hazard h ( f , X )  = g( r )e -XE,  where 
&'is a function that may or may not be parametrically specified, 0 is a column 
vector 0funknownparameters.and Xisarow vector oftime-invariant indepen- 
dent variables. The corresponding survival function to h ( t , X )  is S ( 1 , X )  = 
e - r - X ~ C , , l  

9 where G ( f )  = I i g ( T ) d ( T ) .  Thus, -log(-log(S(f,X))) = XS - 
log G ( 1 )  is distributed extreme value for t = time to transition. or log G ( f )  = 
XP - v. where 7 is an extreme value stochastic term. 

,S(l,X) = e - I i h l r . X ) d r  

5.3. Proportional Hazards with CIA) Heterogeneity 

Let 71 = u + ct. where IJ - C(X). cl - C(0,X). and u , r l  independent. Then, 
the conditional survivor function is s ( r l , X , v )  = e-r , which is 
a h  the proportional hazard form with u heterogeneity. From Theorem 4.1, 
the multiple survival function for repeated proportional hazards with C ( h )  
heterogeneity is 

-xmG,,,l>ne",h 

where. in general, 8, and GI may or may not be distinct for distinct 1. These 
models can be used in such situations as heterogeneity combined with 
repeated hazards, sample selection modeling, and switching regression. 

The survival function in (7 )  has been used in the biometric literature, 
though generally restricted to the special case Gl(l , )  = a&. the Weibull 
hazard function (Hougaard. 1986, equation 3. I; Oakes and Manatunga. 
1992, equation I ;  Tawn, 1990. equations 2.3, 3.2, and 3.8; Tawn, 1988. equa- 
tion 5.2). Hougaard (1986) also discusses more general Gf( l f ) .  Other related 
distributions in the biometric literature correspond to variance components 
structures with two heterogeneity factors affecting a given duration (Hou- 

5.4. Hazards with GLIA) Heterogeneity 

Logit-based variance components structures allow for hazards that may be 
either positively or negatively correlated between distinct spell types. The log- 
logistic hazard function model is widely available in standard packages for 
the log-logistic model S(r,X) = 1/(1 + t Q c X B )  (e.g.. SAS@ and LIM- 
DEPe). Although not a trpe of proportional hazard model, the logistic 
model is similar and closely related. Consider the following model of dura- 
tions based on the survival function S(I,X;,9.8):  , 

1 

i 

where S ( t , X ; B . O )  = limb-,. S ( t . X ; p . 6 )  is a proportional hazard model. 
Setting 6 = I and G (  I )  = I' yields the standard log-logistic model. In gen- 
eral, --log((S-' - I) /6)  ha: a Verhulst (1845, as cited in Ahuja and Nash. 
1%7) distribution. Thus. let c = -log((S-* - 1)/6) and log G(1)  = XD - c. 
with E Verhulst. 

Therefore, both the proportional hazard model and the loglogistic model 
are special c a w  of (8). The log-logistic model can be generalized by allow- 
ing G ( 1 )  to be nonparametric, as in Han and Hausman (1990). Then. 
log(S/(1 - S)) = Xp - l o g G ( f )  - GL(0) .  Thus, logG( t )  = Xp + 'I with 
7 logistic. Note that a test of H o :  8 = 0 in (8) is one way to test the propor- 
tional hazards assumption. Similarly, a test of Ho : 6 = I in (8) is a test of 
the log-logistic duration model. 

Given multiple spells (indexed by I )  in a generalized loglogistic model, the 
v's can be given a variance .components structure. The joint survival func- 
tion is then 

S ( f l , x l , .  . . , I N , ~ N )  = f(JCi0 - l o g G ( f , ) , .  ..,XN~ - l O g G ( I N ) ) .  

where F is the joint c.d.f. of  the 7's discussed in the previous section. I f  ?d 
completed spells of length f l  iire observed, the likelihood of the observation is 

I f  the last spell is right truncated at fN, then the likelihood of the observa- 
tion is 
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Thus, the explicit joint survival functions derived here can be used to esti- 
mate the structural coefficient vector 0, the variance components parameters, 
and G ( I )  by FIML. Note that a completed spell of length f I  and a spell 
truncated at time I, is the combination of a continuous duration result o f f ,  
and a discrete event of spell 2 "surviving" to time t2 :  that is. 

b3(G(h) )  < X,& - 72. (9) 

However, one can replace (9) with an indicator equation for any other binary 
event. In particular, selection biases can be dealt with in exactly the same 
framework. 
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5.6. Models with Discrete Endogenous Equations 

Let Y = XI3 +aF, Z = Xy + v + AF. and d = 1 if Z >  0, where Y - GL(A). 
F logistic, and v .  F independent. 0 < A < 1 is an unknown scalar, 0 and y are 
unknown parameter vectors, and 01 is an unknown scale factor. From Theo- 
rem 2.2. the likelihood of an observation d,, Yi,X,  is then 

