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Abstract: 
 
This paper introduces a complete set of deterministic and deterministic-based equations and methodology 
for computer implementation of an approximation of the results obtained from the use of Figures 1, 9 and 
17 in ITU Recommendation P.1546-2.  This set of approximation equations and methodology are for use in 
computer software implementations estimating radio signal field strength over land, in the 10 MHz to 
3GHz range, for a radio path length between 1 and 1000 km., with a reliability of 50% of locations, 50% of 
the time, and a receiver height at or below 25.3 m.  The accompanying computer spreadsheet provides a 
full demonstration of the use of these equations.  The only non-preset input data required consists of the 
transmitter and receiver heights, the frequency, and the path length.  These approximation equations are 
based on Beer’s Law, Snell’s Law, Free Space Dispersion, Radiative Transfer Engine Theory, ITU 
Recommendations P.453-7, P.530-7, P.833-2 and P.1546-2, and the Generic Model of 1-60 GHz Radio 
Propagation through Vegetation.   
 
 
Free Space Dispersion:  The classic term “free 
space loss” is a misnomer; a more accurate term is 
“dispersion”.  The classic textbook form of this 
equation, FSPL= 20log(d) + 20log(f) +32.44 dB, 
does not include the vertical path component. 
Therefore, we prefer use of a version of the Free 
Space Dispersion (FSD) equation: 
 
FSD=10log10((h1- h2)2+d2)+20log10(f)-147dB  (1)            
                 
Where f is in Hz, and the horizontal earth surface 
path length, d, the transmitter height, h1, and the 
receive height, h2, are all in meters.   P.1546-2 uses 
maximum field strength value curves.  Free Space 
Loss (FSL) is utilized on the figures as maximum 
(free space) lines.  They are calculated using: 
 
Efs = 106.9 – 20log(d) dB(uV/m), d in km.        (2) 
 
Alternately, for more accuracy, using  FSD: 
 
Efs=106.9–10log((h1-h2)/1000)2+d2)dBuV/m      (3)    
with d in km.               
 
Two-ray multipath:  A Bouguer Line analysis of 
the data indicates that no significant two-ray 
multipath contribution exists in the P.1645-2 data.  
 
Developing Clutter Absorption Loss equations:  
Clutter absorption attenuation occurs along the 
path of the direct signal from the transmitter to the 
receiver.  On a typical broadcast path, a signal from 
a high transmitting site transmits into clear air.  
The receive site is at a relatively low height, 2 to 
10 meters above ground level, and the “clutter 

layer”, consisting of a layer of foliage and other 
absorptive materials atop a smooth or irregular 
terrain, is taller that the receive antenna height.  At 
a point along the direct signal path, the direct 
signal path enters the clutter layer. While the 
composition of the clutter varies tremendously 
from site to site, if the empirical database is 
extensive, and the clutter, on the average, can be 
considered to be relatively homogeneous in 
absorption per meter and in the height of the clutter 
layer, then it is possible to derive not only an 
average value of clutter attenuation per meter, but 
an estimate of the average clutter canopy height.  
We define CHR as the average clutter layer height 
above the receiver; CHR is equal to CH, the average 
clutter height, less the effective receive height, h2.  
The clutter loss, at its simplest, can be a straight-
line function of the form:  A = d * AB, where AB 
is the Clutter Absorption coefficient, and d the 
absorption path distance.  Such an equation exists: 
Beer’s Law.  Beer’s Law is an extension of the 
Bouguer Law, which was rediscovered as the 
Lambert law of absorption.  Beer’s Law, defined 
for radio propagation is:  
 

ACL = AB * clp * c,     (4) 
 
Where: ACL is the attenuation of the signal in 
dB/meter: ACL=log10(power in/power out)     (5) 
 
clp is the length of the path (in meters) that the 
signal follows through the absorbing medium 
(ground clutter), and AB is the absorption factor 
function, defined in attenuation per meter, 
(dB/meter), the absorbtivity of a theoretical, 
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homogeneous, one-meter depth of statistically 
average clutter as derived from the figures in ITU-
R P.1546-2. The coefficient c represents the 
density of the clutter, and is preset to c = 1.0.   

   
Next, we determine an equation for the length of 
the direct propagation path that passes through the 
clutter, dcp.  To calculate the angle from the receive 
site back toward the transmit site, take the 
difference in height between the transmitting and 
receive antennas, divided by the total path distance, 
to obtain the tangent of the receive site take-off 
angle, θr.  For a line-of-sight path, the 
trigonometric functions associated with θr are:       
 tan θr =  (h1 - h2)/d  =  ( CH - h2 )/dcp           (6) 
θr   =  atan ((h1 - h2 )/d)              (7) 
sin θr = (h1-h2 )/r0 =(CH - h2 )/clp= CHR / clp    (8)   
r0  =   ( (h1 - h2 )2 + d2)1/2     (9) 
where CHR, clutter height above receive height is: 
CHR = ( CH - h2 )     (10) 
CH =  average of the clutter canopy height 
d = flat earth surface distance between the transmit 
and receive antennas  
h1 =   effective height of the transmit antenna  
h2  = effective height of the receive antenna 
clp = cluttered path length, through clutter layer 
from entry point to receive antenna  
dcp = the portion of d under the clp. 
r0  =  total length of direct signal path ray from 
transmit to receive antenna. 

