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Abstract: 
 
This paper introduces two sets of equations, the first set empirically derived for two 
distance ranges, 1 to 50 km and 50 to 1000 km, and one deterministic-based with 
overlapping range equations, all derived from the data curves in over-land figures in ITU 
Recommendation P.1546-2.  These equations are intended for use in a computer 
spreadsheet or in a computer software implementation for estimating radio reception 
signal strength over land, in the 10 MHz to 3GHz range, for a radio path length between 
1 and 1000 km.  The results of these equations are intended to be highly compatible with 
the results produced by ITU-R P. 1546-2 and Okimura-Hata for over-land paths at a 
reliability of 50% of locations, 50% of the time.  The line-of-sight deterministic equations 
have been developed for use in replacing the current line-of-sight calculations utilized in 
the Longley-Rice Irregular Terrain Model (ITM v. 1.2.2.), in a corrected and completed 
Irregular Terrain with Obstructions Model (ITWOM) currently under development.       
 
 
Part I.  The Empirical Model: 
 
The designation “empirical” here means that data and/or curves derived from many 
measurements have been fitted to polynomial equations in order to produce similar 
results on spreadsheets and in computer calculations.  This is done so that it is not 
necessary to resort to reading and interpolating data points off of a figure or from a 
database lookup table.  In this process, however, we will take into account known radio 
propagation law and theory to develop the calculations in a manner that will lead to a 
following derivation of deterministic-based approximation equations.  
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Concepts and Assumptions: 
 
This work is based on the concept that line-of-sight radio propagation losses can be 
separated into: 
 

1. Free space dispersion. 
 
2. Multipath loss; primarily considered and computed using two-ray plane 

wave ground reflection calculations in two physical dimensions, with 
consideration of wavelet wavefront effects in three physical dimensions.  

 
3. Four Radiative Transfer Engine (RTE) functions: Heat loss due to the 

passage of radio frequency energy through absorptive vegetation and other 
clutter atop terrain irregularities (Beer’s Law, or RTE Iri startup mode), 
moderated by RTE scatter and scatter functions Id (a.k.a. I1 and I2) and 
above-canopy-top-long-distance function I3. 

 
This work is based on the concept that a signal path that is obstructed ceases to follow a 
line-of-sight model, and must be determined using a diffraction model.   A more 
complete model set, not proposed here, might consider a signal path that is obstructed to 
be represented by a edge diffraction model, and a signal path that passes very near an 
obstruction (due to wavefront wavelet interference effects) to be represented by a 
weighted combination of line-of-sight and grazing diffraction models.   
 
 
Free Space Dispersion 
 
The classic term “free space loss” is a misnomer.  In fact, the classic free space equations 
depend upon the conservation of energy (Newton’s second law), in that they calculate the 
three dimensional space dispersion of a loss-free spherical radio frequency energy 
wavefront emitted by a theoretical isotropic point source.  The improved free space 
calculations below will be referred to as Free Space Dispersion (FSD) equations.   
 
Free Space Loss (FSL) and FSD calculations are based on the deterministic concept 
model of a signal radiating from an isotropic (or, alternately, dipole), antenna located at 
the center of an empty sphere of a radius r, equal to the path distance, d.   The versions of 
the computation calculate either the radio frequency (RF) voltage field arriving within an 
area of a size one wavelength square of the inside of the sphere, or the signal power 
receivable by a dipole antenna at a distance defined as the sphere radius.  The well-
known equations commonly referred to as the “Free Space Loss” equations, are based on 
the “free space loss” being the ratio of: the (power received)/(power transmitted): 
 
Starting with the power transmitted, Pt, divided by the area of the inside of the sphere, 
4πr2, with radius, r = radio path distance d: 
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 S, the power per unit area, in units of watts/square meter  = Pt/4πd2 
 
And then determining the power received, Pr, as the amount of signal intercepted by the 
receiving antenna’s aperture, with the aperture size dependent upon the wavelength of the 
radio signal:  
 

Pr  = Sλ2/4π = Pt λ2
 /16π2d2 

 
The Free Space Power Loss ratio, FSPL, is  =  Pr / Pt = (4πd/λ)2 = (4πdf/c)2 

Where d is in km, f is in MHz, and c is the speed of light.  The equation is then 
split up in a logarithmic conversion: 

        FSPL = 10log10 ((4πdf/c)2 )  

        FSPL =  20log((4πdf/c) = 20log(d) + 20 log(f) + + 20 log (4π/c) 

Resulting in the widely used, classic textbook form of this equation:  

          FSPL = 20log(d) + 20log(f) +32.44 dB 

Calculation of the FSPL using this equation has an inherent weakness; the 
separated logarithm functions for d and f are ratios of d/1 and f/1; they fail to 
calculate in a manner reflecting the real-world phenomena being represented 
when the values of d or f are less than 1.  This is not a problem for f, as the range 
of  P.1546-2 is limited to a minimum of 30 MHz.  It is becoming more of a 
problem for d< 1 km, as interest in radio transmission propagation at shorter 
ranges increases due to the relatively recent emphasis on cellular, microcellular, 
and other personal wireless communications systems operating at lower power, 
and with less range, that traditional broadcast services.   

