

Allot Service Gateway

Pushing the DPI Envelope

© Allot Communications. All rights reserved. June 2007

An Introduction

Allot Service Gateway: Pushing the DPI Envelope

 1

Executive Overview
Allot is taking Layer-7 deep packet inspection (DPI) to new horizons. DPI has a vital role to play in next-
generation broadband networks as an enabler of value added service deployment and profitability. The
application awareness provided by DPI at per-subscriber granularity opens up new opportunities for carriers
and service providers to capitalize on the torrent of Internet content and applications traversing their
networks.

As broadband moves into the next phase of market development promoting value added services, carriers
and services providers are attempting to address the dual goals of service optimization (keeping costs
down while maintaining a quality user experience) and service differentiation (offering value added
services based on Internet-based content and applications). The Allot Service Gateway offers a carrier-class
solution with compelling cost and performance advantages to help service providers achieve these goals.

Table of Contents
Broadband Networks are Delivering More Than Ever... 2
Service Providers Struggle to Meet Unprecedented Challenges .. 2
Allot Service Gateway: Leveraging DPI to Meet Next-Generation Service Needs .. 3
Carrier-Class Solution Based on 7 Fundamentals .. 4

1. Powerful DPI Engine ... 4
2. Subscriber Awareness... 4
3. Value Added Services ... 4
4. Openness and Standardization ... 4
5. High Speed and Scalability.. 4
6. Efficiency ... 5
7. Resilience.. 5

Monetizing Bandwidth Use.. 6

Allot Service Gateway: Pushing the DPI Envelope

 2

Broadband Networks are Delivering More Than Ever
Broadband networks were originally designed to connect subscribers to the Internet at high speed. Carriers
and service providers who deployed these big pipes were not particularly concerned with the content of the
traffic flowing through them or the way the service was used. Today, the same broadband infrastructure is
being called upon to deliver data, voice, video and a variety of other content that has multiplied at a dizzying
pace. From VoIP to interactive gaming to streaming video news and entertainment, the Internet has quickly
become an essential part of daily life for millions of people worldwide.

IDC’s May 2006 report1 forecasts strong demand for broadband services well into 2010, but notes that the
nature of broadband service is changing, as observed by IDC analyst, Amy Harris Lind, “…around the world,
service providers are beginning to move…from marketing broadband simply as a faster Internet connection
to promoting broadband as the key enabler of value added services, applications, and content and the digital
home.” As broadband moves into this second phase of market development, service providers face
unprecedented challenges in managing network efficiency as they seek to deploy value added service
(VAS) offerings based on the Internet applications and content using their infrastructure.

Service Providers Struggle to Meet Unprecedented Challenges
Currently, carriers and service providers are attempting to address the dual goals of service optimization
(keeping costs down while maintaining a quality user experience) and service differentiation (offering
value added services based on Internet-based content and applications), by deploying an array of single-
purpose appliances that provide the specific capabilities and services they need.

Service Provider Needs Appliance-based Solutions

Have an accurate view of content and applications and
who is using them

Deep Packet Inspection (DPI), monitoring, statistical traffic
reporting and analysis

Improve the performance of applications with positive
influence on revenues (e.g. churn reduction)

Policy control, Quality of Service (QoS) prioritization and
optimization

Reduce the performance of applications with negative
influence on revenues (e.g. competitive VoIP services)

Policy control, Quality of Service (QoS) prioritization and
optimization

Manage ever-increasing volumes and types of traffic
on the network

Intelligent over-subscription management, Policy control,
Quality of Service (QoS) prioritization and optimization, P2P
caching, acceleration

Separate “good” traffic from “bad” traffic and protect the
network

Denial of Service (DoS) prevention, IPD/IDS, spam control,
anti-virus control

Deploy value-added subscriber services to create new
revenue streams

Bandwidth on Demand, Parental Control (URL filtering),
Clean Line (anti-virus) Clean Mail (remove malware from
online traffic), guaranteed QoS

Comply with regulatory legislation Lawful interception, spam control

Figure 1: Service provider needs and available solutions as broadband enters next phase of market development

The complexity of deploying numerous appliance-based solutions in the network cannot be underestimated.
Often, single-purpose appliances do not fit well into the carrier environment in terms of reliability, scalability,
and performance. These solutions tend to be devices designed for enterprise use and therefore do not
provide the throughput and subscriber awareness required in the service provider networks. In addition, they

1 IDC Market Analysis, Worldwide Broadband Services 2006-2010 Forecast, Amy Harris Lind, May 2006.

Allot Service Gateway: Pushing the DPI Envelope

 3

have limited ability to ramp up, both in terms of capacity and in the number of users they support. Their
limited throughput and scalability increases the number of in-line devices required and hence, the possible
points of failure in the network.

Another barrier to deployment is the “integration nightmare” — the difficulty encountered when implementing
cross vendor solutions that have different standards, interfaces and policy management systems. This
becomes practically impossible when each vendor’s product requires separate integration with the service
provider’s OSS or provisioning environment. Moreover, the need for multiple elements to analyze traffic
flows introduces latency, which can have a negative impact on performance. All of this makes for an
inefficient and costly exercise which often prevents operators from implementing the solutions they’d like to.

Allot Service Gateway: Leveraging DPI to Meet Next-Generation
Service Needs

DPI has a vital role to play in next-generation broadband networks. The Allot
Service Gateway paves a new direction for DPI as an enabler of value added
services in broadband networks. The Allot Service Gateway is a carrier-grade
solution that overcomes the barriers of performance, reliability, application
awareness and subscriber awareness that have made it difficult for service
providers to control capital and operating costs, and to capitalize on the torrent
of Internet content and applications traversing their networks.

The Service Gateway approach combines a powerful DPI engine with an array
of services into a fully integrated, carrier-class platform. Within the Service Gateway, value added services
leverage the Gateway’s DPI and subscriber awareness capabilities, and become more cost-effective by
being hosted on an integrated platform. The power of the Service Gateway rests in its ability to identify the
traffic flows of individual subscribers and direct them to the value added services to which they have
subscribed.

Figure 2: Value added services become more cost-effective as they leverage the Service Gateway’s powerful DPI
capabilities and its single point of integration with operator OSS and provisioning environments

Allot Service Gateway: Pushing the DPI Envelope

 4

Carrier-Class Solution Based on 7 Fundamentals
The carrier-class Allot Service Gateway solution is based on seven fundamental building blocks.

1. Powerful DPI Engine
At the core of the Allot Service Gateway is a cutting-edge DPI engine that provides Layer-7 application
awareness, network intelligence and visibility to all services in the Gateway. Armed with a comprehensive
library of application signatures and the power to inspect traffic flows in real-time at line speeds, Allot’s DPI
engine introduces almost no latency as it identifies the applications traversing the network.

2. Subscriber Awareness
Subscriber awareness is how the Allot Service Gateway delivers value added services to individual
subscribers. By mapping dynamically allocated IP addresses to individual subscribers and their policies, the
Service Gateway is able to direct the traffic to the relevant services. This approach, where core capabilities
are shared by a number of specialized services, creates a service synergy that is highly efficient and can
multiply revenues.

3. Value Added Services
The core services that are built into the Service Gateway are the ones that Allot has traditionally provided,
including policy-based QoS prioritization for P2P applications, guaranteed performance for time-sensitive
applications, service tiering, and centralized management. The modular and open architecture is designed
to facilitate the integration of third party VAS applications—especially those that can leverage Allot’s DPI
engine and become more cost-effective from being hosted on an integrated platform. By providing the
flexibility to choose the best solutions for the job, the Service Gateway ensures that VAS offerings will evolve
with the changing requirements of both subscribers and service providers.

4. Openness and Standardization
Unlike single-purpose appliances, the Allot Service Gateway is an open-architecture platform based on an
AdvancedTCA chassis with modular, hot-swappable blades. The AdvancedTCA (Advanced
Telecommunications Computing Architecture) standard was originally an initiative of the telco industry. It
sets the standards for equipment reliability, scalability, openness, and integration in telco networks. The
Service Gateway approach is based on many of the same motivators and it incorporates the same “carrier-
class” attributes. These attributes include the “5 nines” (99.999%) of reliability and availability, built-in
redundancy with no single point of failure, upgrade and maintenance without downtime, and use of standard
APIs and interfaces.

5. High Speed and Scalability
The high capacity and throughput of the Allot Service Gateway answers service provider requirements for
multiple 10-Gigabit Ethernet interfaces and multi-Gigabit throughput. At its debut, a single platform will
support two 10-Gigabit Ethernet lines and will provide incremental capacity that scales via modular blades
from throughput rates of 5 Gbps to 25 Gbps. The modularity of the Service Gateway platform means that
capacity and value added services can be added at relatively little cost as demand for them grows. The
platform provides a scalable number of 10-Gigabit Ethernet ports for deployment at the network backbone or
other critical places. Likewise, value added services may be added and/or their capacity upgraded by
installing additional blades. Inherent in the Gateway’s modular design and future development is the ability
to increase capacity to even higher levels.

Allot Service Gateway: Pushing the DPI Envelope

 5

6. Efficiency
The Service Gateway approach greatly reduces the complexity and cost of new service deployment and
increases operational efficiency in a number of ways. First, it enables the deployment of a single multi-
purpose platform versus multiple, single purpose appliances. The result is faster deployment with fewer in-
line devices and fewer points of failure and less overhead. All services are governed by the same policy
control rules and the same management applications. Integration with the provider’s OSS or provisioning
platform is done once for the benefit of all functions and services in the Gateway. Moreover, the single DPI
process leveraged by all services in the platform reduces the number of packets handled by each
application to a minimum.

Figure 3: The power of the Service Gateway rests in its ability to efficiently process and redirect specific application traffic
belonging to individual subscribers to the value added services to which they have subscribed

For example, a Parental Control service, which relies on URL filtering capability, is a service that many
parents of young Internet users would like to have, and it could command a premium of say, $4.00 per
month. A typical deployment of URL filtering capability traditionally requires the installation and integration of
enough devices to inspect all traffic flows in the network, even if only 10% of customers have subscribed to
the service. When hosted on the Service Gateway, the URL filtering application will rely on a single DPI
process to inspect the traffic. It will utilize the single point of OSS integration to identify subscribers and their
service policies. It will depend on the Service Gateway to intelligently redirect only those flows that need
Parental Control treatment. In this way, the carrier can deploy far fewer VAS elements to achieve full
coverage and can turn even a partially subscribed service into a money-maker.

7. Resilience
The hardware and software architectures of the Service Gateway are designed to achieve maximum
resilience with maximum efficiency. N+1 redundancy on hot-swappable blades ensures non-stop processing
of traffic flows. Hardware bypass modules protect against failures on Ethernet interfaces, while software
bypass mechanisms enable field upgrades and maintenance with no downtime.

Allot Service Gateway: Pushing the DPI Envelope

www.allot.com info@allot.com

Americas: 7664 Golden Triangle Drive, Eden Prairie, MN 55344 USA - Tel: (952) 944-3100; Toll free: (877) 255-6826; Fax: (952) 944-3555

Europe: NCI–Les Centres d'Affaires Village d'Entreprises, 'Green Side' 400 Avenue Roumanille, BP309 06906 Sophia Antipolis,
Cedex France - Tel: 33 (0) 4-93-001167; Fax: 33 (0) 4-93-001165

Asia Pacific: 6 Ubi Road 1, Wintech Centre 6-12, Singapore 408726 - Tel: 65 6841-3020; Fax: 65 6747-9137

Japan: Puri-zaido Ochanomizu 301, Kanda Surugadai 4-2-3, Chiyoda-ku, Tokyo 101-0062 - Tel: 81 (3) 5297 7668; Fax: 81 (3) 5297 7669

Israel: 22 Hanagar Street, Industrial Zone B, Hod Hasharon, 45240 Israel - Tel: 972 (9) 761-9200; Fax: 972 (9) 744-3626

Monetizing Bandwidth Use
Service providers want to make the most of the multi-billion dollar investment they have made in their
networks. Therefore, they seek to monetize the services they already provide and to add new revenue-
generating services to their portfolio. The Allot Service Gateway can help them achieve this goal.

Figure 4: Allot pushes the DPI envelope, becoming an enabler of value added services in broadband networks

By providing DPI-based network visibility, application control, subscriber management and best-in-class
services on an integrated, carrier-class platform, Allot enables service providers to bundle a rich mix of
capabilities and functions into a variety of VAS packages that deliver extra value above and beyond high-
speed connections to the Internet, creating highly efficient and profitable service synergy.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

A Protocol for Packet Network Intercommunication

VINTON G. CERF AND ROBERT E. KAHN,
MEMBER, IEEE

Abstract — A protocol that supports the sharing of resources that exist
in different packet switching networks is presented. The protocol provides
for variation in individual network packet sizes, transmission failures,
sequencing, flow control, end-to-end error checking, and the creation and
destruction of logical process-to-process connections. Some
implementation issues are considered, and problems such as internetwork
routing, accounting, and timeouts are exposed.

