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Post-merger market shares of cable, DIRECTV and EchoStar in small DMAs
(ranked 71-210): These fields (which are located in the “Welfare Changes:
Consumer Counts in DMAs 71-210” table) display shares in small DMAs
folowing the merger. The shares are taken from the “post_cable_share”,
“post_dtv_share”, and “post_es_share” fields in Sealed_div/
J_Output_MC_*.csv output files {we calculate the average share in these
DMAs, weighted by adj_hh).

Effects of LIL introduction on DBS shares: These are in the “Inputs for LIL
Value” table, and they are taken from the regression results in Table 2

Addendum 1.

The value of o (the logit price coefficient) is in the “General Inputs” table, and

it’s taken from the regression results in Table 1 in Addendum 1.

b. Output Fields (listed in Output Tables)

The output fields are calculations based on data in the input fields. Key output fields

include the following:

Value of LIL service: The methodology for calculating the dollar value of LIL
service is described in Section 3. The historical value of LIL (i.e., the value of
LIL based on the share lift experienced by the parties over the past few
years) is calculated in the “Outputs for Historical LIL Value” table and the
“Auxiliary LIL Calculations: Historical Estimates” table. Note that the value
of LIL is allowed to differ across various categories of households. For
example, the historical value of LIL to an existing EchoStar subscriber is §[
]. This value is listed in cell J31. In contrast, the value of EchoStar having
LIL to someone who moves from cable to EchoStar in response to EchoStar’s
introduction of LIL is listed as “Cable to ES” and the corresponding dollar
amount (3[ ])is in cell J41. Similarly, the value of EchoStar LIL to those
who move from antenna to EchoStar is listed as “Antenna to ES” and the
corresponding dollar amount (3[ ]) is in cell J43. Note that in each case,

examining the formula used in each cell allows the user to trace the exact

method for calculating these LIL values.

Share changes in response to LIL: These calculations are in the “Auxiliary
LIL Calculations”, and “Outputs for Historical LIL Value” tables. E.g. cells
J35 and J37 show that—net of the cable price reaction to LIL introduction—

EchoStar gains [ ] percentage points share from cable and [ ] percentage

48




REDACTED - FOR PUBLIC INSPECTION

points from antenna in response to both EchoStar and DIRECTV introducing
LIL post merger.*

e. Welfare Changes fields (in the Welfare Changes table)

These fields use data from the output and input fields to calculate the welfare effects
of the merger. To illustrate how this table works, we delineate the analysis for the
case where marginal costs decline following the merger include SAC savings (i.e,
EchoStar marginal costs declines by ${ ] and DIRECTV by $[ ]). The welfare
calculation begins with the consumer welfare change before LIL Introduction i.e.,
welfare changes only due to the price effects of the merger. Since prices decline
because of the marginal cost decreases, the initial effect of the merger is to increase
consumer welfare by ${ } a month, which is seen in cell G24. Next, we include
the direct effects of LIL introduction on existing DBS subascribers (post-merger) of §[

] a month in cell G41 and the indirect effect of LIL introduction (i.e., the cable
price reduction) on existing cable subacribers of ${ ] in cell G42. Finally, the
welfare effect of households switching to DBS in response to LIL introduction post
merger is $] ] per month, which is in cell G43; the welfare effect of households
switching from antenna to cable in response to the cable price drop is §[ jisin
cell G44. The sum of these four (which equals the monthly consumer welfare change
due to LIL introduction) equals §[ ], which is in cell G45. Annualizing this
figure and adding to the initial (pre-LIL expansion) change in welfare generates a
total welfare increase of ${ ] (which is in cell G33).

Key results are summarized in the “Summary of Results” table.

* Note that the predicted percentage point increase in EchoStar share due to LIL introduction post-
merger is [ ] rather than the [ ]in the LIL regressions in Table 3 in Addendum 1. The reason is that
the [ | percentage point increase is the effect of EchoStar introducing LIL without conditioning on
DIRECTV's LIL service status, whereas the [ ] percentage point increase is the share lift to EchaStar
when it introduce LLL simultaneously with DIRECTV.
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ADDENDUM 5: DESCRIPTION OF RESCALING PROCESS TO ALLIGN SAMPLE
CABLE FRANCHISE AREA SHARES WITH NATIONAL JANUARY 2002 MARKET
SHARES

The final dataset that we use to simulate the merger includes cable franchise areas
that account for 76 million households, and the national average shares of DBS products in
our data are very close to their national shares in 2002. However, the share of cable is less
than its national share.

To test the robustness of our simulation results, we re-weighted our data such that
weighted average shares equal their national shares. The weight of each area is the number
of households in that area multiplied by a rescaling factor. In other words, the goal of the
rescaling exercise was to create a rescaled household count for each area such that (a) the
weighted average shares of MVPD products equal their known national shares, and (b) the
total number of households in the nation equals 106.3 million®. To minimize distorting the
original data, the rescaling procedure did not alter any characteristics of a cable franchise
area, such as the cable franchise area share of each product. Instead, the resealing
procedure simply rescaled the household count in cable franchise areas. Also, to minimize
the distortion of the original data, the change in the observed households count in an area
was constrained (f.e., we try to minimize {numerically) the range of rescaling factors).

In short, the goal of the rescaling is to create a vector of household
numbers, N= {]\71,...,]\73} , such that:

Y, =N,

i

where ](f, denotes the rescaled number of households in cable franchise area i, and N is the

actual national household count, and

&R - . o o ST - = . 4 —— -
Census Bureau data show 106.3 miilion households in the 1J.5. in 200i.
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%Z ]\7,3;’ =57,

where §/ represents the share of product; in cable franchise area i, and § is the true

national share of product ;.
Each cable franchise area was assigned a scalar proportional to the difference
between cable franchise area-specific and true national cable franchise area shares. The

scalar for cable franchise area i is given by:

.= f (el _ ot
Scalar i = Zw" (s -57)
Je{DTV ECHO CABLE}

Where @’ isa product-specific weight defined below. The rescaling was accomplished

through an exponential rescaling function, r, given by:

exp{ scalar,}

1+ exp{ scalar,}

Where a and 8 bound the minimum and maximum gcaling for a cable franchise area; they are
scaling parameters which control how much cable franchise areas are allowed to “grow” and

“shrink.” Given the scaling function, r:
N - ?‘JN ,N
"2,
4
Where N, is the original number of households in cable franchise area .
Hence, the above rescaling procedure requires assigning values for two scaling
parameters, a and B, and three product-specific parameters, @’ , j € {prv,scro,casie} . In

order to find appropriate values for these parameters, a loss function was constructed:
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2 2 2
A _ QR _ R
L=.05 =Y NsEH -sEC”O] +1o[T N sP™ 527 1200 =Y N sCAPE _gCaBLE
= LS s L5 s

The loss function represents the difference between the rescaled cable franchise area

shares and the actual cable franchise area shares. The parameters in the above loss function
as well as the values of a and B were obtained by trial and error. Since the vector N depends
on the values of the @’ s, we solve for @ by solving the following optimization problem:

' min L
&’ je{DTV,ECHO,CABLE)

The minimization problem is solved using a numerical reduced gradient algorithm.
This is done using the “Excel Solver” add-in functionality. The trial-and-error pattern for a
and B is aimed to minimize the differences between original and rescaled numbers of
households within each cable franchise area. It was found that some cable franchise areas
need to be scaled at least [ ] fold {or by [ 1) to allow the rescaling procedure to match
national cable franchise area shares. That is, a “tighter” bound on the ratio of unscaled to
scaled cable franchise area sizes did not allow for rescaling that met the objective of equating
the data to observed national cable franchise area shares. The obtained parameter values

were!:

orv
@

ECHO
@

CABLE
@
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The resulting rescaling factor, ]\Af il N i-ranged from [ Jto{ 1}, the resulting national

household count matched the actual household count, and rescaled product shares matched
actual national shares to within four decimal places.
The spreadsheet used to do the rescaling is in the file DataScaling_Spreadsheet.xls.

This file includes a worksheet that has instructions on how to use the workbook.
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While the averages of the estimated asymptotic variances are never iden-

tlcal—-'m fact, that of the e.g.f, estimator is always smaller — they converge
as T increases.

These results illustrate that the c.g.f. is a valid and indeed a sensible alter-

native to 'lhc e.c.f. estimator, especially in cases where the c.f. is given as the
exponential of some function of the parameters.

