
CEA’s Technical Standards and Specifications, Access to Basic Interactive Services,
filed as Appendix C to CEA Comments on Third Further Notice of Proposed

Rulemaking, CS Docket No. 97-80, PP Docket No. 00-67, August 24, 2007
Also available at www.ce.org/publicpolicy.

August 24, 2007

1

Technical Requirements

1. SDB CableCARD Resource Definition
This section defines the SDB Resource as an extension to [SCTE-28]. The iDCR Host
shall implement a SDB Support resource. The SDB Support application in the
CableCARD shall create a session to the SDB Support resource in the iDCR Host
whenever there are SDB channels in the VCT.

Resource Class Type Version Resource Identifier
SDB Support TBD 1 1 0x TBD

The SDB Support resource shall support the following APDUs:

Apdu_tag Tag Value Resource Direction
Host ↔ Card

sdb_tune_req() 0x TBD SDB Support
sdb_tune_cnf() 0x TBD SDB Support
sdb_tune_cancel() 0x TBD SDB Support
sdb_tune_query() 0x TBD SDB Support
sdb_tune_query_cnf() 0x TBD SDB Support

1.1. SDB_tune_req and SDB_tune_cnf APDU Syntax
The Host shall issue a sdb_tune_req() APDU when any of its tuners needs to tune to a
channel that has been identified as potentially being a SDB channel.

Table 1 sdb_tune_req() APDU Syntax

Syntax No. of Bits Mnemonic
Sdb_tune_req() {
Sdb_tune_req_tag 24 uimsbf
length_field()
channel_num 12 uimsbf range 0-4095

}
sdb_tune_req_tag 0xTBD
channel_num The virtual channel number of the channel that the tuner wants to tune

to
The CableCARD shall respond to the sdb_tune_req() APDU with a sdb_tune_cnf()
APDU containing the information needed by the Host to tune to the channel. The
CableCARD shall also issue a new sdb_tune_cnf() APDU if any of the SDB channel
information changes before the Host has issued a sdb_tune_cancel() APDU. Therefore
the session will remain open during this time.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

2

If the CableCARD issues a sdb_tune_cnf() APDU with request_status = 0x01 “Please
Wait”, it must eventually issue another sdb_tune_cnf() APDU with request_status other
than 0x01.

The CableCARD may issue a sdb_tune_cnf() APDU with request_status = 0x03
“Request denied” to indicate that the channel is no longer available and has been
removed from the plant.

Table 2 sdb_tune_cnf() APDU Syntax

Syntax No. of Bits Mnemonic
Sdb_tune_cnf() {

Sdb_tune_cnf_tag 24 uimsbf
length_field()
channel_num 12 uimsbf range 0-

4095
request_status 8 uimsbf
transport_type 1 bit
if (transport_type == MPEG2) {
 source_ID 16
 frequency 16 uimsbf
 program_number 16
transmission_system 4 Uimsbf
inner_coding_mode 4 Uimsbf
split_bitstream_mode 1 Bslbf {no, yes}

 modulation_format 5 uimsbf
symbol_rate 28 Uimsbf units:

symbols per sec.
} else { /* non-MPEG-2 */

Frequency 16 Uimsbf
video_standard 4 Uimsbf

}
if (descriptors_included) {

descriptors_count 8 Uimsbf
for (i=0;
i<descriptors_count; i++) {

descriptor() *
}

 }
}

sdb_tune_cnf_tag 0xTBD
channel_num The virtual channel number of the channel information requested, used

to match the confirmation with the tune_req APDU.
request_status The status of the request:
 0x00 - Success. Valid tuning information contained.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

3

 0x01 - Please wait. Another tune_cnf() APDU shall follow.
 0x02 - Tuning information has changed since last tune_cnf()
 0x03 - Channel no longer available.
 0x04 - Invalid or unrecognized virtual channel number.
 0x05 - Tuning request permanently denied (max system

resource usage reached and not expected to change).
 0x06 – Tuning request temporarily denied (max system

resource usage reached but expected be released later on)
transport_type 0 - MPEG2
 1 - Analog
source_ID A 16-bit unsigned integer number, in the range 0x0000 to 0xFFFF, that

identifies the programming source ID associated with the virtual
channel on a system-wide basis,

frequency Contains the frequency for the Host to tune. The frequency is
calculated by multiplying frequency by 0x0.05 MHz (50 kHz
resolution).

program_number A 16-bit unsigned integer number that associates the virtual channel

number being defined with services defined in the Program Association
and TS Program Map Table sections.

transmission_system A 4-bit field that identifies the transmission standard employed for the

waveform. Table 5.7 in SCTE65 defines the coding for
transmission_system.