 
we then derive: 
r0 =  ( h1 - h2 )/ sin θr      (11) 
clp*(h1-h2)=r0*(CH-h2)=((h1-h2 )2 + d2) *(CH - h2 )  
clp =(((h1 - h2 )2+d2)*(CH-h2 ))/ ( h1 - h2 ) 
clp  =  CHR / sin θr  =  (CH - h2 ) / sin θr      (12a,b,c) 
where sin θr = (h1 - h2) /((h1 - h2)2+d2) 1/2  (13)
   
From Beer’s Law, the clutter attenuation ACL, is 
equal to the average clutter absorption per meter 
function, AB, times the clutter path length, clp:  

 
ACL = AB * clp  = AB * (CH - h2 ) / (sin θr )  (14) 

 
Based on an assumption that the average clutter 
height effectively remains the same at all distances 
in the ITU Figures, we interpret from Figure 1 of 
P.1546-2, where we find: f=100 MHz, h1 = 10 (or, 
37.5/4=9.375) meters transmitter height, and h2 
=10 meters (rural) receive height.  The statistical 
reliability is 50% of locations, for 50% of the time.   
We reference the non-free-space clutter attenuation 
as being the vertical distance between the h1 line 
and the maximum line.  
 

Solving for the Clutter Factor coefficients:  The 
next step is to quantify our constants and factors, 
and include a form of Radiative Transfer 
consideration to the Beer’s Law equation.  The 
value of AB is orders of magnitude smaller at 40 
km than at 1 km.  Since AB for a homogenous 
medium must be a constant, there is a second set of 
phenomenon at work here; Radiative Transfer. Our 
hypothetical simplified framework model for radio 
signal propagation consists of up to three 
significant considerations:   
 
For a transmitting antenna at or below the clutter 
layer, the considerations in addition to FSL are: 
1. Absorptive loss of the signal, as it travels 
vertically (and to some extent, horizontally) up 
from the antenna to the top of the clutter layer, and 
back down through the clutter layer to reach the 
receive antenna. 
2. Radiative Transfer scatter and scatter function 
(surface wave) across the top of the clutter layer. 
3. Absorptive loss of the signal that occurs near the 
start of the cluttered path as the Radiative Transfer 
scatter and scatter functions build up to swamp out 
the absorptive loss.  

 
For a transmitting antenna above the clutter layer, 
the primary considerations in addition to FSL are: 
1. Absorptive loss of the signal that occurs near the 
start of the cluttered path as the radiative transfer 
function builds up to swamp out the absorptive 
loss. 
2.Radiative transfer across, through, and under the 
clutter layer from where the signal path enters the 
clutter layer, to the receive antenna. 
 
Beer’s Law Analysis: To separate out the Beer’s 
Law absorption factor, AB, from the ITU data, we 
go to the h1 = 10 line, where the entire radio signal 
path is below the clutter canopy line, and clp, the 
cluttered path distance = d, the flat earth radio path 
distance.  By definition, d1, the portion of d, the 
path distance, above which the clp is found, is here 
also equal to clp, and at h1 = 10, below the clutter 
canopy, 
 clp = d = d1.     (15) 
d1 =  CHR/( tan θr)    (16) 
On the h1 = 10 curve, at d=0, h1 – h2 = 0; clp = 0, 
and  ACR = AB(clp) =  0. 
On the h1 = 10 curve, at d=1000 meters, clp = 1000 
meters, and  ACR /(clp) < AB 
At h1 = 10 (9.375) m., and d= 1 km (1000 meters), 
ACR = 106.9 – 90 = 16.9 dB, and  
AB > 16.9/1000 = 0.0169 dB/meter: this value has 
already been reduced by the effect of Radiative 
Transfer over the first 1000 meters, so we can only 
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say that the constant AB > 0.0169 dB/meter.  The 
loss at 2 km is: 100.88 –80.25 = 20.63 dB; less the 
loss in the first km, the average loss in the second 
km is only 3.7 dB vs 16.9 dB in the first km; at 4 
km, doubling the distance, the loss is 94.86 – 69.5 
= 25.36 dB, a 4.7 dB additional loss in 2 km; and 
an average of 2.4 dB loss in the 3rd and 4th km; so 
the Radiative Transfer function, RTE, quickly 
takes over from direct path propagation as the 
primary delivery medium of radio frequency field 
strength at the receive location, even in the first 
km.  

 
The losses are therefore:   

ACR = AB(clp) – RTE                 (17)    
 
And this general equation includes the 
considerations for the condition of “at or under the 
clutter path” mentioned above, as the AB(clp) term 
includes the entry and exit losses from the 
transmitter to the top of the clutter layer, and from 
the top of the clutter layer to the receive antenna. 
 
Even at h1 = h2, there can be some initial clutter 
absorption loss.   Referring to ITU-R P.833-2, 
Attenuation in Vegetation[5], Figure 1; note that in 
this example, the transmitting antenna is the same 
height as the receive antenna, and h1 = h2.   From 
the chart, we notice that the moderation of 
absorptive loss in Radiative Transfer starts at zero 
at d = 0, where the initial clutter absorptive loss is 
represented by the straight line on the Excess loss 
vs. d graph.  The loss reduction effect of Radiative 
Transfer increases with distance, causing the 
absorptive loss line to bend in a logarithmic 
manner, reducing to a horizontal line as d 
increases. 
For all cases where the transmitting antenna height, 
h1 is not equal to the receive antenna height, h2, the 
Radiative Transfer function, RTE, would vary with 
the distance d1, not clp.  The distances clp and d1 
are nearly the same at far distance, but near the 
transmitter, as d, clp and d1 approach zero, clp 
approaches the value of CHR as (sin θr) approaches 
1.0; the RTE function approaches 0 as it varies 
with d1, which approaches d1 = (CHR /Infinity) as 
the (tan θr) approaches tan (π/2) radians, or tan 
(90o). 