INTRODUCTION
IN THE LAST few years considerable effort has
been expended on the design and implementation of
packet switching networks [1]-[7],[14],[17]. A prin-
ciple reason for developing such networks has been
to facilitate the sharing of computer resources. A
packet communication network includes a transpor-
tation mechanism for delivering data between com-
puters or between computers and terminals. To
make the data meaningful, computer and terminals
share a common protocol (i.e, a set of agreed upon
conventions). Several protocols have already been
developed for this purpose [8]-[12],[16]. However,
these protocols have addressed only the problem of
communication on the same network. In this paper
we present a protocol design and philosophy that
supports the sharing of resources that exist in differ-
ent packet switching networks.

After a brief introduction to internetwork
protocol issues, we describe the function of a
GATEWAY as an interface between networks and
discuss its role in the protocol. We then consider the
various details of the protocol, including addressing,
formatting, buffering, sequencing, flow control,
error control, and so forth. We close with a
description of an interprocess communication
mechanism and show how it can be supported by
the internetwork protocol.

Even though many different and complex
problems must be solved in the design of an
individual packet switching network, these
problems are manifestly compounded when
dissimilar networks are interconnected. Issues arise
which may have no direct counterpart in an
individual network and which strongly influence the
way in which internetwork communication can take
place.

A typical packet switching network is composed
of a set of computer resources called HOSTS, a set

of one or more packet switches, and a collection of
communication media that interconnect the packet
switches. Within each HOST, we assume that there
exist processes which must communicate with
processes in their own or other HOSTS. Any current
definition of a process will be adequate for our
purposes [13]. These processes are generally the
ultimate source and destination of data in the
network. Typically, within an individual network,
there exists a protocol for communication between
any source and destination process. Only the source
and destination processes require knowledge of this
convention for communication to take place.
Processes in two distinct networks would ordinarily
use different protocols for this purpose. The
ensemble of packet switches and communication
media is called the packet switching subnet. Fig. 1
illustrates these ideas.

In a typical packet switching subnet, data of a
fixed maximum size are accepted from a source
HOST, together with a formatted destination address
which is used to route the data in a store and
forward fashion. The transmit time for this data is
usually dependent upon internal network parameters
such as communication media data rates, buffering
and signalling strategies, routeing, propagation
delays, etc. In addition, some mechanism is
generally present for error handling and
determination of status of the networks components.

Individual packet switching networks may differ
in their implementations as follows.

1) Each network may have distinct ways of
addressing the receiver, thus requiring that a
uniform addressing scheme be created which can be
understood by each individual network.

2) Each network may accept data of different
maximum size, thus requiring networks to deal in
units of the smallest maximum size (which may be
impractically small) or requiring procedures which
allow data crossing a network boundary to be
reformatted into smaller pieces.

3) The success or failure of a transmission and
its performance in each network is governed by
different time delays in accepting, delivering, and
transporting the data. This requires careful
development of internetwork timing procedures to
insure that data can be successfully delivered
through the various networks.

4) Within each network, communication may be
disrupted due to unrecoverable mutation of the data
or missing data. End-to-end restoration procedures
are desirable to allow complete recovery from these
conditions.

Paper approved by the Associate Editor for Data Communications of the
IEEE Communications Society for publications without oral presentation.
Manuscript received November 5, 1973. The research reported in this pa-
per was supported in part by the Advanced Research Projects Agency of
the Department of Defense under Contract DAHC 15-73-C-0370.
V.G. Cerf is with the Department of Computer Science and Electrical En-
gineering, Standford University, Stanford, Calif.
R.E. Kahn is with the Information Processing Technology Office,
Advanced Research Projects Agency, Department of Defense, Arlington,
Va.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

Fig. 1. Typical packet switching network.

5) Status information, routing, fault detection,
and isolation are typically different in each network.
thus, to obtain verification of certain conditions,
such as an inaccessible or dead destination, various
kinds of coordination must be invoked between the
communicating networks.

It would be extremely convenient if all the
differences between networks could be
economically resolved by suitable interfacing at the
network boundaries. For many of the differences,
this objective can be achieved. However, both
economic and technical considerations lead us to
prefer that the interface be as simple and reliable as
possible and deal primarily with passing data
between networks that use different packet
switching strategies.

The question now arises as to whether the
interface ought to account for differences in HOST or
process level protocols by transforming the source
conventions into the corresponding destination
conventions. We obviously want to allow
conversion between packet switching strategies at
the interface, to permit interconnection of existing
and planned networks. However, the complexity
and dissimilarity of the HOST or process level
protocols makes it desirable to avoid having to
transform between them at the interface, even if this
transformation were always possible. Rather,
compatible HOST and process level protocols must be
developed to achieve effective internetwork
resource sharing. The unacceptable alternative is for
every HOST or process to implement every protocol
(a potentially unbounded number) that may be
needed to communicate with other networks. We
therefore assume that a common protocol is to be
used between HOST’S or processes in different
networks and that the interface between networks
should take as small a role as possible in this
protocol.

To allow networks under different ownership to
interconnect, some accounting will undoubtedly be
needed for traffic that passes across the interface. In
its simplest terms, this involves an accounting of
packets handled by each net for which charges are

passed from net to net until the buck finally stops at
the user or his representative. Furthermore, the
interconnection must preserve intact the internal
operation of each individual network. This is easily
achieved if two networks interconnect as if each
were a HOST to the other network, but without
utilising or indeed incorporating any elaborate HOST

protocol transformations.
It is thus apparent that the interface between

networks must play a central role in the
development of any network interconnection
strategy. We give a special name to this interface
that performs these functions and call it a GATEWAY.

THE GATEWAY NOTION

In Fig. 2 we illustrate three individual networks
labelled A, B, and C which are joined by GATEWAYS

M and N. GATEWAY M interfaces network A with
network B, and GATEWAY N interfaces network B to
network C. We assume that an individual network
may have more than one GATEWAY (e.g., network B)
and that there may be more than one GATEWAY path
to use in going between a pair of networks. The
responsibility for properly routing data resides in
the GATEWAY.

In practice, a GATEWAY between two networks
may be composed of two halves, each associated
with its own network. It is possible to implement
each half of a GATEWAY so it need only embed
internetwork packets in local packet format or
extract them. We propose that the GATEWAY handle
internetwork packets in a standard format, but we
are not proposing any particular transmission
procedure between GATEWAY halves.

Let us now trace the flow of data through the
interconnected networks. We assume a packet of
data from process X enters network A destined for
process Y in network C. The address of Y is initially
specified by process X and the address of GATEWAY

M is derived from the address of process Y. We
make no attempt to specify whether the choice of
GATEWAY is made by process X, its HOST, or one of
the packet switches in network A. The packet
traverses network A until it reaches GATEWAY M. At
the GATEWAY, the packet is reformatted to meet the
requirements of network B, account is taken of this
unit of flow between A and B, and the GATEWAY

delivers the packet to network B. Again the
derivation of the next GATEWAY address is
accomplished based on the address of the
destination Y. In this case, GATEWAY N is the next
one. The packet traverses network B until it finally
reaches GATEWAY N where it is formatted to meet the
requirements of network C. Account is again taken
of this unit of flow between networks B and C.
Upon entering network C, the packet is routed to the
HOST in which process Y resides and there it is
delivered to its ultimate destination.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

Fig. 2. Three networks interconnected by two GATEWAYS.

Fig. 3. Internetwork packet format (fields not shown to scale).

Since the GATEWAY must understand the address
of the source and destination HOSTS, this information
must be available in a standard format in every
packet which arrives at the GATEWAY. This
information is contained in an internetwork header
prefixed to the packet by the source HOST. The
packet format, including the internetwork header, is
illustrated in Fig. 3. The source and destination
entries uniformly and uniquely identify the address
of every HOST in the composite network. Addressing
is a subject of considerable complexity which is
discussed in greater detail in the next section. The
next two entries in the header provide a sequence
number and a byte count that may be used to
properly sequence the packets upon delivery to the
destination and may also enable the GATEWAYS to
detect fault conditions affecting the packet. The flag
field is used to convey specific control information
and is discussed in the section on retransmission and
duplicate detection later. The remainder of the
packet consists of text for delivery to the destination
and a trailing check sum used for end-to-end
software verification. The GATEWAY does not modify
the text and merely forwards the check sum along
without computing or recomputing it.

Each network may need to augment the packet
format before it can pass through the individual
network. We have indicated a local header in the
figure which is prefixed to the beginning of the
packet. This local header is introduced merely to
illustrate the concept of embedding an internetwork
packet in the format of the individual network
through which the packet must pass. It will
obviously vary in its exact form from network to
network and may even be unnecessary in some
cases. Although not explicitly indicated in the
figure, it is also possible that a local trailer may be
appended to the end of the packet.

Unless all transmitted packets are legislatively
restricted to be small enough to be accepted by
every individual network, the GATEWAY may be
forced to split a packet into two or more smaller
packets. This action is called fragmentation and
must be done in such a way that the destination is
able to piece together the fragmented packet. It is
clear that the internetwork header format imposes a
minimum packet size which all networks must carry
(obviously all networks will want to carry packets

larger than this minimum). We believe the long
range growth and development of internetwork
communication would be seriously inhibited by
specifying how much larger than the minimum a
packet size can be, for the following reasons.

1) If a maximum permitted packet size is
specified then it becomes impossible to completely
isolate the internal packet size parameters of one
network from the internal packet size parameters of
all other networks.

2) It would be very difficult to increase the
maximum permitted packet size in response to new
technology (e.g. large memory systems, higher data
rate communication facilities, etc.) since this would
require the agreement and then implementation by
all participating networks.

3) Associative addressing and packet encryption
may require the size of a particular packet to expand
during transit for incorporation of new information.

Provision for fragmentation (regardless of
where it is performed) permits packet size variations
to be handled on an individual network basis
without global administration and also permits
HOSTS and processes to be insulated from changes in
the packet sizes permitted in any networks through
which their data must pass.

If fragmentation must be done, it appears best to
do it upon entering the next network at the GATEWAY

since only this GATEWAY (and not the other
networks) must be aware of the internal packet size
parameters which made the fragmentation
necessary.

If a GATEWAY fragments an incoming packet into
two or more packets, they must eventually be passed
along to the destination HOST as fragments or
reassembled for the HOST. It is conceivable that one
might desire the GATEWAY to perform the reassembly
to simplify the task of the destination HOST (or
process) and/or to take advantage of the larger
packet size. We take the position that GATEWAY

should not perform this function since GATEWAY

reassembly can lead to serious buffering problems,
potential deadlocks, the necessity for all fragments
of a packet to pass through the same GATEWAY, and
increased delay in transmission. Furthermore, it is
not sufficient for the GATEWAY to provide this
function since the final GATEWAY may also have to
fragment a packet for transmission. Thus the
destination HOST must be prepared to do this task.

Let us now turn briefly to the somewhat unusual
accounting effect which arises when a packet may
be fragmented by one or more GATEWAY. We
assume, for simplicity, that each network initially
charges a fixed rate per packet transmitted,
regardless of distance, and if one network can
handle a larger packet size than another, it charges a
proportionally larger price per packet. We also
assume that a subsequent increase in any network’s
packet size does not result in additional cost per
packet to its users. The charge to a user thus remains

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

basically constant through any net which must
fragment a packet. The unusual effect occurs when a
packet is fragmented into smaller packets which
must individually pass through a subsequent
network with a larger packet size than the original
unfragmented packet. We expect that most networks
will naturally select packet sizes close to one
another, but in any case, an increase in packet size
in one net, even when it causes fragmentation, will
not increase the cost of transmission and may
actually decrease it. In the event that any other
packet charging policies (than the one we suggest)
are adopted, differences in cost can be used as an
economic lever toward optimisation of individual
network performance.

PROCESS LEVEL COMMUNICATION

We suppose that processes wish to communicate
in full duplex with their correspondents using
unbounded but finite length messages. A single
character might constitute the text of a message
from a process to a terminal or vice versa. An entire
page of characters might constitute the text of a
message from a file to a process. A data stream (e.g.
a continuously generated bit string) can be
represented as a sequence of finite length messages.

Within a HOST we assume that existence of a
transmission control program (TCP) which handles
the transmission and acceptance of messages on
behalf of the processes it serves. The TCP is in turn
served by one or more packet switches connected to
the HOST in which the TCP resides. Processes that
want to communicate present messages to the TCP
for transmission, and TCP’s deliver incoming
messages to the appropriate destination processes.
We allow the TCP to break up messages into
segments because the destination may restrict the
amount of data that may arrive, because the local
network may limit the maximum transmissin size,
or because the TCP may need to share its resources
among many processes concurrently. Furthermore,
we constrain the length of a segment to an integral
number of 8-bit bytes. This uniformity is most
helpful in simplifying the software needed with
HOST machines of different natural word lengths.
Provision at the process level can be made for
padding a message that is not an integral number of
bytes and for identifying which of the arriving bytes
of text contain information of interest to the
receiving process.