inner_coding_mode A 4-bit field that indicates the coding mode for the inner code
associated with the waveform. The following values are currently
defined: 5/11, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, and 7/8. Coding of the
inner_coding_mode field is shown in Table 5.8 in SCTE65.

modulation_format A 5-bit field that defines the basic modulation format for the carrier.
Table 5.9 in SCTE65 defines the parameter.

symbol_rate A 28-bit unsigned integer field that indicates the symbol rate in
symbols per second associated with the waveform.

video_standard A 4-bit field that indicates the video standard associated with this non-
Standard virtual channel. Table 5.21 in SCTE65 defines
video_standard.

descriptor() The structure may include, at its end, one or more structures of the form
tag, length, data. The number of descriptors present is determined
indirectly by processing the length field. Descriptors are defined in
Section 6 in SCTE65.

1.2. SDB_tune_cancel APDU
The Host shall issue a sdb_tune_cancel() APDU when a tuner no longer needs a SDB
channel. The Host must issue this APDU in all of the following cases:

• That tuner wishes to tune to another channel
• The Host has determined that the channel is no longer needed.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

4

Table 3 sdb_tune_cancel() APDU Syntax

Syntax No. of Bits Mnemonic
Sdb_tune_cancel() {

Sdb_tune_cancel_tag 24 uimsbf
length_field()
channel_num 12 uimsbf range

0-4095
}

sdb_tune_cancel_tag 0xTBD
channel_num The virtual channel number of the channel information requested, used

to match the confirmation with the tune_req APDU.

1.3. SDB_tune_query and SDB_tune_query_cnf() APDU
The CableCARD may issue a sdb_tune_query() APDU to actively request the viewing
status of a stream. The Host may automatically respond if manual user activity (e.g.,
remote control input) has occurred within the past four hours (240 minutes), or if the
channel is being recorded by user request. The Host may present a message on the screen
to the user asking for confirmation that they are still actively watching the tuner.

The Host may always respond automatically but the matching sdb_tune_query_cnf()
response APDU shall be send within sixty (60) seconds of receiving the sdb_tune_query
APDU. A lack of response after that time interval can be interpreted by the CableCARD
as assuming the Host no longer needs the SDB channel.

Table 4 sdb_tune_query() APDU Syntax

Syntax No. of Bits Mnemonic
Sdb_tune_query() {

Sdb_tune_query_tag 24 uimsbf
length_field()
channel_num 12 uimsbf range

0-4095
}

sdb_tune_query_tag 0xTBD
channel_num The virtual channel number of the channel information requested, used

to match the confirmation with the tune_req APDU.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

5

Table 5 sdb_tune_query_cnf() APDU Syntax

Syntax No. of Bits Mnemonic
Sdb_tune_query_cnf() {

Sdb_tune_query_cnf_tag 24 uimsbf
length_field()
channel_num 12 uimsbf range

0-4095
tune_status 8 uimsbf

}

sdb_query_cnf_tag 0xTBD
channel_num The virtual channel number of the channel information requested, used

to match the confirmation with the tune_req APDU.
tune_status 0x00 - channel no longer needed
 0x01 - channel still actively being viewed
 0x02 - channel being recorded
 0x04-0xFF - reserved

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

6

2. VOD CableCARD Resource Definition
This section defines the VOD Resource as an extension to SCTE-28.

Resource Class Type Version Resource Identifier
VOD Support TBD 1 1 0x TBD

The iDCR Host may implement a VOD Support resource. The VOD Support application
in the CableCARD shall create a session to the VOD resource in the iDCR Host if the
Host supports it.

2.1. VOD Resource Overview
Video-On-Demand takes advantage of the bi-directional communication path between
the Host and the cable plant to allow the user to browse a catalog of video titles, and
select them for immediate streaming to the Host.

The Host shall use the vod_init() APDU to indicate to the CableCARD that the user
wants to use the VOD service. The CableCARD shall indicate to the Host if the service is
currently available in the response.

The Host shall use the vod_getfolder_req() APDU to retrieve the catalog of VOD titles.
This catalog is contained in a hierarchical folder structure. The Host shall use repeated
calls to vod_getfolder_req() to obtain the elements of the catalog that the user wants to
see.

Once the user has picked a non-free VOD title, the user can attempt to purchase the title.
The Host shall use the vod_purchase_req() APDU to make a purchase request. This may
initiate a vod_pin_req() challenge from the CableCARD. If the user has chosen a free
VOD title, the host shall use the vod_purchase_req() APDU to make a purchase request,
but in this case there shall not be a vod_pin_req() challenge from the CableCARD.