As a corrective step, for short radio paths, the FSPL should be calculated in this 
form:   

FSPL = 10log10((4πdf/c)2 ),  or as 

FSPL =  20log10(d) + 20 log10(f) + 20 log10(f) – 147.56 dB 

Where: f is in Hz, and d is in meters.  This pushes the inherent calculation 
weakness in the separated logarithmic form down to 1 meter, placing it within the 
near-field of the antenna, where the equation is unreliable.   

For the broadcast scenarios utilized in ITU-R P.1546-2, (P.1546-2) an additional 
enhancement is necessary.  The figures and calculations in P.1546-2 utilize and 
display a maximum free space loss line that is only correct when the transmitter 
antenna height is not significantly above the receiver.  The additional path 
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dispersion incurred due to transmitter to receiver height difference path extension 
is not shown.  Significant additional dispersion due to path extension occurs when 
the height of the transmitting antenna, h1, significantly exceeds receive terminal 
height, h2, and the path distance is short.    

 
To correct this, the flat earth radio path distance, d, in the FSPL equation above, is 
replaced with a pythegorian two-dimensional vector calculation, ((h1- h2)2 + d2)1/2, of the 
full path length from the transmit antenna to the receive antenna: 
 
      FSD = 20log10( (h1- h2)2 + d2)1/2 + 20log10(f)  - 147.56 dB 
 
Carrying the square root across the log function results in the Free Space Dispersion 
(FSD) equation: 
  
      FSD, Free Space Dispersion = 10log10( (h1- h2)2 + d2) + 20log10(f) -147.56 dB (xxx) 
 
Where f is in Hz, and the horizontal path length, d, the transmitter height, h1, and the 
receive height, h2, are in meters. 
 
P.1546-2 uses maximum field strength value curves, not received signal curves.  These 
are displayed on the figures as Maximum (free space) lines.  They are calculated using: 
 
      Efs  =  106.9 – 20log(d)   dB(uV/m)  where d is in km. 
 
Since the figures start at 1 km, it is not necessary to convert this equation to d in meters.  
But we will update the equation with the transmitter to receive height path extension 
addition: 
     Efs  =  106.9 – 10log((h1- h2)/1000)2 + d2)   dB(uV/m)   [d in km.] (xxx)  
 
Since the field strength does not take into account the receive antenna aperture, it is 
frequency insensitive, and the FSD field strength results are same for all frequencies. 
 
 
Multipath losses: Plane earth field ray-tracing and wavefront wavelet reflection. 
 
Multipath consideration can be in either two or three physical dimensions.  Plane earth 
field calculations, or two-dimensional ground reflection calculations, are often referred to 
as two-ray calculations.   When expanded in scope from two to three physical 
dimensions, multipath calculations are computed using multiple ray tracing or wavefront 
wavelet reflection calculations.   
 
Two-ray calculations start out with the basic concept of a direct, main signal ray, r0, also 
described as the “incident plane wave”, traveling from the transmitting antenna to the 
receive antenna.  A second set of rays, r1 and r2, are traveling in the same plane as r0. The 
ray r1 travels from the transmitter antenna to the earths’ surface, where a reflected ray r2 
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then proceeds to meet up with the direct ray at the receive antenna.   The combination of 
these two rays is complex; the two signals can theoretically add together to double the RF 
field arriving at the receive antenna (a 6 dB increase), but only if they arrive at the same 
time, (i.e. “in phase”); each with an path length (in the case of the reflected signal, due to 
phase change at the reflection point, the effective path length) equal to a precise multiple 
of the wavelength of the signal.  If they arrive 180 degrees (or π radians) out of phase, 
they will cancel each other out, creating up to a 25 dB deep null in the received signal. 
  
The angle between ray r1 and the ground is called the grazing angle, and is normally 
represented by the Greek symbol (Ψ).  If the reflecting medium (the earth) is not a perfect 
reflector, the grazing angle between the ray leaving the reflection point, r2 , and the earth, 
will be perpendicular (90 degrees off of) the angle of the signal absorbed into the ground.  
However, in Longley-Rice equations, the earth’s surface is close enough to a perfect 
reflector that the grazing angle of ray r1 is considered to be equal to the grazing angle of 
ray r2.  
 
Another factor in the path calculation is the phase of the reflected signal. In horizontal 
polarization, the phase of the reflected signal reverses (zero degrees becomes 180, or the 
effective length changes by ½ wavelength) at the reflection point. In vertical polarization, 
the reflected ray r2 is in phase with the incoming ray r1 at a high grazing angle 
approaching π/2 radians (90o), but as the path length increases, the grazing angle 
becomes smaller. At a particular grazing angle the strength of the vertically polarized 
reflection signal, r2, drops into a wide, deep null to zero.  For a perfectly reflecting 
medium, this grazing angle is referred to as the “Brewster” angle, and can be determined 
using the equation: ΨΒ = cot-1 (εr )1/2, where for two lossless mediums, εr  = ε2 /ε1 , and the 
product of the dielectric constants ε2 and ε1 of the two media is a real number.      
 