Mutliplexing and demultiplexing of segments
among processes are fundamental tasks of the TCP.
On transmission, a TCP must multiplex together
segments from different source processes and
produce internetwork packets for delivery to one of
its serving packet switches. On reception, a TCP
will accept a sequence of packets from its serving
packet switch(es). From this sequence of arriving
packets (generally from different HOSTS), the TCP

must be able to reconstruct and deliver messages to
the proper destination processes.

We assume that every segment is augmented
with additional information that allows transmitting
and receiving TCP’s to identify destination and
source processes, respectively. At this point, we
must face a major issue. How should the source
TCP format segments destined for the same
destination TCP? We consider two cases.

Case 1): If we take the position that segment
boundaries are immaterial and that a byte stream
can be formed of segments destined for the same
TCP, then we may gain improved transmission
efficiency and resource sharing by arbitrarily
parceling the stream into packets, permitting many
segments to share a single internetwork packet
header. However, this position results in the need to
reconstruct exactly, and in order, the stream of text
bytes produced by the source TCP. At the
destination, this stream must first be parsed into
segments and these in turn must be used to
reconstruct messages for delivery to the appropriate
processes.

There are fundamental problems associated with
this strategy due to the possible arrival of packets
out of order at the destination. The most critical
problem appears to be the amount of interference
that processes sharing the same TCP-TCP byte
stream may cause among themselves. This is
especially so at the receiving end. First, the TCP
may be put to some trouble to parse the stream back
into segments and then distribute them to buffers
where messages are reassembled. If it is not readily
apparent that all of a segment has arrived
(remember, it may come as several packets), the
receiving TCP may have to suspend parsing
temporarily until more packets have arrived.
Second, if a packet is missing, it may not be clear
whether succeeding segments, even if they are
identifiable, can be passed on to the receiving
process, unless the TCP has knowledge of some
process level sequencing scheme. Such knowledge
would permit the TCP to decide whether a
succeeding segment could be delivered to its
waiting process. Finding the beginning of a segment
when there are gaps in the byte stream may also be
hard.

Case 2): Alternatively, we might take the
position that the destination TCP should be able to
determine, upon its arrival and without additional
information, for which process or processes a
received packet is intended, and if so, whether it
should be delivered then.

If the TCP is to determine for which process an
arriving packet is intended, every packet must
contain a process header (distinct from the
internetwork header) that completely identifies the
destination process. For simplicity, we assume that
each packet contains text from a single process
which is destined for a single process. Thus each

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

packet need contain only one process header. To
decide whether the arriving data is deliverable to the
destination process, the TCP must be able to
determine whether the data is in the proper sequence
(we can make provision for the destination process
to instruct its TCP to ignore sequencing, but this is
considered a special case). With the assumption that
each arriving packet contains a process header, the
necessary sequencing and destination process
identification is immediately available to the
destination TCP.

Both Cases 1) and 2) provide for the
demultiplexing and delivery of segments to
destination processes, but only Case 2) does so
without the introduction of potential interprocess
interference. Furthermore, Case 1) introduces extra
machinery to handle flow control on a HOST-to-HOST

basis, since there must also be some provision for
process level control, and this machinery is little
used since the probability is small that within a
given HOST, two processes will be coincidentally
scheduled to send messages to the same destination
HOST. For this reason, we select the method of Case
2) as a part of the internetwork transmission
protocol.

ADDRESS FORMATS

The selection of address formats is a problem
between networks because the local network
addresses of TCP’s may vary substantially in format
and size. A uniform internetwork TCP address
space, understood by each GATEWAY and TCP, is
essential to routing and delivery of internetwork
packets.

Similar troubles are encountered when we deal
with process addressing and, more generally, port
addressing. We introduce the notion of ports in
order to permit a process to distinguish between
multiple message streams. The port is simply a
designator of one such message stream associated
with a process. The means for identifying a port are
generally different in different operating systems,
and therefore, to obtain uniform addressing, a
standard port address format is also required. A port
address designates a full duplex message stream.

TCP ADDRESSING

TCP addressing is intimately bound up in
routeing issues, since a HOST or GATEWAY must
choose a suitable destination HOST or GATEWAY for an
outgoing internetwork packet. Let us postulate the
following address format for the TCP address (Fig.
4). The choice for network identification (8 bits)
allows up to 256 distinct networks. This size seems
sufficient for the foreseeable future. Similarly, the
TCP identifier field permits up to 65 536 distinct
TCP’s to be addressed, which seems more than
sufficient for any given network.

As each packet passes through a GATEWAY, the
GATEWAY observes the destination network ID to
determine how to route the packet. If the destination
network is connected to the GATEWAY, the lower 16
bits of the TCP address are used to produce a local
TCP address in the destination network. If the
destination network is not connected to the
GATEWAY, the upper 8 bits are used to select a
subsequent GATEWAY. We make no effort to specify
how each individual network shall associate the
internetwork TCP identifier with its local TCP
address. We also do not rule out the possibility that
the local network understands the internetwork
addressing scheme and thus alleviates the GATEWAY

of the routing responsibility.

PORT ADDRESSING

A receiving TCP is faced with the task of
demultiplexing the stream of internetwork packets it
receives and reconstructing the original messages
for each destination process. Each operating system
has its own internal means of identifying processes
and ports. We assume that 16 bits are sufficient to
serve as internetwork port identifiers. A sending
process need not know how the destination port
identification will be used. The destination TCP will
be able to parse this number appropriately to find
the proper buffer into which it will place arriving
packets. We permit a large port number field to
support processes which want to distinguish
between many different message streams
concurrently. In reality, we do not care how the 16
bits are sliced up by the TCP’s involved.

Fig. 4. TCP address.

Even though the transmitted port name field is
large, it is still a compact external name for the
internal representation of the port. The use of short
names for port identifiers is often desirable to
reduce transmission overhead and possibly reduce
packet processing time at the destination TCP.
Assigning short names to each port, however,
requires an initial negotiation between source and
destination to agree on a suitable short name
assignment, the subsequent maintenance of
conversion tables at both the source and the
destination, and a final transaction to release the
short name. For dynamic assignment of port names,
this negotiation is generally necessary in any case.

SEGMENT AND PACKET FORMATS

As shown in Fig. 5, messages are broken by the
TCP into segments whose format is shown in more
detail in Fig. 6. The field lengths illustrated are

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

merely suggestive. The first two fields (source port
and destination port in the figure) have already been
discussed in the preceding section on addressing.
The uses of the third and fourth fields (window and
acknowledgement in the figure) will be discussed
later in the section on retransmission and duplicate
detection.

We recall from Fig. 3 that an internetwork
header contains both a sequence number and a byte
count, as well as a flag field and a check sum. The
uses of these fields are explained in the following
section.

REASSEMBLY AND SEQUENCING

The reconstruction of a message at the receiving
TCP clearly requires1 that each internetwork packet
carry a sequence number which is unique to its
particular destination port message stream. The
sequence numbers must be monotonic increasing
(or decreasing) since they are used to reorder and
reassemble arriving packets into a message. If the
space of sequence numbers were infinite, we could
simply assign the next one to each new packet.
Clearly, this space cannot be infinite, and we will
consider what problems a finite sequence number
space will cause when we discuss retransmission
and duplicate detection in the next section. We
propose the following scheme for performing the
sequencing of packets and hence the reconstruction
of messages by the destination TCP.

A pair of ports will exchange one or more
messages over a period of time. We could view the
sequence of messages produced by one port as if it
were embedded in an infinitely long stream of bytes.
Each byte of the message has a unique sequence
number which we take to be its byte location
relative to the beginning of the stream. When a
segment is extracted from the message by the source
TCP and formatted for internetwork transmission,
the relative location of the first byte of segment text
is used as the sequence number for the packet. The
byte count field in the internetwork header accounts
for all the text in the segment (but does not include
the check-sum bytes or the bytes in either
internetwork or process header). We emphasise that

the sequence number associated with a given packet
is unique only to the pair of ports that are
communicating (see Fig. 7). Arriving packets are
examined to determine for which port they are
intended. The sequence numbers on each arriving
packet are then used to determine the relative
location of the packet text in the messages under
reconstruction. We note that this allows the exact
position of the data in the reconstructed message to
be determined even when pieces are still missing.

Every segment produced by a source TCP is
packaged in a single internetwork packet and a
check sum is computed over the text and process
header associated with the segment.

The splitting of messages into segments by the
TCP and the potential splitting of segments into
smaller pieces by GATEWAY creates the necessity for
indicating to the destination TCP when the end of a
segment (ES) has arrived and when the end of a
message (EM) has arrived. The flag field of the
internetwork header is used for this purpose (see
Fig. 8).

The ES flag is set by the source TCP each time it
prepares a segment for transmission. If it should
happen that the message is completely contained in

Fig. 5. Creation of segments and packets from messages.

Fig. 6. Segment format (process header and text).

1 In the case of encrypted packets, a preliminary stage of reassembly may
be required prior to decryption.

Fig. 7. Assignment of sequence numbers.

Fig. 8. Internetwork header flag field.

Fig. 9. Message splitting and packet splitting.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

the segment, then the EM flag would also be set.
The EM flag is also set on the last segment of a
message, if the message could not be contained in
one segment. These two flags are used by the
destination TCP, respectively, to discover the
presence of a check sum for a given segment and to
discover that a complete message has arrived.

The ES and EM flags in the internetwork header
are known to the GATEWAY and are of special
importance when packets must be split apart from
propagation through the next local network. We
illustrate their use with an example in Fig. 9.

The original message A in Fig. 9 is shown split
into two segments A1 and A2 and formatted by the
TCP into a pair of internetwork packets. Packets A1
and A2 have their ES bits set, and A2 has its EM bit
set as well. When packet A1 passes through the
GATEWAY, it is split into two pieces: packet A11 for
which neither EM nor ES bits are set, and packet
A12 whose ES bit is set. Similarly, packet A2 is split
such that the first piece, packet A21, has neither bit
set, but packet A22 has both bits set. The sequence
number field (SEQ) and the byte count field (CT) of
each packet is modified by the GATEWAY to properly
identify the text bytes of each packet. The GATEWAY

need only examine the internetwork header to do
fragmentation.

The destination TCP, upon reassembling
segment A1, will detect the ES flag and will verify
the check sum it knows is contained in packet A12.
Upon receipt of packet A22, assuming all other
packets have arrived, the destination TCP detects
that it has reassembled a complete message and can
now advise the destination process of its receipt.

RETRANSMISSION AND DUPLICATE
DETECTION

No transmission can be 100 percent reliable. We
propose a timeout and positive acknowledgement
mechanism which will allow TCP’s to recover from
packet losses from one HOST to another. A TCP
transmits packets and waits for replies
(acknowledgements) that are carried in the reverse
packet stream. If no acknowledgement for a
particular packet is received, the TCP will
retransmit. It is our expectation that the HOST level
retransmission mechanism, which is described in
the following paragraphs, will not be called upon
very often in practice. Evidence already exists2 that
individual networks can be effectively constructed
without this feature. However, the inclusion of a
HOST retransmission capability makes it possible to
recover from occasional network problems and
allows a wide range of HOST protocol strategies to be
incorporated. We envision it will occasionally be
invoked to allow HOST accommodation to infrequent

overdemands for limited buffer resources, and
otherwise not used much.

Any retransmission policy requires some means
by which the receiver can detect duplicate arrivals.
Even if an infinite number of distinct packet
sequence numbers were available, the receiver
would still have the problem of knowing how long
to remember previously received packets in order to
detect duplicates. Matters are complicated by the
fact that only a finite number of distinct sequence
numbers are in fact available, and if they are reused,
the receiver must be able to distinguish between
new transmissions and retransmissions.

A window strategy, similar to that used by the
French CYCLADES system (voie virtuelle transmission
mode [8]) and the ARPANET very distant HOST

connection [18]), is proposed here (see Fig. 10).
Suppose that the sequence number field in the

internetwork header permits sequence numbers to
range from 0 to n − 1. We assume that the sender
will not transmit more than w bytes without
receiving an acknowledgment. The w bytes serve as
the window (see Fig. 11). Clearly, w must be less
than n. The rules for sender and receiver are as
follows.

Sender: Let L be the sequence number
associated with the left window edge.

1) The sender transmits bytes from segments
whose text lies between L and up to L + w − 1.

2) On timeout (duration unspecified), the sender
retransmits unacknowledged bytes.

3) On receipt of acknowledgment consisting of
the receiver’s current left window edge, the sender’s
2 The ARPANET is one such example.

Fig. 10. The window concept.

Fig. 11. Conceptual TCB format.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

left window edge is advanced over the
acknowledged bytes (advancing the right window
edge implicity).

Receiver:

1) Arriving packets whose sequence numbers
coincide with the receiver’s current left window
edge are acknowledged by sending to the source the
next sequence number expected. This effectively
acknowledges bytes in between. The left window
edge is advanced to the next sequence number
expected.