NOTE

I_. T]lhough one of 1the referees commented that intuitively one would expect asymptotic
equivalence between e.c.f. and c.g.f,, this theorem proves this equivalence,
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VARIANCE COMPONENTS
STRUCTURES FOR THE
EXTREME-VALUE AND LOGISTIC
DISTRIBUTIONS WITH
APPLICATION TO MODELS
OF HETEROGENEITY

N. ScoTT CARDELL
Salford Systems

Two new classes of probability distributions are introduced that radically sim-
plify the process of developing variance components structures for extreme-
value and logistic distributions. 'When one of these new variates is added to an
extreme-value (logistic) variate, the resulting distribution is also extreme value
(logistic). Thus, quite complicated variance structures can be generated by recur-
sively adding components having this new distribution, and the result will retain
a marginal extreme-value (logistic) distribution. 1t is demonstrated that the
computational simplicity of extreme-value error structures extends to the intro-
duction of heterogeneity in duration, selection bias, limited-dependent- and
qualitative-variable models, The usefulness of these new classes of distributions
is illustrated with the examples of nested logit, multivariate risk, and compet-
ing risk models, where important generalizations to conventional stochastic
structures are developed. The new models are shown to be computationally sim-
pler and far mere tractable than alternatives such as estimation by simulated
moments. These results will be of considerable use to applied microeconomic
researchers who have been hampered by computational difficulties in construct-
ing more sophisticated estimators.

1. INTRODUCTION

Econometricians and statisticians have long been concerned with the prob-
lems of unobserved heterogeneity in cross-sectional studies, where systematic
differences among economic agents cannot be captured with demographic

This paper is based in pan on my unputlished Ph.D. dissertation (Harvard University, 1989). | thank Zvi
Griliches and Gary Chamberlain, who advised and commented on that cartier wark; Ernst Sceomsdorfer, Ron
Mittefhammer, Dan Steinberg, and John Trimble, who commented on this paper; and particularly Jerry Haus-
man and Audrey Cardell, who advised and made many useful suggestions on both my dissertation and this
paper. Finally, I thank the anonymous referers, cach of whom contributed valuable comments, and Peter
Phillips, Edilor, who supplied the key comments for the final revision of this paper. Address correspondence
10: N. Scott Cardell, 1730 Kenny Drive, Pullman, WA 99163, USA,
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and other available data. At a minimum, failing to account for such hetero-
geneity will result in inefficient estimation. It may also result in biased and
inconsistent model estimates, There have been major impediments to accom-
modating heterogeneity in applied empirical work, however. First, without
sufficient data in the form of repeated measures of some type, models may
not be identified. Second, even with adequate data, tractable estimators
based on reasonable rather than computationally convenient assumptions are
rare. With the advent of new microeconomic databases consisting of lengthy
panfals in which endogenous variables are repeatedly measured, and cross-
sections containing a large number of related endogenous variables, data sets
capable of supporting quite complex heterogeneity modeling are now rou-
tinely available. It is therefore of considerable importance to find methods
that are practicably usable by applied researchers and theoretically general
enopgh to accommodate a wide range of heterogeneity structures. This paper
derives two new classes of conjugate distributions and utilizes them to de-
velop a variety of broadly applicable variance components structures.

Heterogeneity has been discussed widely in the hazard function literature
and in the literature on cross-equation correlation, including correlated lin-
ear and discrete equations, However, heterogeneity has rarely been consid-
_ered when modeling multiple discrete decisions. Furthermore, empirical
investigations have often ignored important aspects of heterogeneity. The
focus of this paper is on three situations in which heterogeneity is important:
(l.) multiple hazard processes, (2) multiple discrete decisions, and (3) com-
b‘mations of discrete decisions and continuous stochastic processes. In each
situation, heterogeneity will affect multiple decisions and thus can induce cor-
relations among the decisions, resulting in inconsistent conventional estima-
tors. For both hazard function and discrete choice models, heterogeneity can
be parsimoniously represented by variance components.

‘Since the 1920’s, logit models have been the preferred method for dealing
»\_mh binomial and multinomijal discrete choice for reasons of computational
§|mplicity, parsimony, and robustness. The logit specification is based on an
indicator equation that includes a logistically distributed additive stochastic
Ferm. If the indicator is positive, one choice is made; if not, the other choice
1s made. Because the difference of two independent Type I extreme-value
jfariates is logistically distributed, binomial logit is equivalent to a utility max-
imization problem, with each utility having an independent Type I extreme-
value additive stochastic term. In the multinomial logit model, the utility for
each of the multiple alternatives has an independent Type I extreme-value
additive stochastic term. O ften, multinomial logit is the only computation-
ally feasible multinomial choice model.

The chief practical advantage of the extreme-value and logistic variance
components structures introduced here is that they combine computational
simplicity and flexibility, a combination for which there is a very real need.

P P
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Applied modeling is often restricted by the computational difficulty of eval-
uating the cumulative multivariate distribution functions involved. As a
result, a large and growing literature on simulation-based methods has devel-
oped.2 The variance components structures in this paper avoid such compu-
tational problems altogether by providing closed-form expressions for the
multivariate cumulative probabilities.

An important advantage of the methods introduced here is that they can be
used in combination with nonparametric approaches. For example, in dura-
tion models they can be combined with the nonparametric baseline hazard
of Han and Hausman (1990). In large samples, heterogeneity distributions
could be modeled as a convolution of a {inite points-of-support distribution
and a parametric distribution of the type introduced in this paper. The result-
ing estimator would combine consistent estimation of general heterogeneity
distributions with the practical advantage of computational simplicity. Such
approaches avoid the perils of a “have distribution will fit” mentality that
can occur when modeling becomes too complex to allow appropriate speci-
fication searches.

The remainder of the paper is organized as follows. Section 2 presents the
main theoretical resuits, deriving the two new classes of distribution func-
tions, denoted C(A) and GL(A), and showing how they can be used to
develop variance components structures for Type I extreme-value and logis-
tic random variables. The remaining sections are devoted to applications.
Section 3 utilizes variance components to derive the nested logit model, Sec-
tion 4 develops cumulative distribution functions for vectors with variance
componenis structures based on C(A\) and GL(A), and Section 5 utilizes
these cumulative distributions to apply the variance components models to
some of the leading econometric problems in the literature. These include
(1) correlated, multiple discrete decision models, (2) hazard models with het-
erogeneity, and (3) simultaneous equations models with discrete endogenous
equations. Concluding remarks are contained in the last section. All proofs
appear in the Appendix.

2. VARIANCE COMPONENTS STRUCTURES

This section derives the classes of distribution functions C(X) and GL(A} and
their properties necessary for constructing extreme-value variance compo-
nents structures. In general, a linear structure for the random p-vector g has
the form n = u + Aw, where u is a vector of constants, v is a g-vector of non-
degenerate independent random variables, and A is & constant p X g matrix,
Kagan, Linnik, and Rao (1973) extensively discuss the use of linear struc-
tures. When v has a finite variance, the linear structure is refesred to as a
variance components structure.
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2.1, Overview

If a C(\) variate is added 1o extreme-value variates, the resulting sum is an
extreme-value random variate. The extreme-value distribution is itself a mem-
ber of' the C(A) class. Therefore, one can derive extreme-value variables
recursively, which are themselves sums of C(A) random variables. Then, in
a facton: components framework in which various C{A) random variat;les
appear in the construction of several extreme-value variables, quite compli-
cated varlance components structures may be developed while retaining the
a}ssumpnon that the marginal distributions are extreme value. Thus, the selec-
::otn olf (;he sh:fpe 9f the marginal distributions is kept separate from the sta-
! (s) l;:af etﬁrmmanon of the covariance between them. Corresponding results
o czl;r:pgnf{;ti )ssi class, allowing one to build sophisticated logistic vari-
for modeling hcterorg‘::;::?. These structures are particularly appropriate
bag:ﬁ::l{j : 1:;5) conjectured a class of distributions that could form the
ppti elui varlance components structures for the Type I extreme-value
istri utlon.. qu all A\, 0 < X < 1, let C(\) denote a membes of that class
The C(?\) distribution is defined to be that unigue distribution for whicl;
v and ¢ independent, » ~ C(\), and € ~ Type I extreme value, implies that
v+ _?\e ~ Type 1 extreme value. In other words, the C(A) distributions are
C‘?ﬂjugate to the.Ty‘pe l.extreme-value distribution. This paper demonstrates
that the (.,‘()‘) distribution exists and that the nested logit can be based on
C(AN) variates. Parallel to the C(A) class of distributions is the GL{)) class.
Thv;: G'L()\) distribution is defined to be that unique distribution for which
v dmmbuteq as GL(M\) and ¢ independent and logistically distributed implies
Ehat v+ Ae is distributed as logistic. Thus, the GL()) distributions are con-
Jugate to the logistic distribution. Sums of appropriately scaled C(A) (or
GL(N)) randomm variates can produce flexible variance components structures
for.vectors of Type I extreme-value random variables {or logistic random
var'lat-)les). As shown later, the binomial variance components structure for
logistic random variables allows the correlation to vary freely from —1 to 1.
Rfesearchers h‘ave searched for a (reely correlated bivariate logistic distribu-
tion at .least since Gumbel (1961; see also Johnson and Kotz, 1972). A simi-
lar variance components structure can be used to develop more plausible
statistical properties for logit-type discrete choice models with very large sam-
ples (Cardell, 1989).