Slight differences in the reflecting media cause this critical angle to change values for 
signal strength (the real number) and phase (the imaginary number).  For any imperfect 
reflecting medium, this critical grazing angle is then referred to as the “Pseudo-Brewster 
angle” (PSB)[1].  For a PSB, the null in the vertically polarized reflection is not as deep as 
for a Brewster angle.  Below the PSB, the vertically polarized reflection signal rapidly 
changes phase with the angle, from 90 degrees (π/2 radians) to 180 degrees (π/2 radians) 
out of phase.   
 
Ground (or sea) irregularities at the reflection point, and clutter, at and near the reflection 
point and between the reflection point and a low receiver, can affect the strength, phase, 
and phase coherence of the received reflected signal.    
 
 
Reflection coefficient, the PSB and low grazing angles:  
 
With respect to the grazing behavior of scatter and propagation above any rough surface, 
Dr. Donald Barrick, a radar propagation expert who served from 1972 to 1982 as Chief of 
the Sea State Studies Division of NOAA’s Wave Propagation Laboratory in Boulder, 
CO., concluded that:[2] 
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“Our results show that backscattered power depends on grazing angle to 

the fourth power; the impedance and admittance are constant as grazing is 
approached.  These relations hold true for both polarizations, for arbitrary surface 
materials (including perfect conductors), for all frequency/roughness scales, and 
for a single deterministic roughness profile as well as averages over surface 
ensembles. …we considered only backscatter rather than arbitrary bistatic scatter, 
…but the extension to bistatic scatter is obvious: as either the incidence or 
scattering angle alone approaches grazing, echo power decreases as grazing angle 
squared.      

 
Although our approach was primarily employed to establish general 

grazing-limit behavior, our simple angle-independent constants describing 
backscatter and propagation are useful in their own right; these expressions allow 
a single numerical evaluation to serve the entire near-grazing region up to the 
Brewster angle.”  

 
Bistatic radar systems, which include but are not limited to passive radar systems, are 
radar systems where the transmitter and receiver are widely separated.  They operate in a 
like manner to FM and TV broadcasting systems with respect to plane wave multipath 
considerations; therefore, we can extend Dr. Barrick’s conclusions to the case of plane 
wave reflections.  The theory, however, must now change in name from plane wave to 
wavefront, or wavelet, consideration, as Barrack’s conclusions shift the analysis from a 
two-dimensional plane-wave consideration of a reflection at a spot in a path, to a three-
dimensional, Newtonian conservation-of-energy revelation, regarding the consideration 
of wavelet-based reflections from a large ground area. 
  
To clarify; we are not actually dealing with two rays; that is a two dimensional (plane) 
model useful for calculation of the strongest, central part of a wavefront.  In a more 
realistic model, we are dealing with a wavefront, and wavelet theory in four dimensions; 
the three physical dimensions and time.  Here Barrick found that a form of Newton’s 
second law, a conservation of energy, applies to radio reflection.  The reflection energy at 
small grazing angles is not entirely lost due to rough surface scattering; for rough but 
unobstructed surfaces at the reflection point for which there is no ground clutter 
absorption (such as a rough desert surface) the energy of a narrowband radio signal in the 
main reflection ray r1 and r2 that is lost due to roughness of the surface in a two-
dimensional single-ray consideration, is regained in additional reflections from the rough 
surface in a three-dimensional wavefront reflection area consideration, and therefore, for 
a ray reflecting off of a surface without significant roughness obstructions or absorbing 
ground clutter such as vegetation, the strength of the reflected ray will essentially be the 
same as over a smooth surface.   
 
In short, at low grazing angles, the energy that reflects off in other directions, and is lost 
due to a rough (but still highly reflective) surface, equals the energy reflected to the 
receive terminal from other points on the same surface that would have otherwise been 
directed, in plane waves, toward other receive terminals.  The phase coherence, however, 
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will be affected; there will be a variation in arrival time from these additional reflections 
that will create variations in phase and realizable signal strength across the bandwidth of 
wideband signals.   
 
Barrick’s equations allow us to ignore the previously considered scattering effect of 
roughness on plane wave calculations at low grazing angles over nearly smooth or very 
slightly irregular surfaces, treating these surfaces as smooth earth surfaces with respect to 
very minor roughness.  As the ground clutter layer thickens, or as the underlying terrain 
surface roughens, absorption losses quickly attenuate the ground reflection, reducing the 
cancellation effect of the ground reflection.  For very short paths through clutter, the 
absorptive loss of the direct ray where it passes through absorptive clutter approaching 
the receiver then supplants the multipath loss as the primary cause of line-of-sight losses 
in addition to the free space loss.  For longer cluttered paths, Radiative Transfer Id 
functions become the primary determinant of loss.  
 
It is possible for the two-ray cancellation effect to reappear when, at long distances 
and/or for low transmitter heights, the lengths of the reflected signal path and the direct 
signal path approach an equal length as both pass approximately equally through the 
absorptive clutter layer; the signal then receives attenuation from both absorptive and 
radiative transfer clutter loss, and two-ray cancellation.   
 