After purchasing the VOD title, the Host shall attempt to create a VOD session with the
VOD server in the cable system. After successfully creating a session, a purchased VOD
title can be viewed. The playback speed and position within the VOD title can be
adjusted by the Host via the vod_setspeedpos_req() APDU.

The VOD Support resource shall support the following APDUs:

Apdu_tag Tag Value Resource Direction
Host ↔ Card

vod_init() 0x TBD VOD Support
vod_init_cnf() 0x TBD VOD Support
vod_getfolder_req() 0x TBD VOD Support
vod_getfolder_cnf() 0x TBD VOD Support
vod_getitem_req() 0x TBD VOD Support
vod_getitem_cnf() 0x TBD VOD Support

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

7

vod_purchase_req() 0x TBD VOD Support
vod_pin_req() 0x TBD VOD Support
vod_pin_cnf() 0x TBD VOD Support
vod_purchase_cnf() 0x TBD VOD Support
vod_session_init() 0x TBD VOD Support
vod_session_init_cnf() 0x TBD VOD Support
vod_setspeedpos_req() 0x TBD VOD Support
vod_setspeedpos_cnf() 0x TBD VOD Support
vod_queryspeedpos_req() 0x TBD VOD Support
vod_queryspeedpos_cnf() 0x TBD VOD Support

2.2. VOD_init and VOD_init_cnf() APDU Syntax
The Host shall issue a vod_init() APDU after a session to the VOD resource has been
created. The CableCARD can respond with information on a barker channel: a channel
used to advertise VOD content available on the system. If the barker channel information
is provided, the Host may tune to it and present it to the user. A barker channel may be
full screen, or have active video only on a rectilinear portion of the screen. The
CableCARD shall provide information on the format of the barker channel in the
vod_init_cnf() APDU.

Table 6 vod_init() APDU Syntax

Syntax No. of Bits Mnemonic
Vod_init() {

vod_init_tag 24 uimsbf
length_field() Always 0

}

vod_init_tag 0xTBD

The CableCARD will reply with a vod_init_cnf() APDU containing information on a
barker channel, if present.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

8

Table 7 vod_init_cnf() APDU Syntax

Syntax No. of Bits Mnemonic
Vod_init_cnf() {

Vod_init_cnf_tag 24 uimsbf
length_field() X
vod_status 8 uimsbf
root_folder_providerID 20*8 uimsbf
root_folder_assetID 20*8 uimsbf
barker_channel 8 uimsbf
width 12 uimsbf
height 12 uimsbf
xpos 12 uimsbf
ypos 12 uimsbf
transport_type 1 bit
if (transport_type == MPEG2) {
 source_ID 16
 frequency 16 uimsbf
 program_number 16
transmission_system 4 Uimsbf
inner_coding_mode 4 Uimsbf
split_bitstream_mode 1 Bslbf {no, yes}

 modulation_format 5 uimsbf
symbol_rate 28 Uimsbf units:

symbols per sec.
} else { /* non-MPEG-2 */

Frequency 16 Uimsbf
video_standard 4 Uimsbf

}
if (descriptors_included) {

descriptors_count 8 Uimsbf
for (i=0; i<descriptors_count;
i++) {

descriptor() *
 }
 }
}

vod_init_cnf_tag 0xTBD
vod_status 0x00 - VOD service is available.
 0x01 - VOD service temporarily not available.
 0x02 - Device not authorized for VOD service.
 0x03-0xFF - Reserved
root_provider_id The providerID of the root VOD folder. Must be 20 ASCII

characters.
root_asset_id The assetID of the root VOD folder. Must be 20 ASCII

characters.
barker_channel 0x00 - no barker channel available. The tuning information below can

be ignored.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

9

 0x01 - barker channel available.
source_ID A 16-bit unsigned integer number, in the range 0x0000 to 0xFFFF, that

identifies the programming source ID associated with the barker
channel on a system-wide basis,

frequency Contains the frequency of the barker channel for the Host to tune. The

frequency is calculated by multiplying frequency by 0x0.05 MHz (50
kHz resolution).

program_number A 16-bit unsigned integer number that associates the barker channel

with services defined in the Program Association and TS Program Map
Table sections.

modulation The type of modulation for the barker channel.
 0x00 Analog ATSC
 0x01 64QAM
 0x02 256QAM
 0x03-0xFF Reserved.
width The width of the active video portion of the barker channel given as the

fraction of the total screen width divided by 4095. A value of 0xFFF
indicates the barker channel is full screen horizontaly.

height The height of the active video portion of the barker channel given as
the fraction of the total screen height divided by 4095. A value of
0xFFF indicates the barker channel is full screen vertically.

xpos The horizontal position of the upper left corner of the active video
portion of the barker channel given as the fraction of the total screen
width divided by 4095. A value of zero is the left side of the screen.