2) Packets arriving with a sequence number to
the left of the window edge (or, in fact, outside of
the window) are discarded, and the current left
window edge is returned as acknowledgement.

3) Packets whose sequence numbers lie within
the receiver’s window but do not coincide with the
receiver’s left window edge are optionally kept or
discarded, but are now acknowledged. This is the
case when packets arrive out of order.

We make some observations on this strategy.
First, all computations with sequence numbers and
window edges must be made modulo n (e.g., byte 0
follows byte n−1). Second, w must be less than n/23;
otherwise a retransmission may appear to the
receiver to be a new transmission in the case that the
receiver can either save or discard arriving packets
whose sequence numbers do not coincide with the
receiver’s left window. Thus, in the simplest
implementation, the receiver need not buffer more
than one packet per message stream if space is
critical. Fourth, multiple packets can be
acknowledged simultaneously. Fifth, the receiver is
able to deliver messages to processes in their proper
order as a natural result of the reassembly
mechanism. Sixth, when duplicates are detected, the
acknowledgment method used naturally works to
resynchronize sender and receiver. Furthermore, if
the receiver accepts packets whose sequence
numbers lie within the current window but which
are not coincident with the left window edge, an
acknowledgment consisting of the current left
window edge would act as a stimulus to cause
retransmission of the unacknowledged bytes.
Finally, we mention an overlap problem which
results from retransmission, packet splitting, and
alternate routing of packets through different
GATEWAYS.

A 600-byte packet might pass through one
GATEWAY and be broken into two 300-byte packets.
On retransmission, the same packet might be broken
into three 200-byte packets going through a
different HOST. Since each byte has a sequence
number, there is no confusion at the receiving TCP.
We leave for later the issue of initially
synchronizing the sender and receiver left window
edges and the window size.

FLOW CONTROL

Every segment that arrives at the destination
TCP is ultimately acknowlegded by returning the
sequence number of the next segment which must
be passed to the process (it may not yet have
arrived).

Earlier we described the use of a sequence
number space and window to aid in duplicate
detection. Acknowledgments are carried in the
process header (see Fig. 6) and along with them
there is provision for a “suggested window” which
the receiver can use to control the flow of data from
the sender. This is intended to be the main
component of the process flow control mechanism.
The receiver is free to vary the window size
according to any algorithm it desires so long as the
window size never exceeds half the sequence
number space.3

This flow control mechanism is exceedingly
powerful and flexible and does not suffer from
synchronization troubles that may be encountered
by incremental buffer allocation schemes [9], [10].
However, it relies heavily on an effective
retransmission strategy. The receiver can reduce the
window even while packets are en route from the
sender whose window is presently larger. The net
effect of this reduction will be that the receiver may
discard incoming packets (they may be outside the
window) and reiterate the current window size
along with a current window edge as
acknowledgment. By the same token, the sender
can, upon occasion, choose to send more than a
window’s worth of data on the possibility that the
receiver will expand the window to accept it (of
course, the sender must not send more than half the
sequence number space at any time). Normally, we
would expect the sender to abide by the window
limitation. Expansion of the window by the receiver
merely allows more data to be accepted. For the
receiving HOST with a small amount of buffer space,
a strategy of discarding all packets whose sequence
numbers do not coincide with the current left edge
of the window is probably necessary, but it will
incur the expense of extra delay and overhead for
retransmission.

TCP INPUT/OUTPUT HANDLING

The TCP has a component which handles input/
output (I/O) to and from the network.4 When a
packet has arrived, it validates the addresses and
places the packet on a queue. A pool of buffers can
be set up to handle arrivals, and if all available
buffers are used up, succeeding arrivals can be
discarded since unacknowledged packets will be
retransmitted.
3 Actually n/2 is merely a convenient number to use; it is only required that
a retransmission not appear to be a new transmission.
4 This component can serve to handle other protocols whose associated
control programs are designated by internetwork destination address.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

On output, a smaller amount of buffering is
needed, since process buffers can hold the data to be
transmitted. Perhaps double buffering will be
adequate. We make no attempt to specify how the
buffering should be done, except to require that it be
able to service the network with as little overhead as
possible. Packet sized buffers, one or more ring
buffers, or any other combination are possible
candidates.

When a packet arrives at the destination TCP, it
is placed on a queue which the TCP services
frequently. For example, the TCP could be
interrupted when a queue placement occurs. The
TCP then attempts to place the packet text into the
proper place in the appropriate process receive
buffer. If the packet terminates a segment, then it
can be checksummed and acknowledged. Placement
may fail for several reasons.

1) The destination process may not be prepared
to receive from the stated source, or the destination
port ID may not exist.

2) There may be insufficient buffer space for the
text.

3) The beginning sequence number of the text
may not coincide with the next sequence number to
be delivered to the process (e.g., the packet has
arrived out of order).

In the first case, the TCP should simply discard
the packet (thus far, no provision has been made for
error acknowledgments). In the second and third
cases, the packet sequence number can be inspected
to determine whether the packet text lies within the
legitimate window for reception. If it does, the TCP
may optionally keep the packet queued for later
processing. If not, the TCP can discard the packet.
In either case the TCP can optionally acknowledge
with the current left window edge.

It may happen that the process receive buffer is
not present in the active memory of the HOST, but is
stored on secondary storage. If this is the case, the
TCP can prompt the scheduler to bring in the
appropriate buffer and the packet can be queued for
later processing.

If there are no more input buffers available to
the TCP for temporary queuing of incoming
packets, and if the TCP cannot quickly use the
arriving data (e.g., a TCP to TCP message), then the
packet is discarded. Assuming a sensibly
functioning system, no other processes than the one
for which the packet was intended should be
affected by this discarding. If the delayed
processing queue grows excessively long, any
packets in it can be safely discarded since none of
them have yet been acknowledged. Congestion at
the TCP level is flexibly handled owing to the
robust retransmission and duplicate detection
strategy.

TCP/PROCESS COMMUNICATION

In order to send a message, a process sets up its
text in a buffer region in its own address space,
inserts the requisite control information (described
in the following list) in a transmit control block
(TCB) and passes control to the TCP. The exact
form of a TCB is not specified here, but it might
take the form of a passed pointer, a pseudointerrupt,
or various other forms. To receive a message in its
address space, a process sets up a receive buffer,
inserts the requisite control information in a receive
control block (RCB) and again passes control to the
TCP.

In some simple systems, the buffer space may in
fact be provided by the TCP. For simplicity we
assume that a ring buffer is used by each process,
but other structures (e.g., buffer chaining) are not
ruled out.

A possible format for the TCB is shown in Fig.
11. The TCB contains information necessary to
allow the TCP to extract and send the process data.
Some of the information might be implicitly known,
but we are not concerned with that level of detail.
The various fields in the TCB are described as
follows.

1) Source Address: This is the full net/HOST/
TCP/port address of the transmitter.

2) Destination Address: This is the full net/HOST/
TCP/port of the receiver.

3) Next Packet Sequence Number: This is the
sequence number to be used for the next packet the
TCP will transmit from this port.

4) Current Buffer Size: This is the present size of
the process transmit buffer.

5) Next Write Position: This is the address of the
next position in the buffer at which the process can
place new data for transmission.

6) Next Read Position: This is the address at
which the TCP should begin reading to build the
next segment for output.

7) End Read Position: This is the address at
which the TCP should halt transmission. Initially 6)
and 7) bound the message which the process wishes
to transmit.

8) Number of Retransmissions/Maximum
Retransmissions: These fields enable the TCP to
keep track of the number of times it has
retransmitted the data and could be omitted if the
TCP is not to give up.

9) Timeout/Flags: The timeout field specifies
the delay after which unacknowledged data should
be retransmitted. The flag field is used for
semaphores and other TCP/process synchronization
status reporting, etc.

10) Current Acknowledgment/Window: The
current acknowledgment field identifies the first
byte of data still unacknowledged by the destination
TCP.

The read and write positions move circularly
around the transmit buffer, with the write position

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

always to the left (module the buffer size) of the
read position.

The next packet sequence number should be
constrained to be less than or equal to the sum of the
current acknowledgment and the window fields. In
any event, the next sequence number should not
exceed the sum of the current acknowledgment and
half of the maximum possible sequence number (to
avoid confusing the receiver’s duplicate detection
algorithm). A possible buffer layout is shown in Fig.
12.

The RCB is substantially the same, except that
the end read field is replaced by a partial segment
check-sum register which permits the receiving
TCP to compute and remember partial check sums
in the event that a segment arrives in several
packets. When the final packet of the segment
arrives, the TCP can verify the check sum and if
successful, acknowledge the segment.

CONNECTIONS AND ASSOCIATIONS

Much of the thinking about process-to-process
communication in paket switched networks has
been influenced by the ubiquitous telephone system.
The HOST-HOST protocol for the ARPANET deals
explicitly with the opening and closing of simplex
connections between processes [9],[10]. Evidence
has been presented that message-based “connection-
free” protocols can be constructed [12], and this
leads us to carefully examine the notion of a
connection.

The term connection has a wide variety of
meanings. It can refer to a physical or logical path
between two entities, it can refer to the flow over the
path, it can inferentially refer to an action associated
with the setting up of a path, or it can refer to an
association between two or more entities, with or
without regard to any path between them. In this
paper, we do not explicitly reject the term
connection, since it is in such widespread use, and
does connote a meaningful relation, but consider it
exclusively in the sense of an association between
two or more entities without regard to a path. To be
more precise about our intent, we shall define the
relationship between two or more ports that are in
communication, or are prepared to communicate to
be an association. Ports that are associated with
each other are called associates.

It is clear that for any communication to take
place between two processes, one must be able to
address the other. The two important cases here are
that the destination port may have a global and
unchanging address or that it may be globally
unique but dynamically reassigned. While in either
case the sender may have to learn the destination
address, given the destination name, only in the
second instance is there a requirement for learning
the address from the destination (or its
representative) each time an association is desired.

Only after the source has learned how to address the
destination can an association be said to have
occurred. But this is not yet sufficient. If ordering of
delivered messages is also desired, both TCP’s must
maintain sufficient information to allow proper
sequencing. When this information is also present at
both ends, then an association is said to have
occurred.

Note that we have not said anything about a
path, nor anything which implies that either end be
aware of the condition of the other. Only when both
partners are prepared to communicate with each
other has an association occurred, and it is possible
that neither partner may be able to verify that an
association exists until some data flows between
them.

CONNECTION-FREE PROTOCOLS WITH
ASSOCIATIONS

In the ARPANET, the interface message processors
(IMP’s) do not have to open and close connections
from source to destination. The reason for this is
that connections are, in effect, always open, since
the address of every source and destination is never5

reassigned. When the name and the place are static
and unchanging, it is only necessary to label a
packet with source and destination to transmit it
through the network. In our parlance, every source
and destination forms an association.

In the case of processes, however, we find that
port addresses are continually being used and
reused. Some ever present processes could be
assigned fixed addresses which do not change (e.g.,
the logger process). If we supposed, however, that
every TCP had an infinite supply of port addresses
so that no old address would ever be reused, then
any dynamically created port would be assigned the
next unused address. In such an environment, there
could never be any confusion by source and
destination TCP as to the intended recipient or
implied source of each message, and all ports would
be associates.

Unfortunately, TCP’s (or more properly,
operating systems) tend not to have an infinite
supply of internal port addresses. These internal
addresses are reassigned after the demise of each
port. Walden [12] suggests that a set of unique
uniform external port addresses could be supplied
by a central registry. A newly created port could
apply to the central registry for an address which the
central registry would guarantee to be unused by
any HOST system in the network. Each TCP could
maintain tables matching external names with
5 Unless the IMP is physically moved to another site, or the HOST is con-
nected to a different IMP.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

internal ones, and use the external ones for
communication with other processes. This idea
violates the premise that interprocess
communication should not require centralized
control. One would have to extend the central
registry service to include all HOST’S in all the
interconnected networks to apply this idea to our
situation, and we therefore do not attempt to adopt
it.

Let us consider the situation from the standpoint
of the TCP. In order to send or receive data for a
given port, the TCP needs to set up a TCB and RCB
and initialize the window size and left window edge
for both. On the receive side, this task might even be
delayed until the first packet destined for a given
port arrives. By convention, the first packet should
be marked so that the receiver will synchronize to
the received sequence number.

On the send side, the first request to transmit
could cause a TCB to be set up with some initial
sequence number (say, zero) and an assumed
window size. The receiving TCP can reject the
packet if it wishes and notify the sending TCP of the
correct window size via the acknowledgment
mechanism, but only if either

1) we insist that the first packet be a complete
segment;

2) an acknowledgment can be sent for the first
packet (even if not a segment, as long as the
acknowledgment specifies the next sequence
number such that the source also understands that
no bytes have been accepted).

It is apparent, therefore, that the synchronizing
of window size and left window edge can be
accomplished without what would ordinarily be
called a connection setup.