 
Two ray calculation results and the ITU-R P.1546-2:  
 
 Two-ray calculation results for horizontally polarized signals, and vertically polarized 
signals at low grazing angles, over flat, uncluttered, reflective earth, show a “comb” 
pattern of deep nulls, out to the point where the difference between the direct and 
reflected ray path effective lengths reduces to ½ of a wavelength.   Then the results show 
a slowly increasing loss with distance that approaches a deep null well past the horizon.   
 
Calculations using a spreadsheet, using the Longley-Rice Irregular Terrain Model (ITM) 
methodology, show that the two-ray cancellation effects rapidly disappear when the 
terrain irregularity factor, ∆h, exceeds 4 meters.  The ITM documentation states that for 
the continental U.S., a ∆h of 90 meters is an average preset value for use when a more 
accurate determination is not available.  Therefore, two-ray effects contribute little loss 
over average U.S. terrain.  The ITU Recommendation P.1546-2, Annex 1, Paragraph 7, 
states that the minimum value of the representative height of ground cover, or 
representative clutter height h2, is 10 m. This does not speak to the roughness of the 
terrain underlying the ground clutter layer.  While Longley-Rice ∆h and ITU ground 
clutter are different parameters, we believe that, from the available information, we have 
a reasonable expectation that two-ray effects contribute little loss over the average terrain 
data used to create the Figures in ITU-R P.1546-2 (P.1546-2).   In the later calculation of 
the deterministic model, the average depth of the combined height of the ground clutter 
and the underlying average terrain roughness is derived from the ITU data. 
 



  

 8 

 

What little multipath effect remains between 1 and 50 km, was originally considered to 
exist between the h1 = 1,200 meter line and the Maximum (free space) line on Figures 1, 
9 and 17, from which these models are based.  This difference in attenuation value is 
approximately the same on all three, and therefore does not vary appreciably with 
frequency.  The research by Barrick on radar return values at low grazing angles, 
indicates that radar return losses follow a fourth-power law; bistatic radar, or one-way 
loss, would therefore exhibit a relationship to distance that follows the square root of 
radar return losses, resulting in a relationship to the square of the path distance that, 
incorporated into an empirical formula combining reflection coefficient and the square of 
the distance, fits the data well.     
  

Attenuation due to 2-ray multipath = A2R =  Red2,  
wh2e d is in km, and 
Re, the reflection coefficient, is empirically found to be equal to .0016 at 50 km.    

 
  A2R =  .0000016d2   =   (1.6E-6)d2, where d is in meters.  (1) 

This formula would be valid from 1 to 50 km in a line-of-sight situation, at all 
frequencies, for ITU-R P.1546-2.   Over a very flat, highly reflective, uncluttered terrain, 
or a sea path, this may be a valid consideration.  In Part II of this paper, regarding the 
deterministic model, it is determined that there is, in fact, no attenuation from 2-ray 
multipath effects evident in the data presented on Figures 1, 9 and 17 of P.1546-2.  

 
Absorption losses due to Ground Clutter: 
 
As the ground absorption layer thickens, absorption losses increase, rapidly damping out 
the two-ray or wavefront reflection losses to near zero as the reflected signal passes twice 
through the absorptive ground clutter.  Significant roughness of the ground also 
contributes to a many-multiple diffractions to absorption” situation, where the signal is so 
diffracted that reflection losses from partial reflection off of absorptive or partially 
transmissive surfaces, and absorption losses due to multiple diffractions terminating in 
absorbing terrain features, cause the ground reflection to be severely attenuated.   
 
Spreadsheet calculations using the Longley-Rice Irregular Terrain Model (ITM) 
methodology show that the plane-wave two-ray cancellation effects rapidly disappear 
when the terrain irregularity factor, ∆h, exceeds 4 meters.  As ∆h increases well beyond 4 
meters, and as the related ground clutter layer thickens, absorptive losses due to the path 
of the direct ray passing through absorptive ground clutter, moderated by Radiative 
Transfer over and under ground clutter, takes over as the primary cause of line-of-sight 
attenuation in addition to free space dispersion for the line of sight range.      
 
The absorptive clutter losses, which terminate as conversion to heat, and are therefore 
true losses, could be referred to as “Clutter losses”, or a component of “Clutter” however, 
this is somewhat confusing, as it does not match the definition of “Clutter” used in 
P.1546-2.  For this empirical set of equations, we make the assumption that for all 
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practical purposes, the losses documented on Figures 1, 9 and 17 in addition to the free 
space dispersion, are a form of absorptive attenuation related to the ground clutter.   This 
may include a combination of loss and loss moderation phenomena, the sum of which can 
be treated as producing an empirically quantifiable result.   
 
On Figure 1, one may imagine this Absorptive Clutter Attenuation (ACA) as being 
represented by a wedge with four corners, located where the Maximum (free space) and 
h1 = 10 lines cross the 1 km and 50 km distance lines.  At a point between 45 km and 50 
km, this clutter-effect wedge stops increasing in size, and starts to collapse toward a 
single-value-relative-to-distance line; a reasonable assumption is that this is due to the 
primary propagation mode transferring from line-of-sight to diffraction mode at the 
horizon or at an obstacle, and, eventually, to a troposcatter mode.     
 