 
Therefore, at h1 = 10:  
At 0 km, ACR[1] = 0, clp = 0, d= 0, and RTE = 0 
At 1 km, ACR[1] =  16.9, AB > 0.0169 dB/meter 
At 2 km, ACR[1] =  20.63 
At 4 km, ACR[1] =  25.36 
 

At 2 km, without the RTE scatter and scatter 
function, i.e. where the clutter layer is so deep that 
the RTE scatter components are minimalized, the 
attenuation would be at least: 
ACR[2]=AB(clp)–RTE >.0169(2,000)–0 >33.8 dB.   
 
So in the second km, surface wave radiative 
transfer is reducing the attenuation by at least:   
(33.8 – 20.63) dB / 1 km  > 13.17 dB/km, and over 
the next doubling of distance, reducing the 
attenuation by at least: ACR[4]=AB(clp)–RTE> 
.0169(4,000)–0>67.6 dB.  (67.6–25.36)dB/2km> 
42.24dB/2km>21.12 dB/km.   
 
The rate of reduction of the scatter components, 
including the surface wave of the radiative transfer 
function, where both the transmitting antenna and 
receive antenna are below the clutter layer, triples 
between 1 to 2 km, and 2 to 4 km, a factor of 
42.24/13.17 = 3.21.  Therefore, we can estimate 
that the rate of reduction of attenuation for the 
distance between 0 and 1 km is 13.17/3.21= 4.1dB, 
and therefore the attenuation for the Beer’s Law 
direct ray cluttered path should be at least 16.9 + 
16.9/4.1 dB, or > 22.02 dB per kilometer, giving us 
a new estimate of: AB > 22.02/1000, or > 0.02202 
dB/meter. )  
 
Repeating the above process with AB > .02202 
dB/meter, the iteration stabilizes with an AB  = 
.019526 dB/meter, and at clp = 1 m.: 
 
 ACR[DeepClutter] = 0.01952(clp) = 0.0195dB/m.   (18) 
 
Radiative Transfer   The Radiative Transfer 
function, or Engine, (RTE) as defined in the 
Generic Model[3], consists of a coherent 
component, Iri, and an incoherent (diffuse) 
component Id.   Id has two subcomponents, I1 and 
I2.  These are: 
 

1. 1. Absorption. This is Beer’s Law clutter 
absorption. Johnson, Schwering,[2] refers to this 
as the “first term”; The Generic Model refers to 
this as the coherent component Iri.    

2.  Scattering.  The Generic Model refers to the two 
equations that comprise this component, 
combined, as the component I1.  Johnson, 
Schwering, refers to this as the “second term.”   
In practice, its effect moderates the absorption 
loss Iri for a very short distance, mid-path, as 
graphically displayed in Figure 3-18 of the 
Generic Model.  The approximation combines 
consideration with  I2.  

3. The Scattering Function.  The Generic Model 
refers to this as the non-coherent component I2; 
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Johnson, Schwering, refers to this as the “third 
term”.  In practice, it quickly takes over from I1. 
The Generic Model uses an exponential term 
added to a straight-line function to model this 
component. 

 
Each RTE component controls the loss value 
during a separate portion of the total path length.   
To derive the RTE coefficients from the P.1546-2 
data, at 2 km, where the clutter layer is so deep that 
Id (I1 and I2) is insignificant, the attenuation would 
be at least: 
 
ACR[2] = AB(clp) – RTE >.0195 (2,000) – 0 >  39 
dB, and in the second km, Id is reducing the 
attenuation by at least:  18.4 dB/km. Over the next 
doubling of distance, the attenuation is reduced by 
at least:  78.1 dB. From an analysis of these results 
a function of form:  
ASWRT  = CAB + b*20log(d1 +1) dB, d in km, (18) 
will serve as the form for an initial, interim, 
combined and simplified RET attenuation (first 
term) and scatter (second and third term) 
development equation valid for d1 = d > 1 
kilometer.  At h1= h2, CAB should be a constant 
value, as the RET startup, entry and exit losses 
should be the same for all d1 = clp = d.  So we 
should be able to solve for a constant b that will 
stay approximately the same for all values of h1 
and h2 when both are below the clutter canopy top, 
varying only with statistical variation in data, until 
we reach a point that is level with the top of the 
clutter layer.  
 
CAB is a function representing the initial absorption 
attenuation losses, the initial exit loss from the 
transmitting antenna to the top of the clutter layer, 
and any final entry loss to the receive antenna.  The 
b*20log(d1 +1) term will represent the Id loss 
moderation function for the RET with both 
terminals below the clutter line, CH.  The 1 is added 
so that the logarithmic function used, a common 
logarithm, or base 10 function, will properly solve 
to zero (20log10 of 1/1 is zero dB) when d = 0. 
 