For the C(A) and GL(A) distributions, the single parameter A determines
the mean, the shape, and the scale of the distribution. It is sometimes use-
ful to generalize the C()\) and GL{)\) distributions to include a scale param-
eter. Ac.:cor.dingly, if ¢ is distributed as C()\) and & is a fixed scalar, ¢ is said
to pe distributed as C(\,8). Similarly, if ¢ is distributed as GL{)\) and  is
a fixed scalar, é¢ is said to be distributed as GL(},|5]).}
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2.2. The Existence of ClA) and GL{A)

This investigation began by hypothesizing that a distribution C (M) exists
for all A, 0 = A < 1, such that ¥ ~ C(X\) and ¢ ~ Type 1 extreme vajue im-
plies that » + he ~ Type | extreme value. Obviously, C(0) is the Type |
extreme-value distribution. Theorem 2.1 shows that C(\) exists for 0<A < 1.
The motivation here can be understood by analogy to the normal distri-
bution. The normal distribution is self-conjugate because, for » and ¢ in-
dependently distributed, v + ¢ is normal iff v and ¢ are normally distributed
(Cramer, 1937). Therefore, given € ~ N(0,07), » and € independent, » + € ~
N(0,0% + o2} iff » ~ N{0,07). Similarly, Theorem 2.1 shows that for ¢
extreme value with scale parameter § (i.e., £ ~ C(0,8), 4 > 0), for » indepen-
dently distributed, v + £ is extreme value with scale parameter y (y > §) iff
v ~ C{(8/7),8). Thus, C{A,8) is the class of conjugate distributions to the
extreme value.

THEOREM 2.1. For 0 < A < | and ¢, a random variable distributed
as Type | extreme value, there exists a unique distribution, denoted C(\),
such that for v, a random variable, v and ¢ independent, then v + \¢ isa
random variable distributed as Type | extreme value, iff v is distributed as
C(\) where the probability density function (p.d.f.) of C(X\) is fi(v} =
(/N L% [(~1)"e™™)/ (nIT(=AnW]. The cumulative distribution func-
tion (c.d.f.} of the C()\) does not have a closed-form representation.

It is interesting to note that as a consequence of Theorem 2.1 C(\) are
infinitely divisible distributions. Thus, other decompositions exist for Type 1
extreme-value random variates and logistic random variates, for example, in
terms of sums of independent and identically distributed (i.i.d.} random vari-
ables. Furthermore, the self-decomposability of the Type | extreme-value dis-
tribution is independently interesting. The stable distributions (stable under
convolution) are a subelass of the self-decomposable distributions, and the
exponentia} distribution is well known to be self-decomposable. However,
the Type | extreme-value and exponential distributions are stable under max-
imization but not stable under convolution. Thus, Theorem 2.1 demonstratcs
an interesting relationship between the stable and the extreme-value or max-
stable distributions.

While many useful results can be computed in closed form using the C'(})
distribution, the ¢.d.{. for C(\) does not have a general closed-form repre-
sentation and the p.d.f. appears not to as well. By contrast, both the c.d.f.
and p.d.f. for the generalized logistic distribution have simple closed-form
expressions, Clearly, C(1) represents the degenerate case » =0 with proba-
bility 1. Also, Var(g} = Var(v + Ag) = Var(») + N\ Var(g), and C(A) can-
not be defined for |A| > 1. Furthermore, C(\) cannot be defined for A <0
(Cardell, 1989); thus, C()\) is defined iff0=sA=<1.
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LEMMA2.1, Ify, .nzj' & Type 1 extreme value, then y, — ny ~ logistic. Fur-

thermore, the GL(N) distribution exists for0 < n < \, and, for ;7,22 C(\),
1 — 12~ GL(XN).

Just as Theorem 2.1 provides a unique class of conjugate distributions to
the extreme-value distribution, so Lemma 2.1 extends Theorem 2.1 to pro-
vide a unique class of conjugate distributions to the logistic distribution.
C(A,8) and GL(),8) can now be simply defined: C(\,8} is the distribution
of év for &, a fixed scalar, and » ~ C(A)yand GL(\,5) is the distribution of
dv far 4, a positive fixed scatar, and v ~ GL{M).

2.3. Nesting the Logistic Distribution

THEOREM 2.2. The p.d.f. of generalized logistic distribution is fy(Z) =
[(sinxX)/(xN)]/(e? + 2cos A + e Z) and the c.d.f. is F\(Z) =
(1/2X) tan~'((sin 7)) /(e~Z + cos x\)), where the range of tan~" is taken
to be [0, 7).

An interesting consequence of Theorem 2.2 is*

sin T A

s fm - 1 d i)
l+e7 ™ o €+ 2CO5 A S e ¥ | 4 emtt0)R X.

To nest the logistic distribution in a broader class, it is convenient o define
a class of distributions that includes GL{\} as a subset, Define the extended
generalized logistic distribution GL"(a) by its p.d.f. and c.d.f. as folows:

vai -1
folx) = log(a + Va* — 1)
e*+2a+e”
and

10g(e"+ a + va? — l)
Fyx)=1— 1 e +a—al— 1
2 log{a + va?-1)

Letting logs and square roots be defined to take their principal values, for
~1=sa=x], GL™a) = GL((1/x)cos™!(a)). Therefore, GL*(a) is defined
fora > -1, and the logistic distribution corresponds to an interior point in
the aliowed range of a. This family of distributions thus provides a way to
nest the logistic distribution and to test it statistically (i.e., Hy:a = 1), For
situations where the mean and variance are free parameters, the generalized
logistic distribution with mean p and variance ¢ has a p.d.f. of

R T
fa(xuﬁ-»q ) e
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c(a)g—(i)-
¢

(x—plelalie L g 4 e—(X—u)g(cﬂ ‘a

where
2
2 + (In{a -; Va2 - 1)) forax 1,
gla) =
x? - (cosT (a))” for-l=sa=xl,
3
3
———g—:-!——-- foraz=1,
) In(a + va? — 1}
c(a) =
N 2
__l_—__a__ for -1=ag=<1.
cos '{a)

2.4. Building Variance Components Structures Recursively

LEMMA 2.2. For v, ~ C(\), »2 — C(\y), vy and v, independent,
vy + Ril’z -~ C(kl'hz).

Repeatedly applying Theorem 2.1 allows one to create rec.urs'ivel).z a vari-
ance components structure for the Type 1 extreme-value dlstnbutlmn that
has any number of terms, For instance, if v, 2. ¥ and ¢ are indepen-
dent, », ~ C(\)), vz ~ CiA3), r» ~ C(Xy), and € is extreme value. ')l:h:n,
(vy + A58} is extreme value. Thus, »3 + M(¥ + A€} = p3 + havy + At
is extreme vatue, and v, + M (v, + Aoy + Mae) =9 + M + ARy +
Az A5 € is extreme value.

THEOREM 2.3. Let Q be the number of terms in the uariancekcor;?pfz
nents structure. Given 0 < Ay < 1 for 1 = ks Q, o= 1, fx = ILico M-
Jfollows that

K -
A. If v, is independently distributed as C(A;) for K= 1,... Ny fk-l"f

ClEg). ‘ " _
B. Alref-nariveiy. Jor ny independently distributed as Ci{Mr et h Zk=1

Céx).