Note that the h1 = 10 meter line is, in fact, a 9.35 meter line, as each h1 line height value, 
starting at the h1=1,200 line, is half of the line above; 1200/2 =600, etc., down to the 37.5 
meter line.  For convenience, below 37.5 meters, where 37.5/2 = 18.75, and 18.75/2 = 
9.35, these last two transmitting antenna height values are represented by 20 and 10 on 
the Figures. 
 
The maximum amount of ACA would occur when both the transmitter and receiver are at 
a minimum height, represented by the values on the h1 = 10 meter line.  The h1 = 1,200 
line is nearly loss-free from an ACA standpoint.  At h1 = 10 meters, it appears that most, 
if not all, of the direct radio transmission ray would be at or below the average height of 
the absorptive clutter layer (ACL).   
 
 If plotted on linear paper, the line these values form would be a relatively straight line 
with a slight curve. We will determine the value of three vertical lines across the wedge, 
and fit these values to a y = ad2 + bd + c line.   
 
 The difference in value between the Maximum free space line, which is correct for h1 = 
h2 = 10 meters, and the h1 = 10 meters line, is:  

106.9 –90 = 16.9 dB @ d=1,  
30.25 dB at d= 7 km, and  
51.86 dB at d = 40 km.   

 
Solving, at 100 MHz, for ACA = ad2 + bd + c at h1 = h2 = 10 m, we get:   
 
 ACA[100MHz, d] = - 0.04026d2 + 2.5471d + 14.39, where d is in km.      (1a) 
 
Which solves for ACA at a distance d, when h1 = h2 = 10 m, and has been exponentially 
derived from P.1546-2. 
 
We also obtain the equivalent values from Figures 9 and 17, and also solve for ACA at 
600 and 2,000 MHz: 
 
  ACA[600MHz, d] = - 0.0685237d2 + 3.814856d + 11.65367    (1b) 
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 ACA[2GHz, d]  = - 0.0735742d2 + 4.188594d + 10.03498   (1c) 
 
In performing an analysis of these equations, with increasing frequency, we see a slow 
decrease in the intercept value, and increases in the d2 and d slope factors.  Therefore, 
there is an apparent frequency relationship between the three equations.  We therefore 
proceed to solve for a frequency relationship between the intercepts of the three 
equations, in order to produce a single equation that will solve for distance and frequency 
at h1 = h2 = 10 meters: 
 
Line formula: cACA = af2 +bf + c   
For 100 MHz,  14.393 = (1002)a + 100b + c 
For 600 MHz,  11.65 =(6002)a + 600b + c 
For 2 GHz,   10.035 = (2,0002)a + 2,000b + c     
 
Solving these three equations, we obtain a formula for the zero intercept at all 
frequencies: 
 
cACA = 15.08 - 0.00707f  - (2.27e-6)f2      (2a) 
 
Solving similarly for the f2 and f slope factors, a and b: 
 
Line formula: aACA = af2 +bf + c   
For 100 MHz,  -0.04026  = (1002)a + 100b + c       
For 600 MHz,  -0.0685237 =(6002)a + 600b + c 
For 2 GHz,   -0.0735742 = (2,0002)a + 2,000b + c     
 
Line formula: bACA = af2 +bf + c   
For 100 MHz,  2.547082 = (1002)a + 100b + c 
For 600 MHz,  3.81485625 =(6002)a + 600b + c 
For 2 GHz,   4.18859363 = (2,0002)a + 2,000b + c     
 
And obtain: 
 
aACA =  -.03294  - (7.6E-05)f   + (2.79E-8)f2       (2b) 
 
bACA =  2.272 + 0.003262f   - (1.152E-6)f2      (2c) 
 
Which, summed up, becomes: 
 

ACA[f, d] = cACA + bACAd + aACAd2 
 
ACA[f, d] = 15.08-0.00707f -(2.27e-6)f2 +  
d(2.272 + 0.003262*f   - (1.152E-6)f2) +  
d2(-.03294  - (7.6E-05)f   + (2.79E-8)f2) 
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which multiplies out to: 
 

ACA[f, d] = 15.08-0.00707f -(2.27e-6)f2 + 2.272d + 0.003262fd   
- (1.152E-6)f2d  -.03294d2  - (7.6E-05)*fd2   + (2.79E-8)f2d2   in dB  (3) 

 
Where d is in km and f is in MHz. 
 
This equation calculates the values along the h1 line for all values of d from 1 to 50 km 
and for f from 30 to 3000 MHz, where h1 = h2 = 10 meters, requiring only d in km and f 
in MHz as input; (the same inputs required for a free space loss computation), in a 
manner suitable for spreadsheet or computer code implementation. 
 