5.5. Competing Hazards 

In the competing hazards situation, the likelihood that a spell ends at time 
l j  by causej  of N competing causes is 

- J ~ ( ~ i , X i ,  . . . ,  IN,XN)  I , , = , 2 = . . . s , N  JI, 

An important special case is the competing proportional hazards model, with 
C(A) heterogeneity, GI = G.  and 8, = 8. From (7) the probability that the 
spell will end due to cause j is 5 = (e-X;s'")/(C,N,I e-XIE/h), a multinomial 
logit probability. Furthermore, Pj is independent of the length of the spell. 
Thus. one can estimate A, 8. and G by a LIML method. In the first stage, 
@/A can be consistently estimated using a conventional multinomial logit pro- 
gram. Then, Aand Gcan be consistently estimated using log( CLI e-xi t8 '") )  
as an independent variable i n  a conventional proportional hazards program. 
This procedure is obviously very similar to LIML estimation of nested logit. 
and,as withnestedlogit,coefficientsunidentifiedat the first stagecan beesti- 
mated at the second. Repeated and competing hazards can be combined in the 
obvious way. 

Consider the practical competing hazards situation where the hazards 
apply lo spells of working a n d  not working. Let the working/not working 
dichotomy define the spells in a repeated hazards framework. Assume that 
some, but not all, factors tha t  lead to longer (shorter) working spells also lead 
IO shorter (longer) nonworking spells. Le ts  index spell type, with 1 = work- 
ing and 2 = nonworking, a n d  let i index the number of spells of a given type. 
Then, 

b ( G ( 1 , ) )  =x& + ( - l ) 5 - i Y o +  AoVr+ hoA,F. 

where v, - GL(A,), and e - logistic represents the desired variance compo- 
nents structure. The joint survival function can be calculated using the results 
in Section 4. 

a(e~fi-Xo&Wv + 2 + e - l Y , - X , 8 ) / m ) T A  

(10) 

This formula can form the basis for a FIML estimation of a logit-based ver- 
sion of Heckman's (1976,1978) simultaneous equation system with dummy 
endogenous variables. If is not observed for d, = 0, the endogenous dis- 
crete equation becomes a srlection equation and the likelihood function for 
d, = 0 is 1/(1 + ex) * ) .  Combining this function with ( IO)  ford ,  = I allows 
FIML estimation of a logit-based selection bias model. The previous subsec- 
tion demonstrated how to account for selection bias in modeling duration 
data. Clearly, the same approach can be followed for any combination of 
duration equations, linear equations. endogenous discrete equations, and 
selection equations. 

6. CONCLUSIONS 

The variance components structures developed in this paper allow parsimo- 
nious modeling of heterogeneity in a wide variety of contexts. In general, one 
may have U, = X,@, + E$, [ l - l , Jv , ,J ,  for I s j 5 J. where each Y may be 
an ordinary continuous variable, a latent variable that determines a binary 
outcome, a (possibly nonparametric) transformation of a (possibly latent) 
spell duration, or  even the utility to a discrete choice alternative. Further- 
more, different Y's may be of different types. Thus, one may address het- 
erogeneity of many types In a unified framework. For instance, a Single 
model could include competing repeated hazard functions with heterogene- 
ity, selection bias, and endogenous discrete equations. 

Because the variance components structures developed in this paper have 
relatively simple and differentiable c.d.f.'s, the models generated from them 
can be easily estimated by FIML. While the C ( h )  and GL(A) distributions 
allow more general variance components StNCtUreS than those discussed here. 
the question of whether any other structures, aside from a few simple cases, 
have closed-form joint c.d.f.'s is still open. 

The variance components structures in this paper are for stochastic terms 
that are Type I extreme value or logistic. These distributions have been found 
to be very useful in modeling discrete decisions and duration data. The nested 
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APPENDIX 

Proof of Theorem 2.1. The characteristic function of the Type I extreme-value 
distribution is 

I" 

(see Gradshteyn and Ryzhik, 1965, p. 934). 
Leto=f,"([u/(l +u2) l  - ( I  - e - ' ) ) [ d u / ( u ( e " -  l))1.Obviously.-m<o<m. 