Using A, £, ¥, and 7, as in Theorem 2.3 with Ap = 0,0< < I =
k<O &, £ vg or Ty is a O term variance components structure
for a single Type | extreme-value random variable. Now cons@cha ie?g
of J Type 1 extreme-value random variables denoted {; for 1 = j = J. Let (J
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denote the number of terms in the variance components structure for . Let
Ax ; be fixed constants, 0 = MNi<lifori=j=Jandl = k= Q. Similarly
to Theorem 2.3, let », ; be distributed as C(h. ;) S€t Ao ; =1, and define
fe; =T1}o A ,- For all j, the set (#,;]1 < /= Q] is assumed to consist of
mutually independent random variables. Thus, for all j, | < j < J, k =
L....Q, kot Eior v ~ Cléi ;). In particular, if Ng,.; = 0, then | =

¥21 k=1, ¥k, ; ~ C(0), the Type I extreme-value distribution. Clearly, if ali
Vi ;'S ar@: mutually independent, then & e C(0). However, by thinking of
=22 Eee e, ; as a simultanecous equations system (or as the stochastic
structure of _the error terms in a simultaneous equations system) and applying
cross—equathn restrictions to this system, one can develop a wide variety of
complex variance components structures. The terms in the sum are analogous
to autort?gressive terms in simple time-series models, whereas the £’s are fac-
tor Igad{ngs. Each variance components structure is a representation of a
multivariate Type | extreme-value distribution. Each restriction takes the
form ), ., =\ ; alone or N.m = Ay and v, = » ;. The set of distinct »’s is
assumed to be mutually independent; thus, V1. ms Vi, ; are either independent
or v =y, ;.8 ' '

For example, if one sets Q, = Q=0:=2,0,=0s=0s=3, Ay =
A = Ay = hya =Ny = Me=0 Ay =A2=Na= s, vy, = ”n‘.z =

13 = = = — -
L = Vs, }‘!.3 = Npq = )\l.s' M3 = Ve S Vs, V21 S e =€, V2 = 8y,

Y13 = 34 = &, and »3 5 = g, then the following variance components struc-
ture results:

£y

=viat Ngvas = v+ Ay €2,

it kv

1l

i+ A e,

G=va+ Nz =v3+ Ny a6,
Sa=via+ Naraa+ Nighgy Bya = v+ A+ A Ay s,
O=vis+ Nisvas + Aishaswys = vy + Aavy + Ak,

6= pist Migrye + Merae¥as =¥ 6+ Nierze+ Mg Magty

Multivariate Type I extreme-value distributions may also be developed by
using the maximum operation to combine distinct Type | extreme-value ran-
dom variables. Such distributions occur naturally in competing hazard mod-
els ‘of duration data and switching regression models, Using both multiple
varance components structures and a maximum operation to combine them
yields a generalization of the GEV model of McFadden (1981, 1984; see also
Tawn, 1990). The distributions of the maxima are also needed to develop the
probability formulae for discrete choice models such as nested logit. To dem-

onsfrate that these structures produce Type I extreme-value variates, the fol-
lowing theorem is needed.
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THEOREM 2.4. If €, are i.i.d. extreme value (C(0)}, then for any con-
stants a and b,

{ = max(a + £,b + ») ~ log(e? + e®) ~ C(0),

the probability that a + e > b+ vise®/ie+ ebYand t{la+ e> b+ v) ~
CO) ~t{(b+r>a+e)

Theorem 2.4 is a slight generalization of the fundamental theorem that
leads to multinomial logit (McFadden, 1974).

COROLLARY 2.1. If¢;i.i.d. extreme value, j = \,...,J, then, for any
constants a;, we have the following:

1. t; = (max,qq,(a + €) ~ log( 2=, e™)) is extreme value.
2. Probability (a; + € = a, + &, all I, 1 <1< j) = (e¥)/(Zi-, ™).
3 {4 la;+ ;=0 + o, all !,V = = j}is extreme vaiue.

Note that past 2 of Corollary 2.1 is the multinomial logit model, whereas
parts 1 and 3 can be combined with Theorem 2.3 to generalize from the
multinomial logit model to the nested logit model. Applying parts | and 3
of Corollary 2.1 recursively yields the ranked logit model (Beggs, Cardell,
and Hausman, 1981).

3. THE NESTED LOGIT MODEL

In both multinomial logit and nested logit models, the total stochastic term
for each alternative is assumed to obey a Type | extreme-value distribution.
In multinomial logit, the stochastic terms are independent, whereas in the
nested logit model the alternative specific stochastic terms are correlated via
a special case of the variance components structure described in Section 2
{Cardell, 1975, 1989). Disjoint subsets of the set of alternatives can each have
a common variance component, and each of these subsets can have one or
more disjoint subsets, each with a further common variance component. This
process can be repeated indefinitely.

Assume that the utility to choosing the jth alternative (U;) has a system-
atic component that js linear in the independent variables. (To atllow for a
nonlinear functional form, one need only replace X8 with (X}, 8) through-
out.) In this section, the jta random variable in the variance components
structure will be an additive stochastic term in the utility to the jth alterna-
tive. Using M ; and v ; as in Section 2, let £, ; = ITfo Ay ;- The utility to
choasing the fth alternative is

Qi
Up=X;B8+ 3 &1, @
i=1
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The only legal restrictions for the nested logit model involved A, ; and
M.m and possibly v, ; and », .. No restrictions are allowed between A, ; and
Arm fOr k # 1. Furthermore, if Vi = Ve m, then, forl sl <k, v ;=0 .
Similarly, if A, ; = N , is a restriction, then so is A, ; =\, , for 1 =/ = &.
Of course, the nested logit model is based on Type | extreme-value additive
stochastic terms; thus, Ag, ; = 0.

Usilng the notation developed above, the general form of the nested logit
model is

Ui =X,8 + g,

1]
g = 12;: £ LINE 3)

where

1. v, is distributed C(n ),

2. Uy is the utility to choosing the jth alternative (and the jth alternative is cho-
seniff U, = U, forall/, | << I,

X,‘ is the vector of independent variables associated with alternative J» and
B is the vector of utility function coefficients.

3.
4.

Depending on the situation, any of U/;, X; and 8 may be considered to be
also indexed by a suppressed individual index. The nested logit model could
be combined with the hedonic demand model (Cardell and Dunbar, 1980;
Cardell, 1989, in which case 8 would be a stochastic vector with the param-
eters of its distribution the estimable parameters of the model.

The distribution of ¢; is Type I extreme value, the same distribution as for
multinomial logit. Thus, from (3) one can see that the preceding assurnptions
define a variance components structured multinomial logit model. The name
“nested logit” has sometimes led to an inappropriate presumption that the
group of alternatives is chosen first and the alternative within the group is
chosen last. Such hierarchical models are, in fact, quite different (McFad-
den, 1981; Tversky, 1972). The original name for the nested logit model was
“non-independent logit” (Cardel, 1975). Because each variance component
can be associated with a node in a tree, variance components structure (3)
is a trec-type structure. McFadden {1981) introduced the name “tree extreme

value” for nested logit models. The appropriateness of this name can be made
more evident by rewriting (3) as

& =Pt Ao, + 0 - Mg e ) ). @

For each variance component, v.i» @ Set 8 ; can be defined consisting
of ait alternatives that contain v, ; in their variance components structure.
In other words, this is the set of ajternatives grouped with j at the [th level.
For example, if v,; = v, ; is a constraint and there is no other constraint
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involving »,, (01 »33), then 8, = 833 = {1,3]. To locate the nodes below
1, j, create G, ; from S, ; by removing from S;; all m such that vy, m = ¥
and then selecting a new index j*, j* € §; ;. Using the new index, repeat the
removal operation, continuing to select new indices, until, for all m,n €
G, m# n, and vy, ,, is not equivalent to v;,, ,. For example, ifj=1,2,
3, 4, and 5 represent drive alone to work, carpool to work, take a bus to
work, take a subway to work, and walk to work, respectively, then one
logical approach would be to select @y = Q; =@y = Qs =3, @s =1 and
the constraints MIEV 2SS M= VG )\|.| = R|.2 = Rl_g = )\1_4, Vi = V22,
Va3 = V4 h2.| = }\2_2, and >\2‘3 = hz'.g.ﬁ Then, S|.| = l1,2,3,4}. but GI_] =
{1,3). In this example, v, , is a common component for commuting in a
vehicle, », ; is a common component for commuting by car, and v, 4 is a
common component for cornmuting by public transit. The tree graph of this
example is shown in Figure 1.
Let K = max(Q;) and define Z, ; by

eXif ki for ;s /<K,
Zi=Y 3w 2w for ;> 1= 0. ®
meG; ; .