 
  Transmitter height adjustment: 
 
To solve at a transmitter height, h1, higher than 10 meters, we find that at 40 km, there is 
an average, and steady, 6.857 dB decrease in attenuation for each doubling of h1.   
At 1 km, we find an average and steady 2.296 dB decrease in attenuation for each 
doubling of h1.  To compensate for increased transmitter height, we can then adjust the 
above result for ACA[f, d], calculated at a h1 = 10 (9.35) meters, by multiplying it by ( 1 – 
(min(log10( hgt/9.35)/2.11,1))) to adjust for a transmitter height, hgt, higher than 10 
meters: 
 
 ACA[f, d, h1] = ACA[f, d] * ( 1 – (min(log10( hgt/9.35)/2.11,1)))   (4) 
 
 
Receive height adjustment: 
 
ITU-R P.1546-2 states that R = 30 m for dense urban, 20 m for urban, and 10 m for rural.  
To be compatible with the Longley-Rice ITM, we are using 10 meters in all cases; but if 
one has a higher receive antenna height, the ITU-R P.1546-2 computation can be used for 
a variation in receive height: 
 
  If hgt < (6.5d + hgr)  
   R’ =  hgr  
  Else: 

R’ = max(1, (d* hgr  – 15*hgt)/( d – 15 )) 
  
  ACA[f, d, h1, h2] = ACA[f, d, h1] + (3.2 +6.2 log10(f))*(log10(hgr/R’) 
 
If we obtain further information as to the thickness of the ground clutter layer, this is 
where it would be applied, using:  
 
 ACA[total]  =  ACA[f, d, h1, h2] *(actual ground clutter depth/average ground clutter 
depth)   
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Results for Line of  Sight Attenuation: 
 
For 1 to 50 km: 
  
  A[total] = ACA[total] + Free Space Loss +  2-ray cancellation effect  (5) 
 
  A[total] = ACA[total]  + FSL + A2R  dB     (6) 
 
 It has been determined that for land paths in P.1546-2, A2R = 0.  
 
With respect to Okimura-Hata results, these equations should provide a good 
approximation for the entire valid distance range of Okimura-Hata.   With respect to ITU-
R P.1546-2, the results should provide a very close approximation to the results obtained 
from Figures 1, 9, and 17, land paths for 50% of time, in the range 1 to 50 km; and also 
be useable in areas greater than 50 km for paths known to be line-of-sight.   In a real-
world measurement comparison, these calculations should be valid, given proper 
consideration of the limitations, averages, and assumptions utilized by the ITU-R P.1546-
2 prediction methodology, for the entire actual line-of-sight range; up to the horizon, or 
the point where the signal path is interrupted by an obstruction. 
 
 
Beyond Line-of-Sight 
 
At approximately 45 km, the absorptive clutter-related losses reach a peak, as is evident 
in the change in vertical distance between the h1 = 1200 meter and the h1 = 10 meter 
lines.  The predicted average absorptive clutter loss, which would vary with transmitter 
height, starts to retract as the average signal path changes with distance, from a line-of-
sight path to an obstructed or beyond-the-horizon path.  Beyond the line-of-sight path, 
diffraction and tropospheric scattering are the primary sources of attenuation in addition 
to free space loss. 
 
Therefore, for distances at and beyond 50 km, we select a new set of key data points and 
solve for a new set of distance and frequency equations of the form y = ax2 +bx +c. From 
observation of the h1=10 meter curves on figures 1, 9 and 17, and data read from these 
curves, it was determined that choosing to use data at 50 km, 200 km, and 800 km would 
provide a good fit of an A[d] = ad2 +bd + c curve to the 50 to 1000 km portion of the h1= 
10 meter curves on the figures.  Since the two-ray path losses have been found by 
Longley and Rice to generally be minimal to the point that the Longley-Rice computer 
implementations ignore them beyond the line-of-sight range, we here use the vertical 
difference between the free space loss line and the h1=10 meter curves to establish our 
empirical equations to calculate the diffraction and troposcatter losses beyond the line-of-
sight range.    
 
The difference in value between the Maximum (free space) line and the h1 = 10 line, is: 

 
at d = 50 km:   72.52 – 20.25 = 52.27 dB 
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at d= 200 km:   60.38 dB   
at d = 800 km:  101.44 dB 

 
Solving, at 100 MHz, for ACA = ad2 + bd + c at h1 = h2 = 10 m, we get:   
 
 ACA[100MHz, d>50] = 0.0000192d2 + 0.049278d + 49.76, where d is in km.   (7a) 
 
Which solves for ACA at a distance d > 50 km, when h1 = h2 = 10 meters. 
 
We also obtain the equivalent values from Figures 9 and 17, and also solve for ACA at 
600 and 2,000 MHz: 
 
  ACA[600MHz, d>50]  = - 0.00002d2 + 0.094667d + 50.3     (7b) 
 
 ACA[2GHz, d>50]  =  0.0000169d2 + 0.058833d + 58.036   
 (7c) 
 
In performing an analysis of these equations, with increasing frequency, we see a slow 
increase in the intercept value between d = 50 km and 200 km that increases more rapidly 
as the h1 curve approaches 800 km.   There is a less apparent frequency relationship 
between the three equations than there was prior to d = 50 km.  We therefore proceed to 
attempt to solve for a frequency relationship between the intercepts of the three 
equations, in order to produce a single equation that will solve for distance and frequency 
at h1 = h2 = 10 meters: 
 
Line formula for d= 50 km: cACA = af2 +bf + c   
For 100 MHz,   49.75822  = (1002)a + 100b + c 
For 600 MHz,   50.336 = (6002)a + 600b + c 
For 2000 MHz, 58.036 = (2,0002)a + 2,000b + c     
 