Thus , log r ( l  - ir)=iro+J,"(e""- I -  [ ( ; fu) / ( l+u' ) l ) (du/ (u(e"- l~~] .Now,  
k t  N l u )  = - J r [ d x / ( x ( e ' -  I ) ) ]  and M ( u )  a 0. Thus, 

is the  Levy canonical representation of  $ = ( i ) .  Furthermore. M ( u )  and N ( u )  are 
nondecreasing over (-m,O) and (O.m), respectively, and M ( - m )  = N(m) = 0. 
Finally, 0 <j;u d N(U) < fi I du = e. Thus, J!t uz d M ( u )  and uz d N ( u )  are finite 
for every f > 0. By Theorem 5.5.2, on page 118, in Lukacs's (1970) text, $<(f) is an 
infinitely divisible characteristic function. Furthermore. M ' ( u )  = 0 and N ( u )  = 
I/lu(e," - ] ) I ,  and uM'(u)  and u N ' ( u )  are nonincreasing for u < 0 and u > 0. 
resPectlvelY. Therefore, J . , ( l )  is self-decomposable (Lukacs, 1970. Theorem 5.1 1.2. 
P. 164). Thus, from the definition of a self-decomposable characteristic function, 
$.(I) = l + c ( ~ ) l ~ l $ ~ ( A f ) l  = lr(I + i f ) ] / [ r ( l  - i A t ) ]  is a characteristic function. 
Furthermore. for Y. E independent, 0 < A < I. E - Type I extreme value, then v + Ae - 
Type I extreme value iff the characteristic function of Y is [r(l - i r ) l / [ r ( l  - i h f ) ] .  
Letf,(v) = ( 1 / 2 ~ ) J ~ - e - " ' [ r ( l  -;f)]/[r(l - iAf)]dfandF,(v)  =jT, / , (y)dy.  

The functionsezand l/(r(Z)l areent i reandr(Z)  is analyticeverywhereexcept for 
simple poles at the nonpositive integers, which have residues [ ( - l ) z + l l / ~ ( - Z ) ! l  
(Erdelyi, 1953). Therefore. consider the contour C,,, as defined by the four seg- 
ments: I m ( f )  =0 ,  -m s Re(r) 5 rn; Re( / )  = - m , O z  I m ( f ) >  - i ( m  t i); I m ( f ) =  
- i ( m +  i ) ,  - ~ n ~ R e ( l ~ ~ m ; a n d R e ( f ) = m , O r i m ( f ) ~ - ~ ~ m +  f ) , w h e r e m  
is a positive integer. From the Cauchy Theorem, 

Takins the limit of (A.1) as m + o yields 

(A.1) 

(A.2) 
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The first infinite series can be integrated from v lo m to  yield 

Let CIA) denote the distribution of a random variable that has p.d.f./, and c.d.f. 
F,. Distinct probability distributions have distinct characteristic functions (Feller. 
1971. p. 508). Thus, for ".e indopendent and e - Type I extreme value. v + hC - 
Type 1 e x t r p e  value iff Y -C(A). For A = f .  (A.2) is easily simplified t0/1,2(.) = 
(e-"e+- )/6. I t  follows that = 2(l - F N ( e - ' / a ) ) ,  where FN i s  the 
c.d.f. of the standard normal distribution, Therefore, if x - N(0,Z) .  v = -log 1x1 - 
C(f ). Because Fl,z docs not have a closed-form representation, F, cannot in general 
have a closed-form representation. 

Proof of Lcmmn 2.1. Let r =: q ,  - q z .  and let F ( < )  represent the c.d.l. of f .  
Then, 

From Theorem 2.1. the preceding qI  and q2 admit the linear ~ t ruc ture~:  q, = Y, + AF,. 
j = 1.2. where v I ,  v l ,  el, and e2 are all mutually independent and v, - C(A). F, - 
Type I extreme value j = 1,2. Thus. q1 - q2 = Y,  - v Z  + X(c ,  - c2). From (A.3). 
E ,  - c2 - logistic, and, in addition, v I  - v2 and e, - rz are  independent. Thncfore, 
from the definition of C L ( h ) .  Y ,  - v2 - CL(A). Furthermore. the uniqueness of 
GL(A) follows directly from the uniqueness of C ( h ) .  

Proof of Lemma 2.2, Let c bc an extreme-value random variable independent Of VI 

and v l .  Then. (u2  + h,c) is an extreme-value random variable and independent Of VI. 

Hence, vI + A l ( v 2  + A2e) is extrimevalue. and vI + X , ( v 2  + A , F )  = ( V I  + h , ~ )  t 

Proof 01 Theorem 2.2. The distribution of z - G L ( h )  can be determined 
by inverting V.,,, , ,(r),  where YGL,* , ( f )  = Qc, , , ( f )Qc l l , ( - f )  = I(r(1 - i f ) ) '  
( r ( i - iAf) ) ] [ ( r ( i  + i f ) ) / ( r ( l t i h ~ ) ) ] . U s i n g r ( i  -z)r(l  + z ) = ( * Z ) / ( s i n n Z )  
(Erdelyi. 1953). 

m 

(A,.A,).c. ByTheorem2.1. ( u ,  t A , v 2 ) - C ( h l . A l ) .  

I = 0. 