The first packet referencing a newly created
RCB sent from one associate to another can be
marked with a bit which requests that the receiver
synchronize his left window edge with the sequence
number of the arriving packet (see SYN bit in Fig.
8). The TCP can examine the source and destination
port addresses in the packet and in the RCB to
decide whether to accept or ignore the request.

Provision should be made for a destination
process to specify that it is willing to LISTEN to a
specific port or “any” port. This last idea permits
processes such as the logger process to accept data
arriving from unspecified sources. This is purely a
HOST matter, however.

The initial packet may contain data which can
be stored or discarded by the destination, depending
on the availability of destination buffer space at the
time. In the other direction, acknowledgment is
returned for receipt of data which also specifies the
receiver’s window size.

If the receiving TCP should want to reject the
synchronization request, it merely transmits an
acknowledgment carrying a release (REL) bit (see
Fig. 8) indicating that the destination port address is
unknown or inaccessible. The sending HOST waits
for the acknowledgment (after accepting or
rejecting the synchronization request) before
sending the next message or segment. This rejection
is quite different from a negative data
acknowledgment. We do not have explicit negative
acknowledgments. If no acknowledgment is
returned, the sending HOST may retransmit without
introducing confusion if, for example, the left
window edge is not changed on the retransmission.

Because messages may be broken up into many
packets for transmission or during transmission, it
will be necessary to ignore the REL flag except in
the case that the EM flag is also set. This could be
accomplished either by the TCP or by the GATEWAY

which could reset the flag on all but the packet
containing the set EM flag (see Fig. 9).

At the end of an association, the TCP sends a
packet with ES, EM, and REL flags set. The packet
sequence number scheme will alert the receiving
TCP if there are still outstanding packets in transit
which have not yet arrived, so a premature
dissociation cannot occur.

To assure that both TCP’s are aware that the
association has ended, we insist that the receiving
TCP respond to the REL by sending a REL
acknowledgment of its own.

Suppose now that a process sends a single
message to an associate including a REL along with
the data. Assuming an RCB has been prepared for
the receiving TCP to accept the data, the TCP will
accumulate the incoming packets until the one
marked ES, EM, REL arrives, at which point a REL
is returned to the sender. The association is thereby
terminated and the appropriate TCB and RCB are
destroyed. If the first packet of a message contains a
SYN request bit and the last packet contains ES, EM
and REL bits, then data will flow “one message at a
time.” This mode is very similar to the scheme
described by Walden [12], since each succeeding
message can only be accepted at the receiver after a
new LISTEN (like Walden’s RECEIVE) command is
issued by the receiving process to its serving TCP.
Note that only if the acknowledgment is received by
the sender can the association be terminated
properly. It has been pointed out6 that the receiver
may erroneously accept duplicate transmissions if
the sender does not receive the acknowledgment.
This may happen if the sender transmits a duplicate

Fig. 12. Transmit buffer layout.

6 S. Crocker of APRA/IPT.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

message with the SYN and REL bits set and the
destination has already destroyed any record of the
previous transmission. One way of preventing this
problem is to destroy the record of the association at
the destination only after some known and suitably
chosen timeout. However, this implies that a new
association with the same source and destination
port identifiers could not be established until this
timeout had expired. This problem can occur even
with sequences of messages whose SYN and REL
bits are separated into different internetwork
packets. We recognize that this problem must be
solved, but do not go into further detail here.

Alternatively, both processes can send one
message, causing the respective TCP’s to allocate
RCB/TCB pairs at both ends which rendezvous with
the exchanged data and then disappear. If the
overhead of creating and destroying RCB’s and
TCB’s is small, such a protocol might be adequate
for most low-bandwidth uses. This idea might also
form the basis for a relatively secure transmission
system. If the communicating processes agree to
change their external port addresses in some way
known only to each other (i.e., pseudorandom), then
each message will appear to the outside world as if
it is part of a different association message stream.
Even if the data is intercepted by a third party, he
will have no way of knowing that the data should in
fact be considered part of a sequence of messages.

We have described the way in which processes
develop associations with each other, thereby
becoming associates for possible exchange of data.
These associations need not involve the
transmission of data prior to their formation and
indeed two associates need not be able to determine
that they are associates until they attempt to
communicate.

CONCLUSIONS

We have discussed some fundamental issues
related to the interconnection of packet switching
networks. In particular, we have described a simple
but very powerful and flexible protocol which
provides for variation in individual network packet
sizes, transmission failures, sequencing, flow
control, and the creation and destruction of process-
to-process associations. We have considered some
of the implementation issues that arise and found
that the proposed protocol is implementable by
HOST’S of widely varying capacity.

The next important step is to produce a detailed
specification of the protocol so that some initial
experiments with it can be performed. These
experiments are needed to determine some of the
operational parameters (e.g., how often and how far
out of order do packets actually arrive; what sort of
delay is there between segment acknowledgments;
what should retransmission timeouts be?) of the
proposed protocol.

ACKNOWLEDGMENT

The authors wish to thank a number of
colleagues for helpful comments during early
discussions of international network protocols,
especially R. Metcalfe, R. Scantlebury, D. Walden,
and H. Zimmerman; D. Davies and L. Pouzin who
constructively commented on the fragmentation and
accounting issues; and S. Crocker who commented
on the creation and destruction of associations.

REFERENCES

[1] L. Roberts and B. Wessler, “Computer network
development to achieve resource sharing,” in 1970
Spring Joint Computer Conf., AFIPS Conf. Proc., vol.
36. Montvale, N. J.: AFIPS Press, 1970, pp. 543—
549.

[2] L. Pouzin, “Presentation and major design aspects of
the CYCLADES computer network,” in Proc. 3rd
Data Communications Symp., 1973.

[3] F. R. E. Dell, “Features of a proposed synchronous
data network,” in Proc. 2nd Symp. Problems in the
Optimization of Data Communications Systems, 1971,
pp. 50—57.

[4] R. A. Scantlebury and P. T. Wilkinson, “The design
of a switching system to allow remote access to
computer services by other computers and terminal
devices,” in Proc. 2nd Symp. Problems in the
Optimization of Data Communications Systems, 1971,
pp. 160-167.

[5] D. L. A. Barber, “The European computer network
project,” in Computer Communications: Impacts and
Implications, S. Winkler, Ed. Washington , D.C.,
1972, pp. 192-200.

[6] R. Despres, “A packet switching network with
graceful saturated operation,” in Computer
Communications: Impacts and Implications, S.
Winkler, Ed. Washington, D.C., 1972, pp. 345-351.

[7] R. E. Kahn and W. R. Crowther, “Flow control in a
resource-shaping computer network,” IEEE Trans.
Commun., vol. COM-20, pp. 539-546, June 1972.

[8] J. F. Chambon, M. Elie, J. Le Bihan, G. LeLann, and
H. Zimmerman, “Functional specification of
transmission station in the CYCLADES network. ST-
ST protocol” (in French), I.R.I.A. Tech. Rep.
SCH502.3, May 1973.

© 1974 IEEE. Reprinted, with permission, from IEEE Trans on Comms, Vol Com-22, No 5 May 1974

[9] S. Carr, S. Crocker, and V. Cerf, “HOST-HOST
Communication Protocol In the ARPA Network,” in
Spring Joint Computer Conf., AFIPS Conf. Proc., vol.
36. Montvale, N.J.: AFIPS Press, 1970, pp. 589-597.

[10] A. McKenzie, “HOST/HOST protocol for the ARPA
network,” in Current Network Protocols, Network
Information Cen., Menlo Park, Calif., NIC 8246, Jan.
1972.

[11] L. Pouzin, “Address format in Mitranet,” NIC 14497,
INWG 20, Jan. 1973.

[12] D. Walden, “A system for interprocess
communication in a resource sharing computer
network,” Commun. Ass. Comput. Mach., vol. 15, pp.
221-230, Apr. 1972.

[13] B. Lampson, “A scheduling philosophy for
multiprocessing system,” Commun. Ass. Comput.
Mach., vol. 11, pp. 347-360, May 1968.

[14] F. E. Heart, R. E. Kahn, S. Ornstein, W. Crowther,
and D. Walden, “The interface message processor for
the ARPA computer network,” in Proc. Spring Joint
Computer Conf., AFIPS Conf. Proc., vol. 36.
Montvale, N.J.: AFIPS Press, 1970, pp. 551-567.

[15] N. G. Anslow and J. Hanscoff, “Implementation of
international data exchange networks,” in Computer
Communications: Impacts and Implications, S.
Winkler, Ed. Washington, D. C., 1972, pp. 181-184.

[16] A. McKenzie, “HOST/HOST protocol design
considerations,” INWG Note 16, NIC 13879, Jan.
1973.

[17] R. E. Kahn, “Resource-sharing computer
communication networks”, Proc. IEEE, vol. 60, pp.
1397-1407, Nov. 1972.

[18] Bolt, Beranek, and Newman, “Specification for the
interconnection of a host and an IMP,” Bolt Beranek
and Newman, Inc., Cambridge, Mass., BBN Rep.
1822 (revised), Apr. 1973.

Vinton G. Cerf was born in New Haven,
Conn., in 1943. He did undergraduate work in
mathematics at Stanford University,
Stanford, Calif., and received the Ph.D.
degree in computer science from the
University of California at Los Angeles, Los
Angeles, Calif., in 1972.
 He was with IBM in Los Angeles from 1965
through 1967 and consulted and/or worked
part time at UCLA from 1967 through 1972.
Currently he is Assistant Professor of
Computer Science and Electrical Engineering
at Stanford University, and consultant to
Cabledata Associates. Most of his current

research is supported by the Defense Advanced Research Projects Agency
and by the National Science Foundation on the technology and economics
of computer networking. He is Chairman of IFIP TC6.1, an international
network working group which is studying the problem of packet network
interconnection.

Robert E. Kahn (M’65) was born in
Brooklyn, N.Y., on December 23 1938. He
received the B.E.E. degree from the City
College of New York, New York, in 1960,
and the M.A. and Ph.D. degrees from
Princeton University, Princeton, N.J., in 1962
and 1964, respectively.
 From 1960 to 1962 he was a Member of the
Technical Staff of Bell Telephone
Laboratories, Murray Hill, N.J., engaged in
traffic and communication studies. From
1964 to 1966 he was a Ford Postdoctoral
Fellow and an Assistant Professor of
Electrical Engineering at the Massachusetts

Institute of Technology, Cambridge, where he worked on communications
and information theory. From 1966 to 1972 he was a Senior Scientist at Bolt
Beranek and Newman, Inc., Cambridge, Mass., where he worked on
computer communications network design and techniques for distributed
computation. Since 1972 he has been with the Advanced Research Projects
Agency, Department of Defense, Arlington, Va.
 Dr. Kahn is a member of Tau Beta Pi, Sigma Xi, Eta Kappa Nu, the
Institute of Mathematical Statistics, and the Mathematical Association of
America. He was selected to serve as a National Lecturer for the Assocation
for Computing Machinery in 1972.

SALTZER ET AL. End-to-End Arguments in System Design 1

END-TO-END ARGUMENTS IN SYSTEM DESIGN

J.H. Saltzer, D.P. Reed and D.D. Clark*

M.I.T. Laboratory for Computer Science

This paper presents a design principle that helps guide placement of functions among the
modules of a distributed computer system. The principle, called the end-to-end argument,
suggests that functions placed at low levels of a system may be redundant or of little
value when compared with the cost of providing them at that low level. Examples
discussed in the paper include bit error recovery, security using encryption, duplicate
message suppression, recovery from system crashes, and delivery acknowledgement. Low
level mechanisms to support these functions are justified only as performance
enhancements.

Introduction
Choosing the proper boundaries between functions is perhaps the primary activity of the
computer system designer. Design principles that provide guidance in this choice of function
placement are among the most important tools of a system designer. This paper discusses one
class of function placement argument that has been used for many years with neither explicit
recognition nor much conviction. However, the emergence of the data communication network as
a computer system component has sharpened this line of function placement argument by making
more apparent the situations in which and reasons why it applies. This paper articulates the
argument explicitly, so as to examine its nature and to see how general it really is. The argument
appeals to application requirements, and provides a rationale for moving function upward in a
layered system, closer to the application that uses the function. We begin by considering the
communication network version of the argument.

In a system that includes communications, one usually draws a modular boundary around the
communication subsystem and defines a firm interface between it and the rest of the system.
When doing so, it becomes apparent that there is a list of functions each of which might be
implemented in any of several ways: by the communication subsystem, by its client, as a joint

* Authors' addresses: J.H. Saltzer and D.D. Clark, M.I.T. Laboratory for Computer Science, 545 Technology
Square, Cambridge, Massachusetts 02139.: D.P. Reed, Software Arts, Inc., 27 Mica Lane, Wellesley,
Massachusetts 02181.

This research was supported in part by the Advanced Research Projects Agency of the U.S. Department of
Defense and monitored by the Office of Naval Research under contract number N00014-75-C-0661.