ypos The vertical position of the upper left corner of the active video portion
of the barker channel given as the fraction of the total screen height
divided by 4095. A value of zero is the top of the screen.

transport_type 0 - MPEG2
 1 - Analog
source_ID A 16-bit unsigned integer number, in the range 0x0000 to 0xFFFF, that

identifies the programming source ID associated with the virtual
channel on a system-wide basis,

frequency Contains the frequency for the Host to tune. The frequency is
calculated by multiplying frequency by 0x0.05 MHz (50 kHz
resolution).

program_number A 16-bit unsigned integer number that associates the virtual channel

number being defined with services defined in the Program Association
and TS Program Map Table sections.

transmission_system A 4-bit field that identifies the transmission standard employed for the

waveform. Table 5.7 in SCTE65 defines the coding for
transmission_system.

inner_coding_mode A 4-bit field that indicates the coding mode for the inner code
associated with the waveform. The following values are currently

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

10

defined: 5/11, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, and 7/8. Coding of the
inner_coding_mode field is shown in Table 5.8 in SCTE65.

modulation_format A 5-bit field that defines the basic modulation format for the carrier.
Table 5.9 in SCTE65 defines the parameter.

symbol_rate A 28-bit unsigned integer field that indicates the symbol rate in
symbols per second associated with the waveform.

video_standard A 4-bit field that indicates the video standard associated with this non-
Standard virtual channel. Table 5.21 in SCTE65 defines
video_standard.

descriptor() The structure may include, at its end, one or more structures of the form
tag, length, data. The number of descriptors present is determined
indirectly by processing the length field. Descriptors are defined in
Section 6 in SCTE65.

2.3. The VOD MetaData Format
The descriptive metadata for the VOD content is represented by a series of hierarchical
folders in XML format. A folder can contain descriptive data about other folders, vod
assets, or both. An asset is a VOD video that the user can purchase (may be free) and
begin streaming to the Host. The Host retrieves the descriptive metadata through a series
of calls to the get_folder_req() APDU, starting at the root folder. Each folder shall have a
unique folder identifier, just as each asset shall have a unique asset identifier. The Host
uses the folder identifier in the vod_getfolder_cnf() APDU to indicate which folder it
wants to retrieve. The descriptive metadata returned by the CableCARD in the
vod_getfolder_cnf() APDU contains the identifiers for the folder’s content.

As defined in the CableLabs Video-On-Demand Content Specification Version 2.0, each
folder and asset is uniquely identified by a combination of its providerID and assetID.
providerID is a unique identifier for the provider of the Asset. The providerID shall be set
to a registered Internet domain name restricted to at most 20 lower-case characters and
belonging to the provider. For example a valid providerID for CableLabs is "cablelabs-
films.com”. Throughout the VOD resource the providerID shall be exactly 20 ASCII
characters long. Domain names shorter than 20 characters shall be zero padded. The
assetID is an identifier for the asset that is unique within a provider's assetID space. The
assetID shall be an ASCII String of exactly 20 characters.

The vod_getfolder_req() APDU allows for windowing of the folder contents. This allows
the Host to request only a finite set of items contained in the folder instead of receiving
the entire folder all at once.

The VOD system may preserve a Folder containing the titles that the user has already
purchased and are still available for viewing. This ‘Saved Programs’ folder would be
presented in the folder hierarchy like any other folder.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

11

Table 8 The VOD Folder Metadata Format returned in the vod_getfolder_cnf()
APDU
<FolderContents windowOffset="20" totalItems="50">
 <Folder providerId="foo.com" assetId="BARR0000000000000001">
 <!-- Metadata details from CalbeLabs ADI and VOD Content
specs... -->
 </Folder>
 <Folder providerId="foo.com" assetId="BARR0000000000000002" >
 <!-- Metadata details from CalbeLabs ADI and VOD Content
specs... -->
 </Folder>
 <Asset providerId="foo.com" assetId="BARR0000000000000003">
 <!-- Metadata details from CalbeLabs ADI and VOD Content
specs... -->
 </Asset>
 <!-- ... additional Folder and Asset elements ... -->
</FolderContents>

Once the Host has the folder information, it shall request details on folder items via the
vod_getitem_req() APDU. The Host passes the unique identifiers for the folder or asset.