As we increase h1 to approach the top of the clutter 
layer, CAB will approach a minimum.  This can be 
used to determine the approximate depth of the 
average clutter layer in P.1546-2.  Solving for the 
data on each h1 line starting with 10 meters, and 
fitting to match the P.1546-2 Figure 1. h1 = 10 line 
data, and using d in lieu of d1, we obtain: 
 ASWRT  = CAB + b*20log(d1 +1) dB (19) 
Solving at h1 = 10 meters, CAB  =  6.47; 
At h1 = 20 meters, CAB  = 1.638, and  
At h1= 37.5 meters,  CAB = -1.966 

 
The negative value of CAB at 37.5 meters, a 
nonsensical value, indicates that our calculation 
failed at 37.5 meters because d1 no longer equals 
d; we have reached and exceeded the top of the 
average combined terrain roughness and absorptive 
clutter layer in the P.1546-2 data.   By iteration, an 
average clutter canopy top value of CH = 25.30 
meters is obtained. 
 
CHR, the portion of CH above the receive antenna 
height, h2 , is then: CHR= CH-h2 = 15.3 meters.    
 
Determining an equation for CAB:  This at first 
appears to be a Beer’s Law formula, useable only 
for h1 < CH.  The solution must equal zero at h1 = 
CH.  This attenuation, CAB, now identified as due to 
Radiative Transfer launch losses, and a part of Iri, 
will follow the Beer’s Law equation:  
CAB = AB* clp[RTL].    (20) 
 
The distance that the signal must traverse through 
the clutter from the transmit terminal to the top of 
the clutter layer, clp, must be determined as; 
clp[RTL]  =  ((CH - h1)2 + (d[RTL]) 2)1/2  (21) 
where d[RTL] is the ground level distance traversed 
by the radiative transfer primary ray rising from the 
transmitter antenna to the clutter layer canopy. 
 
On attempting an iteration using: 
 CAB = AB* clp[RTL]   (23) 

clp[RTL]  =  (CH - h1)/ sin θe  (24) 
(sin θe[h1=20]) = 1.91(sin θe[h1=10])    
AB[h1=10] = .44(sin θe)    
AB[h1=20] = .23(sin θe)    
 

It is found that an exponential parabolic solution 
should exist for RTE component Id. Since we are 
solving for a value of field strength loss, the curves 
would match the inverse of the exponential Sum of 
Contributions curves in the Generic Model, Figure 
3-18, and be a logarithmic function.  It has already 
been found and shown that a single term of this 
logarithmic function is adequate to approximate the 
RTE Id functions at or below the clutter canopy 
top, where clp = d = d1.    The form it would follow 
is:  
ARTE = MIN( Iri  , Id ) =  MIN( Iri , MIN(I1, I2) (25) 

 
ARTE = MIN((AB*(clp)), MIN((20log(a1d1 
+c1)),(20log(a2d1 + c2)] ))))   dB   (26) 
Our model splits the RTE into three competing 
terms.  The first, Iri term is the straight-line 
function of the absorptive loss line function(s) 
following Beer’s Law.  For the at-or-below canopy 
computations, it will be split into rising signal 
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clutter absorption loss CAB and Radiative Transfer 
absorptive launch loss, CAB2.    It is reduced by 
terms two and three, as the amount of the 
absorptive loss is undermined by the RTE function.  
It is determined that we can continue to use the 
single logarithmic equation to adequately 
approximate the RTE Id function.   
 
 
Solving for the RTE terms at or below the clutter 
canopy line:  Using 2 points to solve for the RTE 
field strength attenuation losses at or below the 
clutter canopy line (ARTE-ABC), in order to obtain 
the Iri, or first term, absorptive functions, CAB and 
CAB2, at or below (ABC) the clutter line, using 
ARTE-ABC =CAB+1.34795*20log(d1 +1) dB, where 
d1 = d = clp, results in: 
 
CAB = (CH-h1)(2-1.56exp(CH-h1)-1)dB/m.     (27) 
 
Absorption Loss in the Radiative Transfer Launch 
Range; the second part of Iri.  In addition to the rise 
function above, a trans-clutter path absorptive loss 
function does briefly appear at the beginning of the 
radio path.  The equation includes a decay 
exponent, to reflect the swamping, or bypass 
increasing with distance, of its effect by the 
radiative transfer function.   
 
CAB2=cebd1=(x – a(CH-h1))ebd1   (28) 
 
A best fit to the data is then achieved with:  
 
ARTE-ABC=CAB+CAB2+1.348*20log(d1+1)dB, (29) 
 where:  
CAB=(CH-h1)(2.06943-1.56184exp(CH-h1)-1)dB/m
                                            (30) 
and: 
CAB2 = (17.98 – .84224(CH-h1))e-0.00061(d1)      (31) 
where d1, CH and h1 are in meters.  
     
Which should be used with an “if” statement, as 
the above equations are valid only for h1 < CH.   If 
h1 > CH, The equation for CAB disappears, and the 
equation for CAB2 takes a significantly different 
form.    
 
RTE Above the Clutter Line  Several changes 
occur in the set of propagation phenomena when 
the transmitter height rises above the clutter layer 
while the receiver remains below the clutter layer.  
The logarithmic form of the term Id of ARET-ABC, 
changes, and would theoretically follow the form 
of: 
ARETA=MIN(AB*crp/TC,MIN((cI1*AB*crp+c1*ex
p(1/d1)),(cI1*AB*crp + c1*exp(1/d1)))   (32) 

In order to match the functional description of the 
three terms, Iri, I1 and I2, given in the Generic 
Model, section 3.6.4. 
 