Revised version of a paper from the Second International Conference on Distributed Computing Systems, Paris,
France, April 8-10, 1981, pp. 509-512.: Copyright 1981 by The Institute of Electrical and Electronics
Engineers, Inc. Reprinted with permission.

Published in ACM Transactions in Computer Systems 2, 4, November, 1984, pages 277-288.

Reprinted in Craig Partridge, editor Innovations in internetworking. Artech House, Norwood, MA, 1988, pages
195-206. ISBN 0-89006-337-0. Also scheduled to be reprinted in Amit Bhargava, editor. Integrated broadband
networks. Artech House, Boston, 1991. ISBN 0-89006-483-0.

Scribe/FinalWord source: http://web.mit.edu/Saltzer/www/publications/

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking

Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:

1. At host A the file transfer program calls upon the file system to read the file from the disk,
where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.

4. At host B a data communication program removes the packets from the data communication
protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:

1. The file, though originally written correctly onto the disk at host A, if read now may contain
incorrect data, perhaps because of hardware faults in the disk storage system.

2. The software of the file system, the file transfer program, or the data communication system
might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.

The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.

If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.

Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.

The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.

Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example

An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

SALTZER ET AL. End-to-End Arguments in System Design 4

this checksum, assumed that the network was providing reliable transmission, without realizing
that the transmitted data was unprotected while stored in each gateway. One gateway computer
developed a transient error in which while copying data from an input to an output buffer a byte
pair was interchanged, with a frequency of about one such interchange in every million bytes
passed. Over a period of time many of the source files of an operating system were repeatedly
transferred through the defective gateway. Some of these source files were corrupted by byte
exchanges, and their owners were forced to the ultimate end-to-end error check: manual
comparison with and correction from old listings.

Performance aspects

It would be too simplistic to conclude that the lower levels should play no part in obtaining
reliability, however. Consider a network that is somewhat unreliable, dropping one message of
each hundred messages sent. The simple strategy outlined above, transmitting the file and then
checking to see that the file arrived correctly, would perform more poorly as the length of the file
increases. The probability that all packets of a file arrive correctly decreases exponentially with
the file length, and thus the expected time to transmit the file grows exponentially with file
length. Clearly, some effort at the lower levels to improve network reliability can have a
significant effect on application performance. But the key idea here is that the lower levels need
not provide "perfect" reliability.

Thus the amount of effort to put into reliability measures within the data communication system
is seen to be an engineering tradeoff based on performance, rather than a requirement for
correctness. Note that performance has several aspects here. If the communication system is too
unreliable, the file transfer application performance will suffer because of frequent retries
following failures of its end-to-end checksum. If the communication system is beefed up with
internal reliability measures, those measures have a performance cost, too, in the form of
bandwidth lost to redundant data and delay added by waiting for internal consistency checks to
complete before delivering the data. There is little reason to push in this direction very far, when
it is considered that the end-to-end check of the file transfer application must still be implemented
no matter how reliable the communication system becomes. The "proper" tradeoff requires
careful thought; for example one might start by designing the communication system to provide
just the reliability that comes with little cost and engineering effort, and then evaluate the residual
error level to insure that it is consistent with an acceptable retry frequency at the file transfer
level. It is probably not important to strive for a negligible error rate at any point below the
application level.

Using performance to justify placing functions in a low-level subsystem must be done carefully.
Sometimes, by examining the problem thoroughly, the same or better performance enhancement
can be achieved at the high level. Performing a function at a low level may be more efficient, if
the function can be performed with a minimum perturbation of the machinery already included in
the low-level subsystem, but just the opposite situation can occur – that is, performing the
function at the lower level may cost more – for two reasons. First, since the lower level
subsystem is common to many applications, those applications that do not need the function will
pay for it anyway. Second, the low-level subsystem may not have as much information as the
higher levels, so it cannot do the job as efficiently.

Frequently, the performance tradeoff is quite complex. Consider again the careful file transfer on
an unreliable network. The usual technique for increasing packet reliability is some sort of per-
packet error check with a retry protocol. This mechanism can be implemented either in the
communication subsystem or in the careful file transfer application. For example, the receiver in
the careful file transfer can periodically compute the checksum of the portion of the file thus far
received and transmit this back to the sender. The sender can then restart by retransmitting any
portion that arrived in error.

SALTZER ET AL. End-to-End Arguments in System Design 5

The end-to-end argument does not tell us where to put the early checks, since either layer can do
this performance-enhancement job. Placing the early retry protocol in the file transfer application
simplifies the communication system, but may increase overall cost, since the communication
system is shared by other applications and each application must now provide its own reliability
enhancement. Placing the early retry protocol in the communication system may be more
efficient, since it may be performed inside the network on a hop-by-hop basis, reducing the delay
involved in correcting a failure. At the same time, there may be some application that finds the
cost of the enhancement is not worth the result but it now has no choice in the matter* . A great
deal of information about system implementation is needed to make this choice intelligently.

Other examples of the end-to-end argument

Delivery guarantees

The basic argument that a lower-level subsystem that supports a distributed application may be
wasting its effort providing a function that must by nature be implemented at the application
level anyway can be applied to a variety of functions in addition to reliable data transmission.
Perhaps the oldest and most widely known form of the argument concerns acknowledgement of
delivery. A data communication network can easily return an acknowledgement to the sender for
every message delivered to a recipient. The ARPANET, for example, returns a packet known as
"Request For Next Message" (RFNM)[1] whenever it delivers a message. Although this
acknowledgement may be useful within the network as a form of congestion control (originally
the ARPANET refused to accept another message to the same target until the previous RFNM
had returned) it was never found to be very helpful to applications using the ARPANET. The
reason is that knowing for sure that the message was delivered to the target host is not very
important. What the application wants to know is whether or not the target host acted on the
message; all manner of disaster might have struck after message delivery but before completion
of the action requested by the message. The acknowledgement that is really desired is an end-to-
end one, which can be originated only by the target application – "I did it", or "I didn't."

Another strategy for obtaining immediate acknowledgements is to make the target host
sophisticated enough that when it accepts delivery of a message it also accepts responsibility for
guaranteeing that the message is acted upon by the target application. This approach can
eliminate the need for an end-to-end acknowledgement in some, but not all applications. An end-
to-end acknowledgement is still required for applications in which the action requested of the
target host should be done only if similar actions requested of other hosts are successful. This
kind of application requires a two-phase commit protocol[5,10,15], which is a sophisticated end-
to-end acknowledgement. Also, if the target application may either fail or refuse to do the
requested action, and thus a negative acknowledgement is a possible outcome, an end-to-end
acknowledgement may still be a requirement.

Secure transmission of data

Another area in which an end-to-end argument can be applied is that of data encryption. The
argument here is threefold. First, if the data transmission system performs encryption and
decryption, it must be trusted to manage securely the required encryption keys. Second, the data
will be in the clear and thus vulnerable as it passes into the target node and is fanned out to the
target application. Third, the authenticity of the message must still be checked by the application.
If the application performs end-to-end encryption, it obtains its required authentication check, it

* For example, real time transmission of speech has tighter constraints on message delay than on bit-error rate.
Most retry schemes significantly increase the variability of delay.

SALTZER ET AL. End-to-End Arguments in System Design 6

can handle key management to its satisfaction, and the data is never exposed outside the
application.

Thus, to satisfy the requirements of the application, there is no need for the communication
subsystem to provide for automatic encryption of all traffic. Automatic encryption of all traffic
by the communication subsystem may be called for, however, to ensure something else – that a
misbehaving user or application program does not deliberately transmit information that should
not be exposed. The automatic encryption of all data as it is put into the network is one more
firewall the system designer can use to ensure that information does not escape outside the
system. Note however, that this is a different requirement from authenticating access rights of a
system user to specific parts of the data. This network-level encryption can be quite
unsophisticated – the same key can be used by all hosts, with frequent changes of the key. No
per-user keys complicate the key management problem. The use of encryption for application-
level authentication and protection is complementary. Neither mechanism can satisfy both
requirements completely.

Duplicate message suppression

A more sophisticated argument can be applied to duplicate message suppression. A property of
some communication network designs is that a message or a part of a message may be delivered
twice, typically as a result of time-out-triggered failure detection and retry mechanisms operating
within the network. The network can provide the function of watching for and suppressing any
such duplicate messages, or it can simply deliver them. One might expect that an application
would find it very troublesome to cope with a network that may deliver the same message twice;
indeed it is troublesome. Unfortunately, even if the network suppresses duplicates, the
application itself may accidentally originate duplicate requests, in its own failure/retry
procedures. These application level duplications look like different messages to the
communication system, so it cannot suppress them; suppression must be accomplished by the
application itself with knowledge of how to detect its own duplicates.

A common example of duplicate suppression that must be handled at a high level is when a
remote system user, puzzled by lack of response, initiates a new login to a time-sharing system.
For another example, most communication applications involve a provision for coping with a
system crash at one end of a multi-site transaction: reestablish the transaction when the crashed
system comes up again. Unfortunately, reliable detection of a system crash is problematical: the
problem may just be a lost or long-delayed acknowledgement. If so, the retried request is now a
duplicate, which only the application can discover. Thus the end-to-end argument again: if the
application level has to have a duplicate-suppressing mechanism anyway, that mechanism can
also suppress any duplicates generated inside the communication network, so the function can be
omitted from that lower level. The same basic reasoning applies to completely omitted messages
as well as to duplicated ones.

Guaranteeing FIFO message delivery

Ensuring that messages arrive at the receiver in the same order they are sent is another function
usually assigned to the communication subsystem. The mechanism usually used to achieve such
first-in, first-out (FIFO) behavior guarantees FIFO ordering among messages sent on the same
virtual circuit. Messages sent along independent virtual circuits, or through intermediate
processes outside the communication subsystem may arrive in an order different from the order
sent. A distributed application in which one node can originate requests that initiate actions at
several sites cannot take advantage of the FIFO ordering property to guarantee that the actions
requested occur in the correct order. Instead, an independent mechanism at a higher level than the
communication subsystem must control the ordering of actions.

SALTZER ET AL. End-to-End Arguments in System Design 7

Transaction management

We have now applied the end-to-end argument in the construction of the SWALLOW distributed
data storage system[15], where it leads to significant reduction in overhead. SWALLOW
provides data storage servers called repositories that can be used remotely to store and retrieve
data. Accessing data at a repository is done by sending it a message specifying the object to be
accessed, the version, and type of access (read/write), plus a value to be written if the access is a
write. The underlying message communication system does not suppress duplicate messages,
since a) the object identifier plus the version information suffices to detect duplicate writes, and
b) the effect of a duplicate read request message is only to generate a duplicate response, which is
easily discarded by the originator. Consequently, the low-level message communication protocol
is significantly simplified.

The underlying message communication system does not provide delivery acknowledgement
either. The acknowledgement that the originator of a write request needs is that the data was
stored safely. This acknowledgement can be provided only by high levels of the SWALLOW
system. For read requests, a delivery acknowledgement is redundant, since the response
containing the value read is sufficient acknowledgement. By eliminating delivery
acknowledgements, the number of messages transmitted is halved. This message reduction can
have a significant effect on both host load and network load, improving performance. This same
line of reasoning has also been used in development of an experimental protocol for remote
access to disk records[6]. The resulting reduction in path length in lower-level protocols was
important in maintaining good performance on remote disk access.

Identifying the ends
Using the end-to-end argument sometimes requires subtlety of analyis of application
requirements. For example, consider a computer communication network that carries some
packet voice connections, conversations between digital telephone instruments. For those
connections that carry voice packets, an unusually strong version of the end-to-end argument
applies: if low levels of the communication system try to accomplish bit-perfect communication,
they will probably introduce uncontrolled delays in packet delivery, for example, by requesting
retransmission of damaged packets and holding up delivery of later packets until earlier ones
have been correctly retransmitted. Such delays are disruptive to the voice application, which
needs to feed data at a constant rate to the listener. It is better to accept slightly damaged packets
as they are, or even to replace them with silence, a duplicate of the previous packet, or a noise
burst. The natural redundancy of voice, together with the high-level error correction procedure in
which one participant says "excuse me, someone dropped a glass. Would you please say that
again?" will handle such dropouts, if they are relatively infrequent.

However, this strong version of the end-to-end argument is a property of the specific application
– two people in real-time conversation – rather than a property, say, of speech in general. If one
considers instead a speech message system, in which the voice packets are stored in a file for
later listening by the recipient, the arguments suddenly change their nature. Short delays in
delivery of packets to the storage medium are not particularly disruptive so there is no longer any
objection to low-level reliability measures that might introduce delay in order to achieve
reliability. More important, it is actually helpful to this application to get as much accuracy as
possible in the recorded message, since the recipient, at the time of listening to the recording, is
not going to be able to ask the sender to repeat a sentence. On the other hand, with a storage
system acting as the receiving end of the voice communication, an end-to-end argument does
apply to packet ordering and duplicate suppression. Thus the end-to-end argument is not an
absolute rule, but rather a guideline that helps in application and protocol design analysis; one
must use some care to identify the end points to which the argument should be applied.