Obviously, lim,-,4,,,,,(r) = I = y,,,,,(O), and 9GL,Al is analytic everywhere 
except for simple poks at I = ni (or some integers n. Thus, the p.d.f .  of GLIA) iS 

Obviously, the right-hand side of (A.4) i s  a symmetric function of z for Z real. 
Thus, consider z < 0. z real. Thc integrand of (A.4) goes to zero exponentially as 
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Im(1)  - im. or Ireal(1 )I - rn for Im(r) positive. Therefore. the integral in (A.4) is 
equal to 2 r i  times the sum of the residues in the half plane with positive I m ( 0 .  Thus, 

i 

I 
! 

sin T A  
T X  

e'+ 2cos r h + e - '  

- 

As already observed. / G L I A )  ( 2 )  is symmetric; therefore, the preceding equation 
applies to 2 2 0 as well. Using the substitution Y = e' + cos nh, (A.5) can be inte- 
grated directly. The resulting c.d.f. o f z  is 

sin * A  I F ( z ) = I - - t a n - l (  I sin ' r h  ) = x t a n - ' (  . ) 
e-i  + cos r h  *A  e' + cos r h  8 

Proof Of Theorem 2.3. The result is obvious for K = 1. Thus, as an induction 
hypothesis. assume that (A) holds for all K 5 Q'. some Q' 2 1. 

Q '+ l  Q' c C k - i v k  
&=I )-I 

c E k - i U k  + [ Q * P Q * + I .  
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The probability P ( a  + c h b + v )  I I,F(u - b + c)f(c) dc 

and 

Using thesameargumentsasearlier./(iIb+ v s a + c ) =  [(e'/(e'+eb))e-'e-'-'l/ 
(e"/e" + eb) = e-le-c-' , and, bi  symmetry, F(1 ( b  + Y 2 a + e) = e-'e-'-'. 

Proof of Corollary 2.1. Corollary 2.1 is proved by induction. Note that parts 1-3 
hold trivially for j = 1. Hence. as lhe induction hypothesis. assume that p a m  1-3 hold 
f o r s o m e i . I s j 5 J .  

To prove parts 1-3 for j + 1, 

Hence, by Theorem 2.1, 1,+1 is extreme value. proving ( I ) .  Note that 

a,,, + E,+, > al + c,; all I; I s I < j + I 

Hence, (2) and (3) follow from Theorem 2.3. 

Proof of Theorem 3.1. Note that this is obvious for Q, - I 5 I 5  K.  To prove by 
induction for all I 2  0. assume th,: theorem holds for all j and some I > 0 and Prove 
it therefore holds for I - 1. 

By the induction hypothesis, VI,, -- log ZI,* is extreme value. Fork. rn E GI- I,,, k + m, 
UI,, and U,,,, are independently distributed. Hence, (X,,,(U,,, - log Z,,,) + v , . k )  are 
i . i .d.cxtremevaluefork€G, _,.,. Also, h l , k U , , k + v , , , r h l , k l o g Z ~ , ~ + h ~ , k ( ~ ~ . ~ -  
logZ/,k) + VI . * .  Thus, 

. .  
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Again, this must hold for all e;. Thus, let A = Rewriting (A.8) yields 

~ - . ,., The probability of the jth~altemative being chosen is 5 =Po.;.;. In general, 

Note that for all k E SI,;, 
is the probability that Uh is maximal in the set S I , j .  

From Theorem 3.3. the distribution of U,,j = maxreG,,,(Ui+l,k) is indepzndent of the 
k for which U I . ~  = Ui,j,k. Hence, by Theorem 2.2 (recall UQ,,,, = L$), 

8 

Proof of Theorem 4.1. The c.d.f. of  vi is F(v , )  = 1/(1 + e-'.). Therefore. 

for all A > 0. Thus, for E; # cir all I # j, 

Equation (A. IO) follows from the well-known partial fractions expansion 

I ' I  J n - I + A ; X  = 1=~  c (n I*; (A-) A i - A i  -) I +A,X  ' 
1-1 

with A; = e-'/'* and X = e"*. and (A.11) follows from (A.8). 
L'Hopital's rule can be used to find F(cl, . . . , c J )  when c; = el. somej.1.j # 1. 

However, the following method is simpler and easily adapted to a computer algo- 
rithm. Obviously, the c;'s are exchangeable random variables; therefore, without 
loss of generality. assume that E,, . . . .cL are the distinct values of the E'S with I 5 
Ls Jandletmjbethemultiplicityofc;.Thus, Cf,lm;= J a n d F ( c  ,,.... E J / ~ ) =  

IIf-, (1/(1 + e-'c~"''A))"'i, which has a partial fractions expansion of 

where the B,,'s depend on A, E,, . . . , c J .  but not 8. Therefore, 

/(e)F(c, ..... c,lO)dE 

Note that the Bj,'s are easily computed recursively as follows. Define B$ by 
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