Above the clutter canopy, the radio signal will 
follow a two-ray path: from the transmitter to the 
clutter canopy, and through the clutter canopy to 
the receiver.  Due to the effect of Snell’s law, these 
two rays will not form a straight line.  AB above 
the canopy will be multiplied by a function relating 
to T, the transmission coefficient, varying with the 
angle of incidence of the direct ray into the clutter 
canopy, according to the Fresnel equations.  The 
angle of incidence, θi, the angle of the actual radio 
path with respect to the vertical (y) axis, will have 
to be calculated from Snell’s Law, using the 
refractive indices of the atmosphere and the clutter 
canopy.   The CAB rise absorption function 
disappears above the canopy.  The CAB2 function 
equation changes; as it now represents the radiation 
transfer effect launch losses from a signal arriving 
above the clutter canopy.   
 
Absorption above the Clutter Canopy  We look 
primarily to the 1 km data on each h1 meter curve 
above the canopy, to determine and verify the 
equation for CABA (CAB2 above the clutter canopy), 
as the initial values of these curves represent only 
Beer’s Law absorptive losses.  On the h1= 1,200 
m. curve, due to the effect of Snell’s Law, it is 
determined below that the actual radio path 
traversed will not be long enough for the RTE Id 
terms to have effect.  In the primarily line-of-sight 
range, all losses will be Beer’s Law absorption 
losses, i.e. RTE Iri or first term losses. The 
absorption loss alone follows the function:  

CABA =  AB* crp/TC  (33) 
 
Where T is the relative transmission coefficient of 
the incoming ray as per Snell’s Law; a ratio 
representing the amount of incoming radio signal 
that will be transmitted through the clutter layer to 
the receive point.  C will represent any other 
residual transmissive coefficient, including 
consideration of clutter orientation and reduction in 
T due to terrain roughness. The term crp represents 
the actual cluttered radio path length through the 
clutter as reduced by the effect of Snell’s Law. 
There are three considerations associated with this 
coefficient, related to the ratios of the refractive 
indices and dielectric coefficients of the two 
mediums, air and clutter layer. 
 
1.  The variation in the actual path of the radio 

signal, from the direct path between the 
transmitter and the receiver, caused by the 
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difference between the incident angle of the 
refracted signal vs. a theoretical direct ray 
between the transmitter and the receiver.  This 
difference causes the actual path refraction point 
on the clutter canopy to be farther from the 
transmitter than the theoretical direct ray, and 
requires a reduction adjustment in the length of 
clp (the new value is identified as crp) and d1.  
This adjustment reduces the absorptive and 
radiative transfer losses. 

 
2. The (actual) transmission coefficient, T, is a ratio 

of the signal arriving at the clutter layer top that 
is transmitted downward by refraction through 
the clutter layer to the receive point, relative to 
the signal arriving from the transmitter.  The 
effect of the application of this coefficient would 
be to increase the loss. 

 
3. The approach of the reflection coefficient toward 

1.0 (and the associated approach of the 
transmission coefficient to zero) at low grazing 
angles over rough surfaces, as revealed by 
Barrick[1].  At great distances from the 
transmitter site, or for very low transmit height, 
this would significantly reduce the reception by 
direct transmission through the canopy, and 
theoretically minimizes the direct signal 
absorptive loss components from the calculation 
at a significant distance from the transmitter, 
leaving primarily the surface wave I2 component 
of the RTE to transfer energy to the receive site.   

 
To solve for T requires the values of the cosine of 
the incident (cos θi) and transmissive (cos θt) 
angles.  To obtain these in a spreadsheet or in 
computer code, it is first necessary to iteratively 
solve, using Snell’s law, for the values associated 
with the actual radio signal path.   
 
The Actual Radio Signal Path  The center of the 
path of the radio signal does not follow the 
theoretical straight-line direct path ray from the 
transmitter, through the clutter canopy, to the 
receiver.  Instead, by Snell’s law, the angle of the 
refracted ray from the clutter canopy to the 
receiver, with respect to a vertical line, (which we 
will refer to as the transmissive angle, θt), is related 
to the incident angle, θi, of the actual path line 
between the transmitter and the clutter canopy with 
respect to a vertical line, by the Snell’s law 
formula: 

sin θi/sin θt = ηcc / ηs                 (34) 
where:  
ηcc  is the refractive index of the clutter at and 
below the canopy top. 

ηs is the refractive index of the atmosphere at the 
surface of the clutter canopy layer . 

 
The differences this makes in the transmitter take 
off angle, the receive take off angle, the uncluttered 
radio path length (urcp) and the cluttered radio path 
(crp), for what is now a two-ray calculation (here 
used for refraction, not reflection), can be most 
efficiently solved on a spreadsheet in a three cycle 
iteration (or, in code, an iteration repeating until 
the level of accuracy required is achieved).  First, it 
is necessary to determine the values of θi and θt; 
this requires the refractive indicies of air and the 
clutter canopy. 
 
The refractive indicies of air, vegetative clutter, 
and water: The refractive index of air is about 
1.000301; of water is about 1.33.  Our target area is 
over land, temperate climate; for P.1546-2, we 
need to consider foliage and other clutter in the 
continental Europe and the U.S. For these areas, a 
range of εr used by Tamir[7] produces a  starting 
value of ηg  = 1.015, resulting in:  
 
sin (θi )/sin (θt) = ηcc /ηs = 1.015/1.000301 = 1.0147  
 
Later, data-matching iteration shows that the 
optimal value of ηcc for the average clutter canopy 
in P.1546-2 is:  

ηcc = 1.0010     (35) 
then:  
                   sin(θic)/sin(θtc) = ηcc /ηs  = 1.0007. 