SALTZER ET AL. End-to-End Arguments in System Design 8

History, and application to other system areas
The individual examples of end-to-end arguments cited in this paper are not original; they have
accumulated over the years. The first example of questionable intermediate delivery
acknowledgements noticed by the authors was the "wait" message of the M.I.T. Compatible
Time-Sharing System, which the system printed on the user's terminal whenever the user entered
a command[3]. (The message had some value in the early days of the system, when crashes and
communication failures were so frequent that intermediate acknowledgements provided some
needed reassurance that all was well.)

The end-to-end argument relating to encryption was first publicly discussed by Branstad in a
1973 paper[2]; presumably the military security community held classified discussions before
that time. Diffie and Hellman[4] and Kent[8] develop the arguments in more depth, and
Needham and Schroeder[11] devised improved protocols for the purpose.

The two-phase-commit data update protocols of Gray[5], Lampson and Sturgis[10] and Reed[13]
all use a form of end-to-end argument to justify their existence; they are end-to-end protocols that
do not depend for correctness on reliability, FIFO sequencing, or duplicate suppression within
the communication system, since all of these problems may also be introduced by other system
component failures as well. Reed makes this argument explicitly in the second chapter of his
Ph.D. thesis on decentralized atomic actions[14].

End-to-end arguments are often applied to error control and correctness in application systems.
For example, a banking system usually provides high-level auditing procedures as a matter of
policy and legal requirement. Those high-level auditing procedures will uncover not only high-
level mistakes such as performing a withdrawal against the wrong account, it will also detect
low-level mistakes such as coordination errors in the underlying data management system.
Therefore a costly algorithm that absolutely eliminates such coordination errors may be arguably
less appropriate than a less costly algorithm that just makes such errors very rare. In airline
reservation systems, an agent can be relied upon to keep trying, through system crashes and
delays, until a reservation is either confirmed or refused. Lower level recovery procedures to
guarantee that an unconfirmed request for a reservation will survive a system crash are thus not
vital. In telephone exchanges, a failure that could cause a single call to be lost is considered not
worth providing explicit recovery for, since the caller will probably replace the call if it
matters[7]: All of these design approaches are examples of the end-to-end argument being
applied to automatic recovery.

Much of the debate in the network protocol community over datagrams, virtual circuits, and
connectionless protocols is a debate about end-to-end arguments. A modularity argument prizes a
reliable, FIFO sequenced, duplicate-suppressed stream of data as a system component that is easy
to build on, and that argument favors virtual circuits. The end-to-end argument claims that
centrally-provided versions of each of those functions will be incomplete for some applications,
and those applications will find it easier to build their own version of the functions starting with
datagrams.

A version of the end-to-end argument in a non-communication application was developed in the
1950's by system analysts whose responsibility included reading and writing files on large
numbers of magnetic tape reels. Repeated attempts to define and implement a "reliable tape
subsystem" repeatedly foundered, as flaky tape drives, undependable system operators, and
system crashes conspired against all narrowly focused reliability measures. Eventually, it became
standard practice for every application to provide its own application-dependent checks and
recovery strategy; and to assume that lower-level error detection mechanisms at best reduced the
frequency with which the higher-level checks failed. As an example, the Multics file backup
system[17], even though it is built on a foundation of a magnetic tape subsystem format that

SALTZER ET AL. End-to-End Arguments in System Design 9

provides very powerful error detection and correction features, provides its own error control in
the form of record labels and multiple copies of every file.

The arguments that are used in support of reduced instruction set computer (RISC) architecture
are similar to end-to-end arguments. The RISC argument is that the client of the architecture will
get better performance by implementing exactly the instructions needed from primitive tools; any
attempt by the computer designer to anticipate the client's requirements for an esoteric feature
will probably miss the target slightly and the client will end up reimplementing that feature
anyway. (We are indebted to M. Satyanarayanan for pointing out this example.)

Lampson, in his arguments supporting the "open operating system,"[9] uses an argument similar
to the end-to-end argument as a justification. Lampson argues against making any function a
permanent fixture of lower-level modules; the function may be provided by a lower-level module
but it should always be replaceable by an application's special version of the function. The
reasoning is that for any function you can think of, at least some applications will find that by
necessity they must implement the function themselves in order to meet correctly their own
requirements. This line of reasoning leads Lampson to propose an "open" system in which the
entire operating system consists of replaceable routines from a library. Such an approach has only
recently become feasible in the context of computers dedicated to a single application. It may be
the case that the large quantity of fixed supervisor function typical of large-scale operating
systems is only an artifact of economic pressures that demanded multiplexing of expensive
hardware and therefore a protected supervisor. Most recent system "kernelization" projects, in
fact, have focused at least in part on getting function out of low system levels[16,12]. Though
this function movement is inspired by a different kind of correctness argument, it has the side
effect of producing an operating system that is more flexible for applications, which is exactly
the main thrust of the end-to-end argument.

Conclusions
End-to-end arguments are a kind of "Occam's razor" when it comes to choosing the functions to
be provided in a communication subsystem. Because the communication subsystem is frequently
specified before applications that use the subsystem are known, the designer may be tempted to
"help" the users by taking on more function than necessary. Awareness of end-to-end arguments
can help to reduce such temptations.

It is fashionable these days to talk about "layered" communication protocols, but without clearly
defined criteria for assigning functions to layers. Such layerings are desirable to enhance
modularity. End-to-end arguments may be viewed as part of a set of rational principles for
organizing such layered systems. We hope that our discussion will help to add substance to
arguments about the "proper" layering.

Acknowledgements
Many people have read and commented on an earlier draft of this paper, including David
Cheriton, F.B. Schneider, and Liba Svobodova. The subject was also discussed at the ACM
Workshop in Fundamentals of Distributed Computing, in Fallbrook, California during December
1980. Those comments and discussions were quite helpful in clarifying the arguments.

SALTZER ET AL. End-to-End Arguments in System Design 10

References
1. Bolt Beranek and Newman Inc. Specifications for the interconnection of a host and an IMP.

Technical Report No. 1822, Cambridge, Mass., December, 1981.

2. Branstad, D.K. Security aspects of computer networks. AIAA Paper No. 73-427, AIAA
Computer Network Systems Conference, Huntsville, Alabama, April, 1973.

3. Corbato, F.J., et al. The Compatible Time-Sharing System, A Programmer's Guide. M.I.T.
Press, Cambridge, Massachusetts, 1963, p.10.

4. Diffie, W., and Hellman, M.E. New directions in cryptography. IEEE Trans. on Info.
Theory, IT-22, 6, (November, 1976), pp.644-654.

5. Gray, J.N. Notes on database operating systems. In Operating System: An Advanced Course.
Volume 60 of Lecture Notes in Computer Science, Springer-Verlag, 1978, pp.393-481.

6. Greenwald, M. Remote virtual disk protocol specifications. M.I.T. Laboratory for Computer
Science Technical Memorandum, in preparation. Expected publication, 1984.

7. Keister, W., Ketchledge, R.W., and Vaughan, H.E.: No. 1 ESS: System organization and
objectives. Bell System Technical Journal 53, 5 (part 1), (September, 1964) p. 1841.

8. Kent, S.T.: Encryption-based protection protocols for interactive user-computer
communication.: S.M. thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, May, 1976. Also available as M.I.T.
Laboratory for Computer Science Technical Report, TR-162, May, 1976.

9. Lampson, B.W., and Sproull, R.F. An open operating system for a single-user machine.
Proc. Seventh Symposium on Operating Systems Principles, Operating Systems Review 13,
Special issue (December, 1979), pp.98-105.

10. Lampson, B., and Sturgis, H: Crash recovery in a distributed data storage system. Working
paper, Xerox PARC, November, 1976 and April, 1979. Submitted to CACM.

11. Needham, R.M., and Schroeder, M.D.: Using encryption for authentication in large networks
of computers. CACM 21, 12, (December, 1978), pp.993-999.

12. Popek, G.J., et al.: UCLA data secure unix. Proc. 1979 NCC, AFIPS Press, pp.355-364.

13. Reed, D.P.: Implementing atomic actions on decentralized data. ACM Transactions on
Computer Systems 1, 1 (February, 1983), pp.3-23.

14. Reed, D.P.: Naming and synchronization in a decentralized computer system. Ph.D. thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science, September 1978. Also available as M.I.T. Laboratory for Computer Science
Technical Report, TR-205, September, 1978.

15. Reed, D.P., and Svobodova, L.: SWALLOW: A distributed data storage system for a local
network. In West, A., and Janson, P., ed. Local Networks for Computer Communications,
Proc. IFIP Working Group 6.4 International Workshop on Local Networks. North-Holland,
Amsterdam, 1981, pp.355-373.

16. Schroeder, M.D., Clark, D.D., and Saltzer, J.H.: The Multics kernel design project. Proc.
Sixth Symposium on Operating Systems Principles, Operating Systems Review 11, 5
(November, 1977,) pp.43-56.

17. Stern, J.A.: Backup and recovery of on-line information in a computer utility. S.M. thesis,
M.I.T. Department of Electrical Engineering and Computer Science, August 1973. Available
as M.I.T. Project MAC Technical Report TR-116, January, 1974.

The Rise of the Middle and the
Future of End to End

James Kempf and Rob Austein
IAB

In the Beginning…
• Saltzer, Reed, and Clark (circa 1988)

– The function in question can completely and correctly be implemented
only with the knowledge and help of the application standing at the end
points of the communication system.

– Therefore, providing that questioned function as a feature of the
communication system itself is not possible.

– Sometimes an incomplete version of the function provided by the
communication system may be useful as a performance enhancement.

• Foundational principle of the Internet
Architecture.

• The Internet’s via negativa.

…In the Middle…
• Carpenter (RFC 1958, 1996):

– An end-to-end protocol design should not rely on the maintenance
of state (i.e. information about the state of the end-to-end
communication) inside the network.

– Such state should be maintained only in the endpoints, in such a
way that the state can only be destroyed when the endpoint itself
breaks (known as fate-sharing).

• The end to end principle applies to the
entire network stack on the end node.

• The end to end principle specifies where to
maintain “hard state”.
– Hard state: consequences of loss are

catastrophic for the conversation between
nodes.

Role of Soft State

• Again Carpenter (RFC 1958, 1996):
– [Network] state must be self-healing; adaptive procedures or

protocols must exist to derive and maintain that state, and change it
when the topology or activity of the network changes.

– The volume of this state must be minimized, and the loss of the
state must not result in more than a temporary denial of service
given that connectivity exists.

– Manually configured state must be kept to an absolute minimum.

Pressures from the Bubble
• Not everybody using the Internet is honest

or co-operative.
– Fundamental lack of trust.

• Some interests want to provide new services
as part of their base network access
offering.
– Example: content distribution in broadband

networks for streaming audio.
• Most Internet users today are technically

naïve.
– And want their technical involvement to be the

same as using a blender.

Preserving the Positive
Consequences of End to End

• Preserve the ability for small inventors to develop
and deploy innovative services easily.

• Maintain protection of robustness and reliability
due to traditional network faults.

• Increase robustness and reliability in the face of
subtly engineered attacks.
– Protocols need to pay attention to the trust relationships

between entities.

• Apply the end to end principle to each node to
node conversation of a distributed application.

The Internet Standards as an Arena
of Conflict

• Players in Internet standards often have conflicting
interests.

• Conflicts will show up in the Internet architecture.
• Some conflicts can’t be resolved technically.
• Standards should be defined to align with conflict

boundaries to minimize collateral damage.
• Standards should preserve core Internet values:

– Reliability and integrity of end to end service.
– Supporting trust and “good citizen” behavior.
– Fostering innovation in network services.

Conclusion
• The end to end principle continues to be a vital

inspiration for new engineering in the Internet.
• New pressures on the end to end principle can be

accommodated by applying it to each node to node
conversation.

• Broader context of end to end involves “good
citizen” behavior emphasizing core Internet
values.

• For more discussion:
– Mailing list:

end2end-interest@postel.org
– To subscribe:

http://www.postel.org/mailman/listinfo/end2end-interest

Acknowledgements

• Thanks to:
Dave Clark, John Wroclawski, Bob Braden,
Karen Sollins, Marjory Blumenthal, Dave
Reed, Ran Atkinson, Sally Floyd, Brian
Carpenter, Mark Handley

Network Working Group B. Carpenter, Editor
Request for Comments: 1958 IAB
Category: Informational June 1996

 Architectural Principles of the Internet

Status of This Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 The Internet and its architecture have grown in evolutionary fashion
 from modest beginnings, rather than from a Grand Plan. While this
 process of evolution is one of the main reasons for the technology's
 success, it nevertheless seems useful to record a snapshot of the
 current principles of the Internet architecture. This is intended for
 general guidance and general interest, and is in no way intended to
 be a formal or invariant reference model.