Forall0=/< Q;, define Uy ;4 = (XuB+ Z% 101 Emork¥m k) E00, 05 1< O,
and U, ; = maxyes, (U, ;) for 0 = I < Q;. Note that U; = Uy, ;. This sets
the stage for the following theorem, which is the fundamental theorem of
nested logit.

THEOREM 3.1. U, ; ~log Z, ; is an extreme-value rankdpm varg_l?l!e. The
probability that U, ;= U, ;,0<1=< Q;is P, ;= (TI&,,, Z:j}f}/(ﬂk;, Z )
The probability that U; > Uy, all 1 # j, is P, = (ITY, Z* YL 24 ).

Because they are relatively easy to compute, {imited information maximum
likelihood (LIML) estimates of nested logit models are quite common.’
However, the parameters estimated at a given stage are based only on the
identifying variation between alternatives that are grouped together at that
level of the tree. When that variation is a small part of the total, the LIML
estimates will have high variances and will not be robust to specification
errors, a well-known phenomenon in the linear regression literature. The
solution in linear regression is to specify an explicit variance corn.ponem_s
structure and use all the variation to compute an asymptotically efficient esti-
mator (see, e.g., Swamy, 1974; Mundlak, 1978). Similarly, with nested logit,
the full information maximum likelihood (FIML) estimates use all the vari-
ation between all the alternatives and are asymptotically efficient. [_‘"urther-
more, FIML estimates do not require that h;; = A, . These questions are
further addressed in Cardell (1989). Cardell (1989} and Cardell and Steinberg
(1992) discuss one practical method for computing FIML estimates and a
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Private or Public: Vehicle
M1ZEmaSiasmg,

Drive Alone
) (=)

F .
IGURE 1. Tree diagram for a nested logit model of travel mede choice.

simple method for computing

[ one-step” estimators tha i
equivalent to FIML. P Fare asymptotically

4. THE MULTINOMIAL c.d.f. ‘s

4.1. Structures with a Single Common Variance Component

R . , .
: :;::a;f[hers are often 1terested in only a single common variance compo-
- Most often only a single heterogeneity factor is used when modeling
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duration data due to the inherent compiexity. In general, a single common
variance component is a statistically useful aiternative to a null hypothesis
of independent stochastic terms.

THEOREM 4.1. For 0 < h < 1, 8 ~C(N), v, distributed extreme valtue,

€;
6,v1,...,v;independent, e, =+ \y;. Thec.d.f. of( : )isF;\_,r(e.,....E;) =
(EI '—rl/k)k CJ
=t

Johnson and Kotz (1972) list three possible forms, including F, : for
the limiting joint distribution of an appropriate linear transformation of
Xmax = max{X;) and ¥u., == max(Y;) for (X;, Y;) i.i.d, pairs of random
variables with some continuous joint c.d.f. In their typology, Fy , is the
Type B bivariate extreme-value distribution. It follows that this distribution
is max-stable. Thus, for ordered pairs (&, &) distributed with ¢.d.f. £ 3,
with (&y,t;,) independent of the set of all (g;,,g;;)’s, j # I, then for any
positive integer N (max(e;,), max(es;)) is distributed as F, ; plus a constant
vector {equal to (Alog N,Nlog NY). By comparison, for {&;,€;;), distrib-
uted N(u,L) with any nonsingular E, the limiting joint distribution of
Max(g;), Max(¢;;) has Max(g;y) independent of Max(e;)! These results
generalize directly from the bivariate to the multinomial case.

e

THEOREM 4.2. For 0 < A < 1, 8 ~ GL(\),v; ~ logistic; 8,v,,...,v;

€;
independent, €; = & + Av;. Then, the c.d.f. of the random vector (e ) is
¥

L my 1 n
F(EI,...IC‘,) = z Zc}m(—_) »

i=1 =t l+e %

where ¢, , . . .,¢;, are the distinct €;’s, m, is the multiplicity of ¢;,, and the
C..’s are easily computed recursively.

Note that for g; all distinct, Theorem 4.2 reduces to

1 e-c,;)\ i
F(C,,...,E;)EZ(H (F)/‘\_g*‘f”‘) r)'

=1 \iwj 1l +e7 %

4.2. Tree-Type Variance Components Structures

Theorem 4.1 can be used to develop the ¢.d.[. for variance components struc-
ture {3).

LEMMA 4.1. For ¢, ; defined by variance compaonents siructure (3).
- —c kg, 1 ‘st LI XA IR LY
Fley,...,e5) =e_(‘5§"-' (‘Eg"-l(m(?e N ) ) ) ) .
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In the nested logit model, Mo.; = 1and v ; = 0, because a variance com-
ponent common to all alternatives will not affect a discrete choice model.
However, such components are important in other circumstances, as, for
example, in hazard function models. In such cases, (3) can be replaced by

Q, o
g = ;})Em.,‘w,j =y, + E Eimv vy
= I=1

(6

with{_, ;=1,0< ), 7 < 1. In equations containing cardinal information,
€; may also have a free scale parameter.

Trefe-type variance components structures are also potentially useful for
logistic random variables. The ¢.d.f." for logistic random variables with such
tree-type variance components structures are easily derived using the same
method \.xsed o prove Theorem 4.2.2 While such tree-type structures have
only positive correlations, structures with negative correlations are easily
d.erw_ed _from tree-type logistic structures. The logistic and generalized logis-
tic dnstr_lbutions are symmetric. Thus, let d; be a fixed scalar equal to *+1
depenfimg on the variance components structure to be developed, let e’-
b.e as mn (3), and let n; = d;e;. Then, Var(y) can include negative correla{
tions and the c.d.f. of {y,, .. .»%,) is easily calculated from the c.d.f.’s of
(€,...,e) ?md subsets of the ’s. Huang and Cardell (1996) use this
approach to investigate a heterogeneity factor that affects durations on and
off welfare in opposite ways.

Tree-type variance <omponents structures are a natural and parsimonious
way to allow for stochastic correlation with a small number of parameters.
Often, the variance components themselves can be identified with unmea-
sured .faclors that, from economic theory, should be important, Further-
more, in hazard functions with heterogeneity, variance components structures
seem to be the only feasible way to include unmeasured factors. In most
d‘uratmn data, different individuals begin in different states and go through
dlffe]-ent sequences of states (j.e., spell types). Truly free correlations would
.reqmrfa a different matrix for every possible sequence of states, frequently
mvo!vmg more free parameters than could possibly be identified. For exam-
ple, ina data set in which 4%y of the individuals have 20 or more spells, esti-
mation of even a single 21 x 21 covariance matrix would require estimating
210 correlation parameters. By contrast, heterogeneity has in practice usu-
ally been represented by only a single variance component (see, e.g., Heck-
man and Singer, 1986).

In some situations with a limited number of stochastic components and a
large number of observations, one might wish to be able to approximate a
free correlation matrix. While 1 find it implausible that this generalization
would make the best use of finite data (as compared to, e.g., generalizing X3
l_of (X.8 ).). others may consider the capability to approximate free correla-
tion matrices important. Therefore, 1 generated all 4 x 4 correlation matri-
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ces R that follow from I''T = R with I upper triangular and the off-diagonal
elements of T a multiple of .2. For each one, the variance components struc-
ture from (6) that could most closely approximate R was found. For this
case, the variance components structure has three or fewer unknown contin-
uous parameters, whereas R has six correlations to be approximated. The
overall mean squared error of R,-j, i % j, was .01. (The largest errors occur
when two of the stochastic terms are each highly correlated with a third term
but uncorrelated or only slightly correlated with each other.) Thus, in this
stmulation experiment, the variance components structures of this paper pro-
vided a reasonable approximation to a free correlation matrix.

5. OTHER APPLICATIONS AND EXTENSIONS
5.1. Correlated Discrete Decisions

When the same individual makes multiple discrete decisions, these choices
may be correlated. Although the nested logit approach is not a useful frame-
work for handling this situation, the same type of variance components struc-
ture can be used, but with a logistic rather than a Type I extreme-value
stochastic distribution. Let ¥, be an indicator variable and d, be a discrete
response variable, where 0 < A < 1, v ~ GL(}). and 7, — logistic.

Yk = X;“Bk + v+ }\nkn

1 ifY, =0,
dk-_—
0 if Y, <0.