   
The incident angles are measured with respect to 
the vertical, or y-axis. It is not necessary to include 
the additional path length due to refraction.  But 
the effect of the change in ratio of uncluttered path 
length to cluttered path length is significant. 
 
Geometric calculation of the actual radio signal 
path parameters:  
Step 1: calculate the earth curvature correction 
angle for the earth radius, θ∆e: θ∆e = d/r           (36) 
where: d is the total flat-earth radio path length 
from transmitter to receiver    
r is the actual earth radius:  6,378,137 meters. 
Step 2: calculate the earth curvature height; hc:
 hc = (CH + r)(1 – cos(θ∆e))  (37) 
Step 3: calculate the equivalent curvature flat 
distance, dx:  dx = (CH +r)sin(θ∆e)   (38) 
Step 4: calculate the un-cluttered radio path w/earth 
curvature correction; ucrpc:   
        ucrpc =  [(h1 – CH + hc)2  + (dx) 2 ]1/2    (39) 
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Step 5: calculate the cosine of the flat earth 
incident angle; cos(θI’):  
 cos(θi’) =  (h1 – CH + hc)/ucrpc  (40) 
Step 6: calculate θi’:   

θi’  = arccos[(h1 – CH + hc)/ucrpc]  (41) 
Step 7: calculate the total incident angle; θic:  
 θic = θi’ + θ∆e   (42) 
Step 8: calculate the sin of the total incident angle;  
 sin(θic) = sin(θi’ + θ∆e)  (43) 
Step 9: calculate the sin of the transmission angle, 
θtc :    sin θtc = (ηa /ηg  sin(θic)   (44) 
Step 10: calculate θtc : θtc =  arcsin [(ηa /ηg  sin(θic)]   
Step 11: calculate cos θtc:     

cos(θtc)=[1– sin2(θtc)]1/2  (45) 
Step 12:  calculate the cluttered radio path with 
earth correction; crpc:   
crpc = (CH – h2)/ cos(θtc)    (46) 
Step 13: calculate the sin of the grazing angle Ψ;  
 sin Ψ = (π/2 - θic)    (47) 
Step 14:  calculate the clutter canopy surface 
distance; d1a:  d1a = crpc(sin(θtc))/( 1 - 1/r)  (49) 
Step 15: repeat steps 1 to 13 using a new d’ = d 
(actual value) - d1a   until the required accuracy is 
obtained. For spreadsheet calculation, three 
iterations are adequate.  
 

 
 
The Transmission Coefficient   The transmission 
coefficient, T, is defined as: T = 1- R, where R is 
the Reflection Coefficient. The reflection 
coefficient, R, calculation is different for horizontal 
and vertical polarization: 
RH=[(ηscos(θi)-ηcccos(θt))/(ηscos(θi)+ηcccos(θt))]2 

RV=[(ηscos(θt)-ηcccos(θi))/(ηscos(θt)+ηcccos(θi))]2 
        (50,51) 

The P.1546-2 curves are not separated by polarity, 
so are treated as circularly polarized, by averaging 
the  horizontal polarity and vertical polarity results:  

 
    R = 0.5RH - 0.5RV ;      T =1- R   (52 a,b) 
 
For an air to clutter canopy interface, for most 
practical purposes, R = .001, T = .999 at the 
transmitter site, gradually reversing to R=.999, 
T=.001 at the horizon.  Snell’s law therefore 
contributes to the effects documented by Barrick at 
low grazing angles.[2]  The consideration of T, and 
the significant change in the length of the cluttered 
radio path, crp, versus the temporarily considered 
direct path, clp, is accommodated by modifying our 
Beer’s Law equation for the RTE Iri term: 

CABA = AB*crpc/ TC             (53) 
 
The direct “cluttered path”, clp versus the actual 
“cluttered radio path”, crpc:  The length of the 
cluttered radio path, due to the Snell’s angle 
change at the clutter canopy, is  significantly less 
than the direct ray path from the transmitter to the 
receiver.  As θic approaches 1.57 radians, i.e. the 
transmitter to clutter entry point ray approaches the 
horizontal, θtc stabilizes near 1.4004 radians for an 
air to clutter interface.  At d = 80 km, with h1 = 
1,200 m., the portion of the direct ray that would 
pass through the clutter layer, clp, would be 1,029 
meters; but due to angle of the refracted 
transmission ray, the actual radio path, crpc, has 
stabilized near 89.9 meters, and will not exceed 
90.25 meters at d = 1,000 km.   
 
Absorption Losses above the Clutter Line   We 
have previously derived an estimate from the 
P.1546-2 data, for AB in clutter deep enough that 
radiative transfer does not function, of 0.0195 
dB/meter.  Using this above the clutter line and 
adding consideration of the Snell’s Law 
transmissivity, T, to accommodate the “clutter 
canopy signal splitter” represented by the reflected 
energy versus the transmitted (into the clutter) 
energy at the air to canopy top interface.  T will 
vary with the incidence angle of the radio signal. 
 
As a result of the significant shortening of the 
cluttered radio path by the effect of Snell’s Law, 
the losses on the h1 = 1,200 m. line of P.1546-2 out 
to 3 km are all Beer’s Law absorption losses, a.k.a. 
RTE Iri term losses; as the actual length of the 
canopy top traversed, (d1a), due to the action of 
Snell’s Law, is only 15 to 50 meters; not long 
enough for the RTE Id term phenomena to overtake 
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the Iri losses.  Study of the curves resulting from 
plotting the non-FSL losses vs. distance indicate 
that the Beer’ Law absorption losses apply for up 
to the first 50 meters of clutter canopy path length; 
from 50 meters to 225 meters, a second set of Id 
effects provide the lowest losses; and from 225 
meters onward, a third set of loss phenomenon are 
the controlling function.  This can clearly be seen 
on the following h1 = 1200 chart, Figure 1, where 
the initial, climbing Iri loss line gives way to a 
relatively flat Id line, which then transitions to a 
climbing flat curve. 
 