Table of Contents

 1. Constant Change..1
 2. Is there an Internet Architecture?...........................2
 3. General Design Issues..4
 4. Name and address issues......................................5
 5. External Issues..6
 6. Related to Confidentiality and Authentication................6
 Acknowledgements..7
 References..7
 Security Considerations...8
 Editor's Address..8

1. Constant Change

 In searching for Internet architectural principles, we must remember
 that technical change is continuous in the information technology
 industry. The Internet reflects this. Over the 25 years since the
 ARPANET started, various measures of the size of the Internet have
 increased by factors between 1000 (backbone speed) and 1000000
 (number of hosts). In this environment, some architectural principles
 inevitably change. Principles that seemed inviolable a few years ago
 are deprecated today. Principles that seem sacred today will be
 deprecated tomorrow. The principle of constant change is perhaps the
 only principle of the Internet that should survive indefinitely.

IAB Informational [Page 1]
�
RFC 1958 Architectural Principles of the Internet June 1996

 The purpose of this document is not, therefore, to lay down dogma
 about how Internet protocols should be designed, or even about how
 they should fit together. Rather, it is to convey various guidelines
 that have been found useful in the past, and that may be useful to
 those designing new protocols or evaluating such designs.

Page 1 of 7

12/8/2010http://www.ietf.org/rfc/rfc1958.txt

 A good analogy for the development of the Internet is that of
 constantly renewing the individual streets and buildings of a city,
 rather than razing the city and rebuilding it. The architectural
 principles therefore aim to provide a framework for creating
 cooperation and standards, as a small "spanning set" of rules that
 generates a large, varied and evolving space of technology.

 Some current technical triggers for change include the limits to the
 scaling of IPv4, the fact that gigabit/second networks and multimedia
 present fundamentally new challenges, and the need for quality of
 service and security guarantees in the commercial Internet.

 As Lord Kelvin stated in 1895, "Heavier-than-air flying machines are
 impossible." We would be foolish to imagine that the principles
 listed below are more than a snapshot of our current understanding.

2. Is there an Internet Architecture?

 2.1 Many members of the Internet community would argue that there is
 no architecture, but only a tradition, which was not written down for
 the first 25 years (or at least not by the IAB). However, in very
 general terms, the community believes that the goal is connectivity,
 the tool is the Internet Protocol, and the intelligence is end to end
 rather than hidden in the network.

 The current exponential growth of the network seems to show that
 connectivity is its own reward, and is more valuable than any
 individual application such as mail or the World-Wide Web. This
 connectivity requires technical cooperation between service
 providers, and flourishes in the increasingly liberal and competitive
 commercial telecommunications environment.

 The key to global connectivity is the inter-networking layer. The
 key to exploiting this layer over diverse hardware providing global
 connectivity is the "end to end argument".

 2.2 It is generally felt that in an ideal situation there should be
 one, and only one, protocol at the Internet level. This allows for
 uniform and relatively seamless operations in a competitive, multi-
 vendor, multi-provider public network. There can of course be
 multiple protocols to satisfy different requirements at other levels,
 and there are many successful examples of large private networks with

IAB Informational [Page 2]
�
RFC 1958 Architectural Principles of the Internet June 1996

 multiple network layer protocols in use.

 In practice, there are at least two reasons why more than one network
 layer protocol might be in use on the public Internet. Firstly, there
 can be a need for gradual transition from one version of IP to
 another. Secondly, fundamentally new requirements might lead to a
 fundamentally new protocol.

 The Internet level protocol must be independent of the hardware
 medium and hardware addressing. This approach allows the Internet to
 exploit any new digital transmission technology of any kind, and to
 decouple its addressing mechanisms from the hardware. It allows the
 Internet to be the easy way to interconect fundamentally different
 transmission media, and to offer a single platform for a wide variety

Page 2 of 7

12/8/2010http://www.ietf.org/rfc/rfc1958.txt

 of Information Infrastructure applications and services. There is a
 good exposition of this model, and other important fundemental
 issues, in [Clark].

 2.3 It is also generally felt that end-to-end functions can best be
 realised by end-to-end protocols.

 The end-to-end argument is discussed in depth in [Saltzer]. The
 basic argument is that, as a first principle, certain required end-
 to-end functions can only be performed correctly by the end-systems
 themselves. A specific case is that any network, however carefully
 designed, will be subject to failures of transmission at some
 statistically determined rate. The best way to cope with this is to
 accept it, and give responsibility for the integrity of communication
 to the end systems. Another specific case is end-to-end security.

 To quote from [Saltzer], "The function in question can completely and
 correctly be implemented only with the knowledge and help of the
 application standing at the endpoints of the communication system.
 Therefore, providing that questioned function as a feature of the
 communication system itself is not possible. (Sometimes an incomplete
 version of the function provided by the communication system may be
 useful as a performance enhancement.")

 This principle has important consequences if we require applications
 to survive partial network failures. An end-to-end protocol design
 should not rely on the maintenance of state (i.e. information about
 the state of the end-to-end communication) inside the network. Such
 state should be maintained only in the endpoints, in such a way that
 the state can only be destroyed when the endpoint itself breaks
 (known as fate-sharing). An immediate consequence of this is that
 datagrams are better than classical virtual circuits. The network's
 job is to transmit datagrams as efficiently and flexibly as possible.

IAB Informational [Page 3]
�
RFC 1958 Architectural Principles of the Internet June 1996

 Everything else should be done at the fringes.

 To perform its services, the network maintains some state
 information: routes, QoS guarantees that it makes, session
 information where that is used in header compression, compression
 histories for data compression, and the like. This state must be
 self-healing; adaptive procedures or protocols must exist to derive
 and maintain that state, and change it when the topology or activity
 of the network changes. The volume of this state must be minimized,
 and the loss of the state must not result in more than a temporary
 denial of service given that connectivity exists. Manually
 configured state must be kept to an absolute minimum.

 2.4 Fortunately, nobody owns the Internet, there is no centralized
 control, and nobody can turn it off. Its evolution depends on rough
 consensus about technical proposals, and on running code.
 Engineering feed-back from real implementations is more important
 than any architectural principles.

3. General Design Issues

 3.1 Heterogeneity is inevitable and must be supported by design.
 Multiple types of hardware must be allowed for, e.g. transmission

Page 3 of 7

12/8/2010http://www.ietf.org/rfc/rfc1958.txt

 speeds differing by at least 7 orders of magnitude, various computer
 word lengths, and hosts ranging from memory-starved microprocessors
 up to massively parallel supercomputers. Multiple types of
 application protocol must be allowed for, ranging from the simplest
 such as remote login up to the most complex such as distributed
 databases.

 3.2 If there are several ways of doing the same thing, choose one.
 If a previous design, in the Internet context or elsewhere, has
 successfully solved the same problem, choose the same solution unless
 there is a good technical reason not to. Duplication of the same
 protocol functionality should be avoided as far as possible, without
 of course using this argument to reject improvements.

 3.3 All designs must scale readily to very many nodes per site and to
 many millions of sites.

 3.4 Performance and cost must be considered as well as functionality.

 3.5 Keep it simple. When in doubt during design, choose the simplest
 solution.

 3.6 Modularity is good. If you can keep things separate, do so.

IAB Informational [Page 4]
�
RFC 1958 Architectural Principles of the Internet June 1996

 3.7 In many cases it is better to adopt an almost complete solution
 now, rather than to wait until a perfect solution can be found.

 3.8 Avoid options and parameters whenever possible. Any options and
 parameters should be configured or negotiated dynamically rather than
 manually.

 3.9 Be strict when sending and tolerant when receiving.
 Implementations must follow specifications precisely when sending to
 the network, and tolerate faulty input from the network. When in
 doubt, discard faulty input silently, without returning an error
 message unless this is required by the specification.

 3.10 Be parsimonious with unsolicited packets, especially multicasts
 and broadcasts.

 3.11 Circular dependencies must be avoided.

 For example, routing must not depend on look-ups in the Domain
 Name System (DNS), since the updating of DNS servers depends on
 successful routing.

 3.12 Objects should be self decribing (include type and size), within
 reasonable limits. Only type codes and other magic numbers assigned
 by the Internet Assigned Numbers Authority (IANA) may be used.

 3.13 All specifications should use the same terminology and notation,
 and the same bit- and byte-order convention.

 3.14 And perhaps most important: Nothing gets standardised until
 there are multiple instances of running code.

Page 4 of 7

12/8/2010http://www.ietf.org/rfc/rfc1958.txt

4. Name and address issues

 4.1 Avoid any design that requires addresses to be hard coded or
 stored on non-volatile storage (except of course where this is an
 essential requirement as in a name server or configuration server).
 In general, user applications should use names rather than addresses.

 4.2 A single naming structure should be used.

 4.3 Public (i.e. widely visible) names should be in case-independent
 ASCII. Specifically, this refers to DNS names, and to protocol
 elements that are transmitted in text format.

 4.4 Addresses must be unambiguous (unique within any scope where they
 may appear).

IAB Informational [Page 5]
�
RFC 1958 Architectural Principles of the Internet June 1996

 4.5 Upper layer protocols must be able to identify end-points
 unambiguously. In practice today, this means that addresses must be
 the same at start and finish of transmission.

5. External Issues

 5.1 Prefer unpatented technology, but if the best technology is
 patented and is available to all at reasonable terms, then
 incorporation of patented technology is acceptable.

 5.2 The existence of export controls on some aspects of Internet
 technology is only of secondary importance in choosing which
 technology to adopt into the standards. All of the technology
 required to implement Internet standards can be fabricated in each
 country, so world wide deployment of Internet technology does not
 depend on its exportability from any particular country or countries.

 5.3 Any implementation which does not include all of the required
 components cannot claim conformance with the standard.

 5.4 Designs should be fully international, with support for
 localisation (adaptation to local character sets). In particular,
 there should be a uniform approach to character set tagging for
 information content.

6. Related to Confidentiality and Authentication

 6.1 All designs must fit into the IP security architecture.

 6.2 It is highly desirable that Internet carriers protect the privacy
 and authenticity of all traffic, but this is not a requirement of the
 architecture. Confidentiality and authentication are the
 responsibility of end users and must be implemented in the protocols
 used by the end users. Endpoints should not depend on the
 confidentiality or integrity of the carriers. Carriers may choose to
 provide some level of protection, but this is secondary to the
 primary responsibility of the end users to protect themselves.

 6.3 Wherever a cryptographic algorithm is called for in a protocol,
 the protocol should be designed to permit alternative algorithms to
 be used and the specific algorithm employed in a particular

Page 5 of 7

12/8/2010http://www.ietf.org/rfc/rfc1958.txt

 implementation should be explicitly labeled. Official labels for
 algorithms are to be recorded by the IANA.

 (It can be argued that this principle could be generalised beyond the
 security area.)

IAB Informational [Page 6]
�
RFC 1958 Architectural Principles of the Internet June 1996

 6.4 In choosing algorithms, the algorithm should be one which is
 widely regarded as strong enough to serve the purpose. Among
 alternatives all of which are strong enough, preference should be
 given to algorithms which have stood the test of time and which are
 not unnecessarily inefficient.

 6.5 To ensure interoperation between endpoints making use of security
 services, one algorithm (or suite of algorithms) should be mandated
 to ensure the ability to negotiate a secure context between
 implementations. Without this, implementations might otherwise not
 have an algorithm in common and not be able to communicate securely.

Acknowledgements

 This document is a collective work of the Internet community,
 published by the Internet Architecture Board. Special thanks to Fred
 Baker, Noel Chiappa, Donald Eastlake, Frank Kastenholz, Neal
 McBurnett, Masataka Ohta, Jeff Schiller and Lansing Sloan.

References

 Note that the references have been deliberately limited to two
 fundamental papers on the Internet architecture.

 [Clark] The Design Philosophy of the DARPA Internet Protocols,
 D.D.Clark, Proc SIGCOMM 88, ACM CCR Vol 18, Number 4, August 1988,
 pages 106-114 (reprinted in ACM CCR Vol 25, Number 1, January 1995,
 pages 102-111).

 [Saltzer] End-To-End Arguments in System Design, J.H. Saltzer,
 D.P.Reed, D.D.Clark, ACM TOCS, Vol 2, Number 4, November 1984, pp
 277-288.

Page 6 of 7

12/8/2010http://www.ietf.org/rfc/rfc1958.txt

IAB Informational [Page 7]
�
RFC 1958 Architectural Principles of the Internet June 1996

Security Considerations

 Security issues are discussed throughout this memo.

Editor's Address

 Brian E. Carpenter
 Group Leader, Communications Systems
 Computing and Networks Division
 CERN
 European Laboratory for Particle Physics
 1211 Geneva 23, Switzerland

 Phone: +41 22 767-4967
 Fax: +41 22 767-7155
 EMail: brian@dxcoms.cern.ch

IAB Informational [Page 8]
�

Page 7 of 7

12/8/2010http://www.ietf.org/rfc/rfc1958.txt