Solving these three equations, we obtain a formula for the zero intercept at all 
frequencies: 
 
cACA = 49.78 - 0.00045f  - (2.29e-6)*f2      (8a) 
 
Solving similarly for the f2 and f slope factors, a and b: 
 
Line formula: aACA = af2 +bf + c   
For 100 MHz,  0.0000192  = (1002)a + 100b + c       
For 600 MHz,  -0.000020 =(6002)a + 600b + c 
For 2 GHz,   0.0000169 = (2,0002)a + 2,000b + c     
 
Line formula: bACA = af2 +bf + c   
For 100 MHz,  0.049278 = (1002)a + 100b + c 
For 600 MHz,  0.094667 =(6002)a + 600b + c 
For 2 GHz,   0.058833 = (2,0002)a + 2,000b + c     
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And obtain: 
 
aACA =  0.0000303  + (1.2e-7)f   + (5.51e-11)*f2     (8b) 
 
bACA =  .036525 + 0.000134f   - (6.1e-8)*f2      (8c) 
 
Which, fitted into a line formula of the form:  y = ax2 + bx + c  
 

ACA[f, d] =  cACA + aACAd2 + bACAd  in units of dB 
 
   

ACA[f, d] =   49.78 - 0.00045f  - (2.29e-6)*f2  +  
d(.036525 + 0.000134f   - (6.1e-8)*f2) + 

  d2(0.0000303  + (1.2e-7)f   + (5.51e-11)*f2)  dB 
 

Which multiplies out to become: 
 
ACA[f, d] =    49.78 - 0.00045f  - (2.29e-6)*f2  +  

.036525d + 0.000134fd   - (6.1e-8)*f2d + 
  0.0000303d2  + (1.2e-7)fd2   + (5.51e-11)*f2d2  dB    (9) 

 
Where d, the path distance in km, is > 50 km., and f is in MHz. 
 

While a crude and long equation, once it is inserted into a spreadsheet cell or computer 
code, it needs only the same input values, d and f, in the correct units, used for the FSD 
equation, and produces results closely matching the P.1546-2 Figure 1, 9, and 17 h1 =10 
meter curve results. When modified by the transmitter height adjustment equation, the 
results closely match the P.1546-2 Figure 1, 9, and 17, h1 = 20 to 1200 meter curve 
results. 

 
 

 Transmitter height adjustment at and beyond 50 km: 
 
To solve at a transmitter height, h1, higher than 10 meters, we find that at 50 km, there is 
an average, (68 – 17.5)/ 7 = 7.2 dB decrease in attenuation for each doubling of h1. At 800 
km, we find an average 1.57 dB decrease in attenuation for each doubling of h1.  
Therefore, we find that we can then adjust the above result for ACA[f, d], calculated at a h1 
= 10 (9.35) meters, by multiplying the change at a distance beyond 50 km, by  the same 
equation used for d = 0 to 50 km, (min(log10( hgt/9.35)/2.11,1)) and subtracting the result 
from ACA[f, d] , to adjust for a transmitter height, hgt, higher than 10 meters: 
 
ACA[f, d, h1] = ACA[f, d] – (1-0.000962(d –50))(39.5)(min(log10( hgt/9.35)/2.11,1))    (4b)  
 
Where d is in km and hgt is in meters, and is not less than 10 meters. 
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Receive height adjustment: 
 
ITU-R P.1546-2 states that R = 30 m for dense urban, 20 m for urban, and 10 m for rural.  
To be compatible with the Longley-Rice ITM, we are using 10 meters in all cases; but if 
one has a high2 receive antenna height, the ITU-R P.1546-2 computation can be used for 
a variation in receive height: 
 
  If hgt < (6.5d + hgr)  
   R’ =  hgr  
  Else: 

R’ = max(1, (d* hgr  – 15*hgt)/( d – 15 )) 
  
  ACA[f, d, h1, h2] = ACA[f, d, h1] + (3.2 +6.2 log10(f))*(log10(hgr/R’) 
 
If we obtain further information as to the thickness of the ground clutter layer, this is 
where it would be applied, using:  
 
 ACA[total]  =  ACA[f, d, h1, h2] *(actual ground clutter depth/average ground clutter 
depth)   
 
Attenuation Loss Results for Beyond 50 km  
 
So we would then have: 
  
  A[total] = ACA[total] + Free Space Loss +  2-ray cancellation effect (5) 
 
But since we have determined that the 2-ray cancellation effects are insignificant beyond 
the horizon or an obstacle, then beyond 50 km this simplifies to:  
 
  A[total] = ACA[total] + FSL  dB      (6) 
 
With respect to ITU-R P.1546-2, the results for the equations for the  > 50 km range 
should provide a very close approximation to the results obtained from Figures 1, 9, and 
17, land paths for 50% of time, in the range 50 to 1,000 km.  Where path conditions are 
known, the equations for < 50 km should be used up to the horizon or obstacle that ends 
the line-of-sight path; the > 50 km equations should be used at and beyond the horizon or 
obstacle that ends the line-of-sight path.   