X, is a row vector of characters and §; is a column vector of unknown
parameters related to the &th binary decision. This variance comporwn%s
structure is a natural way to include a common interdecisions stochastic
correlation in the case of multiple binary decisions. Obviously, the mar-
ginal probability of de = 1 is P, = 1/(1 + e ~**#). Therefore, a single
model can incorporate data on individuals who face multiple decisions an_cl
also on other individuals who face only a single decision, allowing coeffi-
cients to be directly compared between a study of correfated decisions and
a simple binomial logit study.

Applying Theorem 4.2, the joint probability of d; = 1 and d; = 1 for
% kis Py = F(X B, XiE)), where

XN 1 o XiBi/A !
X A e

Py = if X, By + XiBn
1 1 ? . -
— = X8, = XB.
(1 A) i o-X8 + )\(1 e""ﬂ) if Xkﬁk !Bl [é]

o XkBr/n _ g KiBI/h < | 1o XB  gXaBur™ | gXibi/h
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The formulae for the joint probability of multiple binary decisions can be
determined from Theorem 4.2 or the extensions to it already discussed. See
Cardell, Huang, and Brown (1995) for an empirical study of correlated
binary decisions. Some correlated multinomial cases can be solved in the

same way. See Cardell (1989) for a muitinomial case with X fixed across
indjviduals.

5.2. Hazard Functions with Hsterogeneity

Ecom.)melric modeling of duration data is based on both hazard and survival
fum_:uons. The hazard function A(t, X) is defined as the probability of a speil
el‘idmg per unit time, conditional on it not having ended previously. The sur-
;1r‘al funfc:i(:v;hs (C;,X } is defined as the probabitity that a spell will last at least
ime of . The definit; i =~
Sty Thed X)E:Tmns imply that A{t, X) [dog(S(¢, X))] /dt or that
.FOr a proportional hazard function, the hazard h(t, X) = g()e~*#, where
g is 2 function that may or may not be parametrically specified, 5 is a column
vector of‘unknown parameters, and X is a row vector of time-invariant indepen-
dent ;ﬂanables. The corresponding survival function to h{t, X) is §(1,X) =
e™¢ O where G(1) = ff g(r)d(r). Thus, ~log{—log(S(+, X)) = XB —
log G(1) is distributed extreme value for ¢ = time to transition, or log G(t) =
XB — n, where 4 is an extreme value stochastic term.

5.3. Proportional Hazards with C(\) Heterogeneity

Let o, = v + g, where v ~ C{NY, & ~ C{0,A), and v, ¢ independent. Then,
the conditional survivor function is S(#, X,v) = e~ G which is
also the proportional hazard form with v heterogeneity. From Theorem 4.1,

the multiple survival function for repeated proportional hazards with C{()\)
heterogeneity is

Mz

e -x,d;-‘ac,{m:u)h
) )

where, in general, 8, and G; may or may not be distinct for distinct /. These
models can be used in such situations as heterogeneity combined with
repeated hazards, sample selection modeling, and switching regression.
The survival function in (7) has been used in the biometric literature,
though generally restricted to the special case G,(#;) = a,¢, the Weibuil
hazard function (Hougaard, 1986, equation 3.1; Oakes and Manatunga,
1992, equation 1; Tawn, 1990, equations 2.3, 3.2, and 3.8; Tawn, 1988, equa-
tion 5.2). Hougaard (1986) also discusses more general G;(#). Other related
distributions in the biometric literature correspond to variance components
structures with two heterogeneity factors affecting a given duration (Hou-

S Xt v X) = e—('
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gaard, 1986, Sect. 7; Tawn, 1990, equations 3.3 and 3.10). Other bivariate
distributions in Johnson and Kotz (1972) are discussed in Tawn (1988).° The
general multifactor case given in Lemma 4.1 is discussed in Cardell (1989).

5.4. Hazards with GL{A) Heterogenaeity

Logit-based variance components structures allow for hazards that may be
either positively or negatively correlated between distinct spell types. The log-
logistic hazard function model is widely available in standard packages for
the log-logistic model $(£,X) = 1/(1 + t=¢~*8) (e.g., SAS® and LIM-
DEP®)}. Although not a type of proportional hazard model, the logistic
model is similar and closely related. Consider the following model of dura-
tions based on the survival function S(t, X;8,3):

di{s?-1 —X8 S —
dt( 3 )-g(l)e or 3

where S(f,X;8,0) = lim,_., 5{¢, X;(,8) is a proportional hazard model.
Setting & = 1 and G{!) = ° yields the standard log-logistic model. In gen-
eral, —log{{S~% — 1)/8) has a Verhulst (1845, as cited in Ahuja and Nash,
1967) distribution. Thus, let € = —log({S~% — 1)/8) and log G(¢) = X8 — &,
with ¢ Verhulst.

Therefore, both the proportional hazard model and the log-logistic model
are special cases of (8). The log-logistic model can be generalized by allow-
ing G{t) to be nonparametric, as in Han and Hausman (1990). Then,
log{S/{1 — S)) = XB — log G{1) ~ GL{0). Thus, log G{t) = X8 + » with
7 logistic. Note that a test of Hy: 8 =0 in (8) is one way to test the propor-
tional hazards assumption. Similarly, a test of Hy:8 = 1 in (8) is a test of
the log-logistic duration medel.

Given multiple spells (indexed by /) in a generalized log-logistic model, the
#'s can be given a variance components structure. The joint survival func-
tion is then

L - Guye ", )

S(I|,X|,- . .,’N,XN) = F()(I.B - lOgG(f\)-- ":XNﬁ - lOgG(‘N”‘

where F is the joint ¢.d.f. of the »’s discussed in the previous section._ If N
compteted spells of length £, are observed, the likelihood of the observation is

aNS(thXh- v )tN!XN)

_1N
( 1) 6!1 --‘ar,-.-

If the last spell is right truncated at ¢y, then the likelihood of the observa-
tion is
VIS Xt )

—1 N—]
( ) BI. vt BIN_,
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Thus, the explicit joint survival functions derived here can be used to esti-
mate the structural coefficient vector 2, the variance components parameters,
and G(r) by FIML. Note that a completed spell of length ¢, and a spell
truncated at time {; is the combination of a continuous duration result of ¢,
and a discrete event of spell 2 “surviving” to time 1,3 that is,

log(G (1)) < X,8; — n,. t)

However, one can replace (9) with an indicator equation for any other binary

event. In particular, selection biases can be dealt with in exactly the same
framework,

5.5. Competing Hazards

In the competing hazards situation, the likelihood that a spell ends at time
t; by cause j of N competing causes is
A8, XLt X))

a;

) == . =fy

An important special case is the competing proportional hazards model, with
C(N) heterogeneity, G, = G, and 8, = 8. From (7) the probability that the
spell will end due to cause j is P; = (e~%#*)/(3/L, e~***), a multinomial
togit probability. Furthermore, P; is independent of the length of the spell,
Thus, one can estimate \, 8, and G by a LIML method. In the first stage,
8/ can be consistently estimated using a conventional multinomial logit pro-
gram. Then, X and G can be consistently estimated using log{ LY., e =% (#/2))
as an independent variable in a conventional proportional hazards program.
This procedure is obviously very similar to LIML estimation of nested logit,
and, as with nested logit, coefficients unidentified at the first stage can be esti-
mated at the second. Repeated and competing hazards can be combined in the
obvious way.

Consider the practical competing hazards situation where the hazards
apply to spells of working and not working. Let the working/not working
dichotomy define the spells in a repeated hazards framework. Assume that
some, but not all, factors that lead to longer (shorter} working spells also lead
to shorter (longer) nonworking spells. Let s index spell type, with 1 = work-

ing and 2 = nonworking, and let / index the number of spells of a given type.
Then,

IOE(G(’B)) = Xe'sIBs + ("I)shl vy + }\b": + ROR,E.
where », ~ GL(\,), and € — logistic represents the desired variance compo-

nents structure. The joint survival function can be calculated using the results
in Section 4.
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5.6. Models with Discrete Endogenous Equations

Lt Y=XB+ag, Z=Xv+r+At,andd=1if Z >0, where v ~ GL{}),
¢ logistic, and », € independent. 0 < A\ < 1 is an unknown scalar, § and y are
unknown parameter vectors, and « is an unknown scale factor. From Theo-
rem 2.2, the likelihood of an observation 4, ¥;, X is then

sin TA i sin 7A e
tan~" tan™!
e X Y XiBVa L Coc wh e X e AT=XBl e 4 cog )

a(eﬂ't'xiﬂ)/n +2+ e“()"j-’xiﬂ)/a}')‘

10

This formula can form the basis for a FIML estimation of a logit-based ver-
sion of Heckman's {1976, 1978) simultaneous equation system with dummy
endogenous variables. If Y, is not observed for d; = 0, the endogenous dis-
crete equation becomes a selection equation and the likelihood function for
d; =0is 1/(1 + ¢*®?*). Combining this function with (10) for d; = 1 allows
FIML estimation of a logit-based selection bias model. The previous subsec-
tion demonstrated how to account for selection bias in modeling duration
data. Clearly, the same approach can be followed for any combination of

duration equations, linear equations, endogenous discrete equations, and
selection equations.