The three distinct sections to the curve suggests the 
Iri, I1, and I2 Radiative Transfer functions; but the 
Generic Model indicates that the length of path 
distance that the I1 function controls is short 
compared to the Iri function, less than 15 meters in 
canopy top (d1a) distance. The relatively flat area in 
the above chart from d = 3 km to d= 20 km is the Id 
functions, and the rising curve past 300 meters of 
d1a distance (20 km in the h1 = 1200 m. chart) 
represents a third set of Snell’s Law-related RTE 
phenomenon, here referred to as I3, where at a 
distance, absorption of the scatter and cancellation 
with Snell’s path main signal becomes a factor to 
the point that up to Ψ< 0, a Beer’s Law absorption 
calculation using AB=.0195 dB/m * d1a provides 
only slightly higher results.  The I3 mode continues 
past the horizon, functioning on side scatter up to 
Ψ = - .01 rad, (0.5 deg.), where the propagation 
transitions to a post-horizon diffraction mode.   
 
Figure 1; Non-FSL losses in dB vs. d in km., 
 for h1 = 1200 meters: 
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Approximation equations for the RTE  Iri functions: 

 
The attenuation for the initial path distance above 
the canopy, out to 50 meters, are from RTE Iri 
function, and take the form of the cluttered radio 
path corrected for earth curvature, crpc, multiplied 
by AB, the Beer’s Law absorptive loss constant for 
average clutter, 0.0195 dB/meter, added to the 
transmissive loss,  AT = - 20log(T).  
 
Iri=crpc*AB- AT = 0.0195*crpc–20log(T)   (54) 
 
Approximation equations for the RTE  Id ( I1 and 
I2, ) functions:   Two equations were derived to 
match the Id data in P.1546-2; both apply to 
situations where the transmitter is above the 
canopy top, and the canopy top distance (d1a) 
exceeds 250 meters.  The first derives only from 
the h1 = 1,200 meter line, and are arbitrarily 
assumed to apply only to h1 > 1,000 m: 
 
The entire function relates to the canopy top 
distance, d1a; and is a Beer’s Law distance times 
loss/distance formula, with the absorption and 
dispersion loss term containing a total path 
distance-related term.  The Id, or combined I1 & I2 
function approximation for f= 100 MHz, with h1 at 
or above 1,000 m. is;  
 
        I1,2[h1>1000m]  =  d1a[0.03exp(-.14d)]           (55) 
 
The h1 = 1,200 line is missing the vertical path 
length extension loss at locations near the 
transmitter site.  The fact that the approximation 
equations for the RTE Id function at the h1 = 1,200 
line do not match those for all other lines above the 
clutter line, is additional evidence that the data 
source and computation of the h1 = 1,200 line may 
be eligible for review.  For f =100 MHz, and h1 
between 1,000 meters and the canopy top, the Id 
equation changes to: 
 
I1,2[h1>1000m]  =  d1a[0.07exp(-.17d)]           (56) 
 
The RTE I3 function:  The I3 function applies for 
d1a distances greater than 225 meters up to the 
past-horizon point where diffraction loss is less, or 
up to a major path obstruction.  The entire function 
relates to the canopy top distance, d1a; which forms 
the primary distance component of a Beer’s Law 
construct, with the absorption and dispersion loss 
terms containing two path distance-driven terms, 
and an effective transmitter height term.    The last 
term provides consideration of an R-related 
reduction in RF level exciting the RTE canopy-top 
scatter wave for the first few km. from the 
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transmitter site, when low transmitter heights 
combine with high incident angles atop the canopy.   
 
The I3 approximation for f= 100 MHz, with h1 
above the clutter canopy and h2 below the canopy, 
has been discerned by staged subtraction and 
regression to be: 
 
I3 = d1a [0.00055d+ log(d)(0.041– 0.0017(h1)1/2 

+0.019]-.9(20log(R)/exp(h1/37.5)                 (57)  
 

where d is in km, and d1a is in meters.    
 
At and beyond the horizon: diffraction:  Analysis 
of P.1546-2 Figure 1, produces the following 
approximation for diffraction losses beyond the 
horizon transition point, consisting of the 
combination of a distance term, 0.0665d + 48.35, 
and a relative transmitter height term: 
 
ADIFF[100MHz] =0.0665d + 48.35-.356(h1-h2)1/2  (58) 
The results of this equation apply where the value 
produced is less than the RTE I3 term, or in all 
cases beyond the horizon, defined as where the 
combination incident angle above the clutter 
canopy, θic, is greater than 1.59 radians. 
 