Table 9 XML Format returned in the vod_getitem_cnf() APDU
Response for an Asset:

<ItemDetails>
 <Asset providerId="foo.com" assetId="BARR0000000000000002">
 <!-- Metadata details from CalbeLabs ADI and VOD Content
specs... -->
 </Asset>
<ItemDetails/>

Response for a Folder:

<ItemDetails>
 <Folder providerId="foo.com" assetId="BARR0000000000000000">
 <!-- Metadata details from CalbeLabs ADI and VOD Content
specs... -->
 </Folder>
<ItemDetails/>

The asset metadata format returned by the CableCARD in the vod_getitem_cnf() APDU
shall conform to the OpenCable Video-On-Demand Content Specification Version 2.0. In
particular, a VOD asset shall include the following metadata elements

• Section 6.4 Title Asset is Mandatory, including at a minimum the Title, Genre,
and Rating elements.

• Section 6.5 Terms Asset is Mandatory, with Suggested Price replaced with a
mandatory Price element.

The Host can also indicate the amount of detail it wants in the descriptive metadata
associated with assets. The VOD system may support several different detail levels of

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

12

metadata. Both features are designed to optimize the amount of bandwidth usage required
for VOD metadata exchange.

2.4. vod_getfolder_req() & vod_getfolder_cnf() APDU Syntax

Table 10 VOD getfolder Request Object Syntax
Syntax # of bits Mnemonic

vod_getfolder_req() {
 vod_getfolder_tag
 length_field()
 request_id

24

12

uimsbf

uimsbf

 item_index 12 uimsbf
 num_items 12 uimsbf
 provider_id 20*8 uimsbf
 asset_id 20*8 uimsbf
}

vod_getfolder_req_tag 0xTBD
request_id A unique number generated by the iDCR to identify a getfolder

request. The associated getfolder_cnf() will include this
request_ID value. iDCRs shall maintain a transaction_ID
counter and increment it by 1 (mod 4096) for each new
transaction.

item_index The zero-based index to the first item in the folder that should be
returned in the confirmation APDU. An index of 0x00 represents
the first item in the folder.

num_items The number of items to return, starting at item_index. The value
0x00 shall indicate that all items in the folder should be returned.

provider_id The providerID of the folder to retrieve.
asset_id The assetID of the folder to retrieve.

The CableCARD shall respond to the getfolder_req() APDU with a getfolder_cnf()
APDU.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

13

Table 11 VOD getfolder Confirmation Object Syntax

Syntax No. of Bits Mnemonic
vod_getfolder_cnf() {

vod_getfolder_cnf_tag 24 Uimsbf
length_field()
request_id 12 Uimsbf
status 8 Uimsbf

 xml_length

 for (i=0; i <=
xml_length; i++) {

16 Uimsbf

xml_byte} 8 Uimsbf

}

vod_getfolder_cnf_tag 0xTBD
request_id The unique request number from the corresponding request

APDU.
status The status of the request.
 0x00 - Success. XML data follows.
 0x01 - Unknown folder_id
 0x02 - Item index larger than number of items in folder
xml_lgnth, xml_byte The XML text in the response.

2.5. vod_getitem_req() & vod_getitem_cnf() APDU Syntax

Table 12 VOD getitem Request Object Syntax
Syntax # of bits Mnemonic

vod_getitem_req() {
 vod_getitem_tag
 length_field()
 request_id

24

12

uimsbf

uimsbf

 detail_level 8 uimsbf

 provider_id 20*8 uimsbf
 asset_id 20*8 uimsbf
}

vod_getitem_req_tag 0xTBD

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

14

request_id A unique number generated by the iDCR to identify a getfolder
request. The associated getfolder_cnf() will include this
request_ID value. iDCRs shall maintain a transaction_ID
counter and increment it by 1 (mod 4096) for each new
transaction.

detail_level The amount of descriptive detail to include in the response. The
VOD system may or may not support different detail level.

 0x00 - Low detail
 0x01 - Medium detail
 0x02 - High detail
provider_id The providerID of the item to retrieve.
asset_id The assetID of the folder to retrieve.

The CableCARD shall respond to the vod_getitem_req() APDU with a
vod_getitem_cnf() APDU.

Table 13 VOD getitem Confirmation Object Syntax

Syntax No. of Bits Mnemonic
vod_getitem_cnf() {

vod_getfolder_cnf_tag 24 Uimsbf
length_field()
request_id 12 Uimsbf
status 8 Uimsbf

 detail_level
 xml_length

 for (i=0; i <=
xml_length; i++) {

16 Uimsbf

xml_byte} 8 Uimsbf

}

vod_getitem_cnf_tag 0xTBD
request_id The unique request number from the corresponding request

APDU.
status The status of the request.
 0x00 - Success. XML data follows.
 0x01 - Unknown item
detail_level The detail level used in the response, which may differ from the

detail level requested.
xml_lgnth, xml_byte The XML text in the response.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

15

2.6. vod_Purchase_req() & vod_Purchase_cnf()APDU Syntax

The iDCR’s navigation application uses vod_purchase_req() to request a purchase of a
VOD program. The program information is obtained by the metadata provided by the
VOD server. The CableCARD responds with vod_purchase_cnf().