6. CONCLUSIONS

The variance components structures developed in this paper allow parsimo-
nious modeling of heterogeneity in a wide variety of contexts. In general, one
may have ¥; = X;8; + E,Q:Jo i1, for 1 < j < J, where each Y may be
an ordinary continuous variable, a latent variable that determines a binary
outcome, a (possibly nonparametric) transformation of a (possibly latent)
spell duration, or even the utility to a discrete choice alternative. Further-
more, different ¥’s may be of different types. Thus, one may address het-
erogeneity of many types in a unified framework. For instance, a single
model could include competing repeated hazard functions with heterogene-
ity, selection bias, and endogenous discrete equations.

Because the variance components structures developed in this paper have
relatively simple and differentiable c.d.f.’s, the models generated from them
can be easily estimated by FIML, While the C(\} and GL()) distributions
allow more general variance components structures than those discussed here,
the question of whether any other structures, aside from a few simple cases,
have closed-form joint c.d.f.’s is still open.

The variance components structures in this paper are for stochastic terms
that are Type I extreme value or logistic. These distributions have been found
10 be very useful in modeling discrete decisions and duration data. The nested
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APPENDIX

Ipl‘ﬂof of Theorem 2.1. The characteristic function of the Type | extreme-value
distribution is

%(r):f e e e " gde =T (1 — it).

(€™ = 1~ it(1 = =)y — 22
ul

tog(T(1 — i) =f .
e' —

1]

(see Gradshteyn and Ryzhik, 1965, p. 934).
Leta={ ({u/(t +u?)] -~ (1 ~ e N dus(u(e” — 1)). Obviously, —o0 < g < oo,

Thus, log (1 — i) =ita+ [ (e™ — 1 — [(itw)/ () + u? )]y [dus(u(e® - 1))]. Now,
let N(u) = ~f"[dx/(x(e* — 1))] and M(u) = 0. Thus,

log ¥, (1) =ita + fm

0

; [ty
em.v — l _— _”,_‘—’)dN
( 1+ u? ()

is the Lévy canonical representation of ¥, (1), Furthermore, M(u) and N(u) are
n?ndecreasing over (—«,0) and (0,), respectively, and M(-®) = N{sw) = 0.
Finally, 0 < Jlu? dN(u) < f31 du = ¢. Thus, 2, u? dM(u) and [j u® dN(u) are finite
!‘or'e}rery € > 0. By Theorem 5.5.2, on page 118, in Lukacs’s (1970) text, y,(1) is an
infinitely divisible characteristic function. Furthermore, M'(u) =0 and N'(u) =
'l/[u(e"‘ — 1)}, and uM’(x) and uN’(u) are nonincreasing for ¥ < 0 and y > 0,
respectively. Therefore, ¢,(¢) is self-decomposable (Lukacs, 1970, Theorem 5.11.2,
P- 164). Thus, from the definition of a self-decomposable characteristic function,
V1) = B0 /[ (M) = [T(1 + i)] /{T(1 = iAf)] is a characteristic function.
Furthermore, for v, e independent, 0 < A < 1, ¢ ~ Type } extreme value, then » + Ae -
Type I extreme value iff the characteristic function of » is [Tt = i)/IT (1 —iAn].
Let L) = (1V2m)f7_ e ™T(1 — it)] /[T (1 — iNO) dt and F (v) = [*_ £(3) dy-
' The functionse? and 1/(T'(Z)] areentire and T{Z) is analytic everywhere except for
simple poles at the nonpositive integers, which have residues [(—~1)%*')/[(-Z)!]
(Erdelyi, 1953). Therefore, consider the contour C,, as defined by the four seg-
ments: Im(1} =0, —m = Re{t) = m; Re(/) = ~m, 0= Im(y = —i(m+ { ) lm(t) =
_—i(m + 3), —m < Re(t) < m; and Re{t) = m, 0= Im(f) = —i(m + %), where m
is a positive integer. From the Cauchy Theorem,

i T =ity o {—-ntte ™
e —df = . FULL . A — Al
.{7_," 'l —ixn ,,‘:‘". {(rr — IT - am) @
Taking the limit of (A.1) as m — oo yields
I @ » I\(l - l..f) ar (____”.n+le—rrr
f(v)=——f e o ——— dt =
* 27 ) _w L~ ian ,§t {n—-1DIT{ — An)
P & (=1)"e™™ hiaid (—1)"e™"
= - —_— = p ¥ . A2
)\,.);. niT{—am ¢ ,Z::, ATl = X(n+ 1) a2

R
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The first infinite series can be integrated from » to oo to yield

o (_l)neﬁmr oo (_”ne—rw
Aly=1+ §. AT~ AR 2T = Am)

Let C(\) denote the distributicn of a random variable that has p.d.f. f and c.d.{f.
F». Distinct probability distributions have distinct characteristic functions (Feller,
1971, p. 508). Thus, for v, independent and e ~ Type | extreme value, » + At ~
Typel extreme value iff » ~C{\). For A = {, (A.2) is easily simplified 10 f,,,(v) =
(e~re=3*")//x. It follows that Fy,5(v) = 2(1 — Fyy(e ~"/N2)}, where Fy is the
c.d.f. of the standard norma) distribution. Therefore, if x ~ N(0,2), v = —log |x| ~
C(%). Because F|,, does not have a closed-form representation, Fy cannot in general
have a closed-form representation. e

Proof of Lemma 2.1. Let { = 5, — n,, and let F({) represent the c.d.f. of {.
Then,

— * - " e ate st _ 1 AL
F(;')-f-me e~f e dn = T3 et {A.3)
From Theorem 2.1, the preceding v, and », admit the linear structures: w; = v; + A,
J = 1,2, where v, p,, £/, and ¢, are all mutually independent and v, ~ C(X), &; ~
Type 1 extreme value j = 1,2. Thus, #; — 1, = », — ¥3 + A& — €;). From (A.3),
€, - £; ~ logistic, and, in addition, v, — v, and €, — £, are independent. Therefore,
from the definition of GL(A), » — v; ~ GL{\). Furthermore, the uniqueness of
GL() Tollows directly from the uniqueness of C(A). "

Proof of Lemma 2.2. Let ¢ be an extreme-value random variable independent of »|
and »,. Then, (¥, + A€} is an extreme-value random variable and independent of »,.
Hence, », + X (v, + Ay€) is extreme value, and ») + X {(#2 + A€} = (#) + Myp2) +
{Xy-A2)-e. By Theorem 2.1, (v, + Ayw3) = C(h-A2).

Proof of Theorem 2.2, The distribution of z ~ GL()) can be determ?ned
by inverting Wge (1), where Vg, (1) = ¥, (¥ (=) = (rqt - itn/
(T = iNDIT(L + D/ (T (1 + i) Using T(1 = Z)T (1 + Z) = (v Z)/(sin xZ)
{Erdelyi, 1953),

l er)l _ e—tif
(_) xt ~wt " L# 0’
Yol = hoet—e
1, =0
Obviously, lim,_q ¥, (1) = 1 = ¥G.,(0), and ¥, (x, is analytic everywhere

except for simple poles at ¢ = ni for some integers n. Thus, the p.d.f. of GL{}\) is

eti\l —%ht

-e

. S
fc.-m;(z}=m f e dt. (A.4)

e-n‘ . e-rl

Obviously, the right-hand side of (A.4) is a symmetric Tunction of z for z real.
Thus, consider z < 0, z real. The integrand of (A.4) goes to zero exponentially as
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im{t) -+ i, or |real(f)] — oo for lm(r) positive. Therefore, the integral in (A.4) is
equal to 2#i times the sum of the residues in the half plane with positive Im{¢). Thus,

- 1.
f o {2y =1(2 —_ nTy 1y ihEn _ L —ixwn
GLOv) (2xi) y nEzle (-1 P (e e )

i

|

> X i __pItikw z—iAT
"§ ((__,ez-tr?\r)n__(_"ez—nr)n): _'._,( € e )

2mh ZaR L 4 p3tirs * 14 eride
=_L( —e}{e*T . g=irry —i 2isin A
2xh ezz+e‘(e”“+e“"')+l) =2 e'4+2cosxh+e?
5in A
_ £
T et+lcosxhte t (A-5)

As already observed, Jerin (2} is symmetric; therefore, the preceding equation

applies t? z = ( as well. Using the substitution ¥ = e* + cos xA, {A.5) can be inte-
grated directly, The resulting c.d.f. of z is

Fzy=1- - tan"(—-—._sm L ) 1 -1( sin ) )
xh '

e’ + cos x A = en -z
e F +cosmA

A o

Proof 9f Theorem 2.3. The vesult is obvious for X = 1. Thus, as an induction
hypothesis, assume that (A) holds for all X < Q* some Q* = 1.
Q%+ *

o
E;I Eroa¥i = ‘E b + Eguvgey,.