Frequency Compensation  Up to this point, we 
have derived only from Figure 1, with a frequency 
= 100 MHz.  We now turn to an analysis of the 
change in the functions with frequency, derived 
from the f = 600 MHz and f = 2,000 MHz over-
land figures. 
Frequency Compensation beyond the horizon: 
From basic knife-edge diffraction theory, we 
expect: Afreq  = 20log[(1/λ)1/2], where λ  the 
wavelength of the frequency, is equal to c/f, c is the 
speed of light in km/sec and f is the frequency in 
MHz.  Carrying the square root across the 
logarithmic function, and substituting a constant, a, 
for the equivalent of 10log(c), we obtain: 
ADIFF Frequency Comp. =10log(fMHz ) + a   (59) 
 
Incorporating this frequency compensation into the 
earlier 100 MHz diffraction equation results in a 
complete diffraction approximation: 
 
ADIFF =.072d - 0.45(h1)1/2+10log(fMHz)+27   (60) 
 
Frequency Compensation for RTE I3 Function:   
For I3, the frequency compensation required swings 
from slightly negative to positive with distance, 
with an intercept point controlled by the transmitter 
height above clutter canopy top.  Two equations 
describe the compensation: a negative 
compensation term applies prior to the zero 

intercept point, and a positive compensation term 
applies after the zero intercept.  The frequency 
compensation equations to be added to the result of 
the RTE I3 computation each consists of a 
frequency and transmitter-height-controlled gain 
term multiplied by a distance term based on the 
distance from the zero intercept: 

 
Zero intercept =1.5(h1 – CH)1/2  meters        (61) 

 
If d > 1.5( h1 – CH)1/2, FCI3B applies; if not, FCI3A 
applies.                  (62a) 
 
FCI3A = [-20((Log(fMHz )-2)/( h1)1/2]*[ (1.5(h1 – 
CH)1/2 – d[km])/1.5( h1– CH)1/2)                     (62b) 
 
FCI3B = [10.2((Log(fMHz )-2)/(100-1.5(h1 – 
CH)1/2)]*[d[km] -1.5( h1– CH)1/2]             (62c) 
 
Frequency Compensation for RTE Id (I1 and I2): 
For the RTE Id function Id (I1 and I2), the height 
and frequency compensation approximation 
equation term to add to the result of the RTE 
computations solves to be: 

 
ARTEfc =   − ((log(fMHz)-2)*(h2/h1)                 (63) 
 
Frequency Compensation for the Beer’s Law – 
RTE Iri component    No frequency compensation 
is included for the direct absorption Iri losses.   
 
Sum Approximation Equation for Attenuation 
Above Clutter Canopy:   The full form of the sum 
equation for Attenuation above clutter is: 

 
ARET-AC = ARTE (Iri ,Id  or I3 ) + FCRTE(Iri ,Id  or I3 ),  (64) 
 
Transition points above the clutter canopy:  
If the under-canopy top ground distance d1a is less 
than or equal to 50 meters, then the Iri mode results 
are used.  The  Id mode results apply from 50 to 
225 meters.  If the under-canopy top ground 
distance d1a is greater than 225 meters, and if the 
combined incident angle θic is equal to or less than 
1.5775 radians, then the I3 mode results are used.  
If the under-canopy top ground distance d1a is 
greater than 275 meters, and if the combined 
incident angle θic is greater than 1.5775 radians, 
but less than 1.59 radians, then the signal is in a 
transition at the horizon between I3 and diffraction 
mode, and the lesser of these two attenuations is 
used. If the combined incident angle θic is greater 
than 1.59 radians, diffraction results apply.  
 
Transition points below the canopy top level: 
When the transmitter is at or below the canopy top 
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level, the cluttered radio path distance is equal to 
the path distance d.  The results of the equations 
given for the Iri and Id functions are to be added 
together.  If the path distance d is less than or equal 
to 6 km., the combined RTE Iri and Id function 
results control the resultant attenuation.  If the path 
distance d is greater than 6 km., and if the 
combined incident angle θic is equal to or less than 
1.595 radians, then the lesser of the RTE combined 
or diffraction mode results apply, and reveal the 
horizon transition point.  If the path distance d is 
past 6 km., and if θic is greater than 1.595 radians, 
then the path is beyond the horizon; diffraction 
mode results apply. 
 
Combining the Results for the Deterministic 
Approximations Solution:  The last step is to add 
any optional Two-Ray multipath attenuation, A2R, 
and the Free Space Loss (or Dispersion), to the 
non-free-space attenuation computed above, with 
frequency compensation included, to obtain the 
total predicted attenuation: 
 
ATOT =ARTE-AC or ARTE-BC or ADIFF)+A2R+FS  (65) 
 
For a P.1456-2 land path, A2R, the multipath 
attenuation, = 0.    The equation then becomes: 
 

ATOT  =  A(RTE or DIFF)[+FC] + FSL.       (66) 
 
The additional considerations given in P.1546-2 for 
special cases may then be applied to the attenuation 
results, and to determine field strength for a 
transmitted power of 1 kilowatt ERP: 
 

E = 106.9 - ATOT   (67) 
 
Summary: The above deterministic and 
deterministic-based approximation equations, when 
implemented using the described methodology as a 
computational engine on a computer spreadsheet or 
in a computer program, adequately duplicate for 
general use, the results obtained from ITU-P.1546-
2 for over-land paths, requiring only the input of 
four variables: the frequency, the transmitter 
height, the total path distance, and the receiver 
height.  Besides providing a useful, practical tool; 
it is a proof of concept for the unified Beer’s Law-
based foundation and Snell’s Law geometrical 
framework embodied within.  The deterministic 
nature of the work allows extension to 
circumstances beyond the parameters of P.1546-2.  
This unified framework, as used here to assemble 
and analyze the various puzzle pieces of radio 
propagation theory, can also provide a foundation 
and framework for further study.  
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