Table 14 VOD Purchase Request Object Syntax
Syntax # of bits Mnemonic

vod_purchase_req() {
 vod_purchase_req_tag
 length_field()
 transaction_id
 provider_id
 asset_id
}

24

12
20*8
20*8

uimsbf

uimsbf
uimsbf
uimsbf

vod_purchase_req_tag 0xTBD
transaction_id A unique number generated by the iDCR to identify a

transaction. The associated program_cnf() will include this
transaction_ID value. iDCRs shall maintain a transaction_ID
counter and increment it by 1 (mod 4096) for each new
transaction.

provider_id The provider identifier for the asset.
asset_id The asset identifier for the asset.

The CableCARD shall respond to the vod_purchase_req() APDU with a
vod_purchase_cnf() APDU. The CableCARD may issue a vod_pin_req() APDU first.

Table 15 VOD Purchase Confirmation Object Syntax

Syntax No. of Bits Mnemonic
vod_purchase_cnf() {

vod_purchase_cnf_tag 24 uimsbf
length_field()
transaction_id 12 uimsbf
status_field 8 uimsbf

 comment_length
 for (i=0; i <=
comment_length; i++) {

16 uimsbf

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

16

Syntax No. of Bits Mnemonic
comment_txt} 8 uimsbf

provider_id 20*8 uimsbf
asset_ID 20*8 uimsbf

}

vod_purchase_cnf_tag 0xTBD
transaction_id The unique transaction number.
status_field This field returns the status of the vod_purchase_req(). If the

CableCARD has validated the purchase, then the status_field is
set to 0x00. Otherwise, the status_field is set to one of the
following values. When there is more than one reason to deny
the purchase, the status_field is set to the lowest applicable
value.

provider_ID The provider ID of the requested VOD program, used to match
the confirmation with the request APDU.

asset_ID The asset ID of the VOD program requested, used to match the
confirmation with the request APDU.

Table 16 Status Field Values for VOD Purchase Confirm

Status_field Value (hex)
Purchase Granted 00
Purchase Denied – Unknown Asset ID 01
Purchase Denied – Unknown Transaction_ID 02
Purchase Denied – Invalid PIN Code 03
Purchase Denied – Program Already Purchased 04
Purchase Denied – Blackout is Active 05
Purchase Denied – Credit Limit is Exceeded 06
Purchase Denied – VOD Slot Limit is Exceeded 07
Purchase Denied – Spending Limit is Exceeded 08
Purchase Denied – Rating Limit is Exceeded 09
Purchase Denied – Check Comments 0A
Reserved 0B-FF

comment_length, comment_txt These fields allow the CableCARD to explain, using

plain text, why the purchase request has been granted or denied.
The CableCARD shall use these fields only if an explanation is
not covered by one of the other status values.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

17

2.7. vod_pin_req() & vod_pin_cnf() APDU Syntax

In response to a vod_purchase_req() APDU, the CableCARD may issue a vod_pin_req()
APDU requesting a valid personal identification number (PIN) in order to make the
purchase.

Table 17 VOD PIN Request Syntax
Syntax # of bits Mnemonic

vod_pin_req() {
 vod_pin_req_tag
 length_field()
 transaction_id

24

12

uimsbf

uimsbf

}

vod_pin_req_tag 0xTBD
transaction_id The unique transaction ID associated with this purchase request

and subsequent PIN challenge.

In response to a vod_pin_req() APDU, the Host shall respond with a vod_pin_cnf()
APDU. The Host shall send the PIN code entered by the user, or it may indicate a desire
to cancel the purchase request by setting the cancel_flag to 0x01.

Table 18 VOD PIN Confirmation Syntax
Syntax # of bits Mnemonic

vod_pin_cnf() {
 vod_pin_cnf_tag
 length_field()
 transaction_id
 cancel_flag

24

12
8

uimsbf

uimsbf
uimsbf

 PINcode_len 8 uimsbf
 for (i=0; i < PINcode_len;
i++) {

 PINcode_byte; 8 Uimsbf
 }
}

vod_pin_cnf_tag 0xTBD
transaction_id The unique transaction ID associated with this purchase request

and subsequent PIN challenge.
cancel_flag If set to anything but 0x00, indicates that the user wishes to

cancel the purchase request.
PINcode_len, PINcode_byte If cancel_flag == 0, these fields allow the iDCR navigation

application to pass the requested PIN code to the CableCARD.
The PINcode_len shall be zero otherwise.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

18

2.8. vod_session_init() and vod_session_init()_cnf() APDU
Syntax

To start a VOD stream, the Host sends a vod_session_init() APDU to the CableCARD.
The CableCARD interacts with the VOD system on the cable plant to initialize a session
for the Host. The session is torn down by the VOD system when the VOD stream is
stopped; typically, because the program has ended, or the user has requested the stream to
be stopped.