By induction, £Y_ £,_,», ~ C(£g+). Hence, by Lemma 2.2, N2 £, v, ~

C(kg-4,), and (A) is proven by induction. From the definition of C(hi 841), (B)
follows from (A). n

_l’r-our of Theorem 2.4. The c.d.f. of ¢ is F(g) = ¢~*"" and hence the marginal
distribution function of ¢ is Fe)y=e*t.g—" (similarly for »).

{={a+c—]og(e"+e") ifbtv=a+te(r=sa—b+e),
b+v—log(e"+e?) ifbtvoateles—a+bh+r).

Using the fact that probability(b + v = g + €) + probability(b+ v = a+¢) =1,
Sy =Fla~ b+ e)f(e) |matc—togiersery + F(~a + b+ v)f(v) |e=b4v—tagiese?y

_e—li=h+loglev+el)y)

= e-H—a+logle"+eby ,e—e'“"“"’“'""h”
+ e-r“-'w+l0ﬂr“*r"):_e,“_b“‘m(en“b” e_!-(r*b+|os(r”+e"ll
eY »
= - _e_,‘ e L e N I Tl 1]
o
e’ + e
eb
o=t e_,—!lr"/(e"+e“)+r‘/(r'+a‘*n
a I
e"+e
—_— —_ T
=e e
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The probability P(a+ ez b+ )= [~ Fla—b + e)f(e) de

= —atb-c -t = - b, e”
=J. e e”fe ™t de = f e et [+t o - et
_ e“+e
e Jm

and .

F - b =t4 el —a
ftla+ezbar)= 2 P*(:f‘j’:];;’:; rehyze

Using the same arguments as earlier, /(¢ [b+ v <a+ ¢} = [(e°/(e° + eb))e"‘e"v'] /

(e°/e” + e®) = e~'e~*"' and, by symmetry, F{t[b+vza+e)=ee . W

Proof of Corollary 2.1, Corollary 2.1 is proved by induction. Note that parts 1-3
hold trivially for j = 1. Hence, as the induction hypothesis, assume that parts 1-3 hold
for some j, 1 s j < J.

To prove parts 1-3 forj + 1,

i+1
= [ max (g +g)) - log(z e"f)
Isixf+1 il
iog( Ee")
= max( max (a; + ghapy +gyg) ~logle VTN e
=I=y

adl

= max (log(ﬁe") +lha t‘jn) ~ log (ek"(’g'e r))

=
Hence, by Theorem 2.1, f;,, is extreme value, proving (1). Note that

aj+|+fj+;>a;+£;;a"l;15’(]""]

i
g, +Eyy > max (@ + )= Iog(ze‘") + 1.
lsi=<f i=1

Hence, (2) and (3) follow from Theorem 2.3. s

Proof of Theorem 3.1. Note that this is obvious for Q; — 1 < /=< X. To prove by
induction for all / = 0, assume the theorem holds for all j and some / > 0 and prove
it therefore holds for J — 1.

£k
Upij= max (Ui ja) = max (Urj.k e + P
kES;_1.; kESr,; Ei1k

= max (A max (Upwd+ o) = max (U + 04
| kEGI-1, mES & k€G-

By the induction hypothesis, Uy , -- log Z; , is extreme value. Fork,me G, ;, k£ m,
U, x and U, ,, are independentiy distributed. Hence, (&, (U, — log Z; ;) + vy ) are
i.i.d. extreme value for k € G,_, ;. Also, A U+ viws= Nglog Zp o + N o (Ui —
108 Z;_k) + Y- Thus,



210 N. SCOTT CARDELL

Ui —logZy ;= Uy, , - ]og( p> z}_‘;;*)

kEG. 4

' k€G- ;
Applying Theorem 2.4, U,_, ; - log Z,_, , is extreme value,

The probability of the jth alternative being chosen is Pi=P,; .
is the probability that Uy s maximal in the set 3, ;.
Note that for all k € S, ;,

In general, P, ; ,

[
U= 2 Em—1.j¥m,;
m=1
& ;

Because only U, varies with K, and & ; > 0,

Uijw = Ukw =

Yiss = U:.;[Ekrggf}_ (U] iff U= max (U,

From Theorem 3.3, the distribution of

U j = madk,eq, (U ) is independent of the
k for which U, ; = U j.x- Hence,

by Theorem 2.2 (recall Uy, ; = U)),
9

A, j
L k-llI-pl 2y
Piji= 11 Peiju;= PR [ |
k=i+1 i—_[ z
k. j
ey

Proof of Theorem 4.1. For v; extreme value and 8 ~ C()), 0 < A < I, the c.d.f.
of v; is then F(v,) = ¢=* ™" Thys,

Flegy=e¢* " = f f(Bre=e 7 4. (A.6)

This must hold for any ;. Let A = =% and rewrite {A.6) as

f f(B)e %" dp = ¢~ 4" A7)

for A = Q. Thus, Fley,....e5) =ff°,f(8)1'[;’=, e TN g
7 s .
= fm f(a)e*(,?,r ) a0 <o ET) .

Proof of Theorem 4.2. The c.d.f. of v; is F(»;) = 1/(1 + e”%). Therefore,

1 = = 1
Fe)= v = [ Flgio)s@1do= [ 1o —cmmd. a8
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Again, this must hold for all €;. Thus, let A = e~%*, Rewriting (A.8) yields

= ! ! (A.9)
f S0 1 + Ae®™ dé = 1+ 4

for all A > 0. Thus, for ¢, # ¢, ali { # j,

o FJ l -
F(EI.I“‘ICJ) = f(o) H (T’_'_ e_—(':j-’—_h)n\)da = '[—af(ﬂ)F(e-,.. . .,E;lﬂ) dé

j=i

) e ‘ @ (A10)
= J. OPY (,I;IJ (e"‘f" — e_g,n) L+ e 0t :

—n =1

= ZJJ (H (-e—:“—”f%-;;;;))f;l"(ejlﬂ)f(ﬂ)do

j=t \t#j

J e—g‘fk i ) (A-ll}
=}§ (E (e«-zj/.\ _e—-:;/k) l+e %/

Equation (A.10) follows from the well-known partial fractions expansion

frreior 50 (52) reloe)

P+ AX i\ \A; - AT L+ A X

with 4; = ¢™%> and X = ¢**, and (A.11) follows from (A.8). o

L’Hopital’s rule can be used to find F(g,,...,e;) when g, = g, some j, Lizl
However, the following method is simpler and easily adapted to a computer algo-
rithm. Obviously, the €;'s are exchangeable random variables; therefor,c. \!uthout
loss of generality, assume that ¢,,...,£; are the distinct values of the €'s wnhs'. f
L = J and let m; be the multiplicity of ¢;. Thus, L., m; = Jand F(e,, ... &/|8) =
I, (171 + e~ '% 72 )™ which has a partial fractions expansion of

Fle,...,e08) = EL.‘. %le(“"—‘!—_‘) =2 i:leF(Cj'----Ejla)v

1 + g (&—7A

i=t iz} j=1 =1
icjs
where the B;,'s depend on h, g, ..., &, but not §. Therefore,
Fley,....e)) = f SF{e,.....e,|0) db
8, [ 10)F( 8)ds = 3 S BAF(c, . 8)
= B; Eiveoyb; = n oo Eib
J§ J‘?& ﬂf—wf 3, J; i=¥ =1 \_W_._)
g iGs

(A.12)

. s k
Note that the B;'s are easily conputed recursively as follows. Define B}, by

£ m; I {
F[e,,....t,,l&) =E ZB}‘; (ﬁm)

i=1 =}
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