The VOD server may time out a Paused stream and end the VOD session. In this case,
the CableCARD shall issue a vod_session_init_cnf() APDU updating the status of the
session.

Table 19 vod_session_init() APDU Syntax

Syntax No. of Bits Mnemonic
Vod_session_init() {

vod_session_init_tag 24 uimsbf
length_field()
provider_id 20*8 uimsbf
asset_id 20*8 uimsbf

}

vod_session_init_tag 0xTBD
provider_ID The provider ID of the requested VOD program.
asset_id The program’s assetID.

The CableCARD will reply with a vod_session_init_cnf() APDU.

Table 20 VOD Session Init Confirmation Object Syntax

Syntax No. of Bits Mnemonic
vod_session_init_cnf() {

vod_session_init_cnf_tag 24 uimsbf
length_field()
session_id 12 uimsbf

 provider_id 20*8 uimsbf
 asset_id 20*8 uimsbf

status_field 8 uimsbf

 duration 32 uimsbf

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

19

Syntax No. of Bits Mnemonic
trickplay_flag 8 uimsbf
transport_type 1 bit
if (transport_type ==
MPEG2) {

 source_ID 16
 frequency 16 uimsbf
 program_number 16
transmission_system 4 Uimsbf
inner_coding_mode 4 Uimsbf
split_bitstream_mode 1 Bslbf {no, yes}
 modulation_format 5 uimsbf
symbol_rate 28 Uimsbf units: symbols per

sec.
} else { /* non-MPEG-2 */
Frequency 16 Uimsbf
video_standard 4 Uimsbf
}
if (descriptors_included)
{

descriptors_count 8 Uimsbf
for (i=0;
i<descriptors_count; i++)
{

descriptor() *
 }

 }
}

vod_session_init_cnf_tag 0xTBD
session_id The unique session identifier created by the VOD system.
provider_ID The provider ID of the requested VOD program.
asset_id The program’s assetID.
status_field This field returns the status of the vod_session_init(). If the

VOD system established a VOD session, then the status_field is
set to 0x00. Otherwise, the status_field is set to one of the
following values.

Table 21 Status Field Values for VOD Purchase Confirm

Status_field Value (hex)
Success 00
System Busy - Try Again 01
Unknown Asset ID 02
Asset has not been purchased 03
Maximum number of simultaneous VOD Sessions exceeded 04
Reserved 05-FF

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

20

duration The duration of the VOD program, in milliseconds. This value is
used in the set_speedpos APDUs.

trickplay_flag Set to 0x00 if no part of the VOD stream supports non-realtime
playback speed. Pause may be supported.
Set to 0x01 if non-realtime playback (trickplay) of any part of
the VOD stream is possible.

transport_type 0 - MPEG2
 1 - Analog
source_ID A 16-bit unsigned integer number, in the range 0x0000 to 0xFFFF, that

identifies the programming source ID associated with the virtual
channel on a system-wide basis,

frequency Contains the frequency for the Host to tune. The frequency is
calculated by multiplying frequency by 0x0.05 MHz (50 kHz
resolution).

program_number A 16-bit unsigned integer number that associates the virtual channel

number being defined with services defined in the Program Association
and TS Program Map Table sections.

transmission_system A 4-bit field that identifies the transmission standard employed for the

waveform. Table 5.7 in SCTE65 defines the coding for
transmission_system.

inner_coding_mode A 4-bit field that indicates the coding mode for the inner code
associated with the waveform. The following values are currently
defined: 5/11, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, and 7/8. Coding of the
inner_coding_mode field is shown in Table 5.8 in SCTE65.

modulation_format A 5-bit field that defines the basic modulation format for the carrier.
Table 5.9 in SCTE65 defines the parameter.

symbol_rate A 28-bit unsigned integer field that indicates the symbol rate in
symbols per second associated with the waveform.

video_standard A 4-bit field that indicates the video standard associated with this non-
Standard virtual channel. Table 5.21 in SCTE65 defines
video_standard.

descriptor() The structure may include, at its end, one or more structures of the form
tag, length, data. The number of descriptors present is determined
indirectly by processing the length field. Descriptors are defined in
Section 6 in SCTE65.

2.9. vod_setspeedpos_req() and vod_setspeedpos_cnf()
APDU Syntax

The Host can request that the VOD server change the play speed or position of the VOD
video stream. The position within the video stream is given by a 32-bit unsigned integer
representing time in milliseconds. The value of the position ranges from 0, indicating the
starting point of the stream up to the value of the duration of the stream, provided in the
session confirmation.

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

21

The speed of the video playback is represented by a floating-point number, with 1.0
representing normal play speed. A positive value indicates forward play and a negative
value indicates reverse play. Non-normal play speed can include fast or slow, forward or
reverse play directions.

In the vod_setspeedpos() APDU, the requested direction and speed of play is determined
by a speed parameter. It consists of a 16-bit signed numerator and 16-bit unsigned
denominator. A value of 1/1 = speed of 1.0 represents normal viewing rate. A
denominator of 0 is invalid and should not be used. A negative number represents
reverse speeds. The VOD system may not support all trickplay speeds. For example, it
may only support fast forward speeds of 3.0 and 10.0. If the Host requests a speed that
the VOD system does not support, the VOD system must set the speed to the closest
speed it does support. The vod_setspeedpos_cnf() APDU shall return the actual speed
that the VOD system will use.

The Host must issue a setspeed_req() APDU with a speed of 1.0 after a successful VOD
purchase and session initiation. The Host may indicate a position other than the beginning
of the stream (0).
If trickplay of the VOD stream is supported, the Host may issue additional
vod_setspeedpos_req APDUs to request a change in the stream play status. A play speed
of 0.0 is a request to pause the stream. A resume of the stream after Pause is
accomplished by requesting any play speed other than 0.0.

Table 22 VOD setspeedpos Request Syntax
Syntax # of bits Mnemonic

vod_setspeedpos_req() {
 vod_setspeedpos_req_tag
 length_field()
 session_id

24

12

uimsbf

uimsbf

 speed_num 16 simsbf
 speed_denom 16 uimsbf
 position_flag 1 bit
 position 32 uimsbf
}

vod_setspeedpos_req_tag 0xTBD
session_id The unique session ID associated with this VOD program
speed_num Numerator of the speed value
speed_denom Denominator of the speed value. Shall never be set to 0.
position_flag 0x00 - Use the stream’s current play position
 0x01 - Use the play position given in this APDU
position The position to execute the speed request at. 0x00 shall represent

the beginning of the stream. A position that goes beyond the

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

22

duration of the stream will stop the stream as if it had reached
the end of the stream.

In response to a vod_setspeedpos_req() APDU, the CableCARD shall respond with a
vod_setspeedpos_cnf() APDU.

Table 23 VOD setspeedposConfirmation Syntax
Syntax # of bits Mnemonic

vod_setspeedpos_cnf() {
 vod_setspeedpos_cnf_tag
 length_field()
 session_id
 status_field

24

12
8

uimsbf

uimsbf
uimsbf

 speed_num 16 simsbf
 speed_denom 16 usisbf
 position 32 uimsbf

}

vod_setspeedpos_cnf_tag 0xTBD
session_id The unique transaction ID associated with this purchase request

and subsequent PIN challenge.
status_field The status of the trickplay request.
position The current play position of the stream.

Table 24 setspeedposconfirmation status field definitions

status_field Value (hex)
request granted 0x00
trickplay at this point not supported 0x01
unrecognized request 0x02
bad speed parameter 0x03
end of stream 0x04
unknown error 0x05

speed_num Numerator of the actual speed value
speed_denom Denominator of the actual speed value. Shall never be set to 0.

Table 25 VOD queryspeedpos Request Syntax
Syntax # of bits Mnemonic

vod_queryspeedpos_req() {
 vod_querypeedpos_req_tag
 length_field()
 session_id

24

12

uimsbf

uimsbf

}

Appendix C -- CEA’s Technical Standards and Specifications, Access to Basic
Interactive Services

August 24, 2007

23

vod_querypeedpos_req_tag 0xTBD
session_id The unique session ID associated with this VOD program

In response to a vod_queryspeedpos_req() APDU, the CableCARD shall respond with a
vod_queryspeedpos_cnf() APDU.

Table 26 VOD queryspeedposConfirmation Syntax
Syntax # of bits Mnemonic

vod_querypeedpos_cnf() {
 vod_queryspeedpos_cnf_tag
 length_field()
 session_id

24

12

uimsbf

uimsbf

 speed_num 16 simsbf
 speed_denom 16 usisbf
 position 32

}

vod_queryspeedpos_cnf_tag 0xTBD
session_id The unique transaction ID associated with this purchase request

and subsequent PIN challenge.
speed_num Numerator of the actual speed value
speed_denom Denominator of the actual speed value. Shall never be set to 0.
position The position of the current play point.