 
 
 
Part II.  The Deterministic Model: 
 
The designation “deterministic” here means that, to the extent it is practical and possible, 
we have studied the data and/or curves derived from many measurements, and studied the 
best-fit empirical equations fitted to this data.   We have then developed, taking into 
account known scientific optical and electromagnetic propagation principles and laws, 
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and based on scientific models, a derivation of a set of short-form approximation 
deterministic equations that produce equivalent results to the empirical data.  By their 
nature, these deterministic equations can be expanded and utilized to solve situations not 
found or anticipated by purely empirical equations. 
Note: All references to “log” are to a base 10, or common logarithm, occasionally noted 
as log10.  Natural logarithms will be referred to by “ln”. 
 
 
A path of discovery: developing the deterministic Clutter Absorption Loss equations. 
 
While developing and refining the above empirical equations, a concept and scenario 
emerged that led to the creation of a deterministic model for clutter absorption.  Clutter 
absorption attenuation occurs along the path of the direct signal from the transmitter to 
the receiver.  For a typical broadcasting scenario, the path starts out from a high 
transmitting site, and, on a clear day, passes through unobstructed and relatively lossless 
atmosphere.  The receive site is at a relatively low height, 2 to 10 meters above ground 
level, and the “clutter layer”, consisting of a layer of foliage and other absorptive 
materials atop a smooth or irregular terrain, is taller that the receive antenna height.  At a 
point along the direct signal path, as the transmitted signal approaches the receive site, 
the signal path enters the clutter layer.   While the composition and absorption per meter 
characteristics of the clutter varies tremendously from case to case, and for a mobile 
receiver from moment to moment while the receiver is in motion, if the clutter can be 
considered to be, on the average, relatively homogeneous in absorption per meter and in 
the height of the clutter layer, then it would be possible to derive not only an average 
value of clutter attenuation per meter, but an estimate of the average clutter height 
occurring in the massive amount of test data that was used to create the exponential ITU 
recommendation and the above exponential model.   Ordinary trigonometry and limit 
calculations can be used, along with the transmitting and receiving antenna heights, and 
the average terrain height, to determine the distance along the line-of-sight signal path 
that the signal passes through the absorptive clutter.  The clutter absorption function 
empirically derived above forms a nearly straight line when plotted on a linear graph.  
What if it is, in fact, a straight-line function, varying with distance, the height of transmit 
and receive antennas above the average terrain, and frequency; and the slight variation 
from a straight line is statistical error in the empirical data?  The equation might take the 
form:  A = d * AB, where AB is the Clutter Absorption coefficient, a function of h1, h2, 
fMHz, and the average clutter layer height above the effective receive height, CHR.  CHR is 
equal to CH, the average clutter height, less the effective receive height, h2. 
 
Such an equation already exists: Beer’s Law.  Beer’s Law is an extension of the Bouguer 
Law, which was rediscovered as the Lambert law of absorption.  Therefore, Beer’s Law 
is sometimes referred to as the Bouguer-Beer Law, or Beer-Lambert Law.  The form of 
Beer’s Law that is the most easily redefined for use in radio propagation is: 
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   A =  εbc    
where: 
 A is absorbance, equal to: log10( power in/power out)  
 b  is the path length of the sample 

ε  is the molar absorbtivity with units of L mol-1 cm-1  
 c is the concentration of the compound in solution expressed in mol L-1 
   

This form is intended for its original purpose, determining the attenuation (absorption) in 
a ray of light (which exhibits certain aspects of high frequency electromagnetic wave 
phenomenon) passing through an absorptive liquid medium. 

 
We redefine Beer’s Law, and its coefficients, for radio propagation as: 
 
 ACL = AB * clp * c, where the function AB = ε, and c = 1.0. 
where:  

ACL is the attenuation of the signal, = log10( power in/power out), in  
dB/meter 

clp replaces b, defined as the length of the path, in meters, the signal  
follows through the absorbing medium (ground clutter). 

AB is the absorption factor function, defined in attenuation per meter,  
(dB/meter), and represents ε, where: 
ε is the absorbtivity of a theoretical, homogeneous, one-meter 
depth of statistically average clutter as derived from the figures in 
ITU-R P.1546-2.  

c represents the density of the clutter; we will expect a value of 1.0 for c in  
this derivation so that c may provide a future external means of 
adjusting the clutter absorption based on localized clutter data. 
 
   

First, we determine an equation for the length of the direct propagation path that passes 
through the clutter, dcp.  To calculate the angle from the receive site back toward the 
transmit site, take the difference in height between the transmitting and receive antennas, 
divided by the total path distance, to obtain the tangent of the receive site take-off angle, 
θr.  For a line-of-sight path, the trigonometric functions of this angle, θr, are equal to:      

  
  tan θr =  (h1 - h2 )/d  =  ( CH - h2 )/dcp      

 
θr   =  atan ((h1 - h2 )/d) 
 
sin θr =  ( h1 - h2 )/ r0  =  (CH - h2 )/clp  =  CHR / clp   

 
r0  =   ( (h1 - h2 )2 + d2)1/2 
 

where 
CHR = ( CH - h2 )  =  clutter height above receive height 
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CH average of combined clutter layer and terrain irregularity 
height 

d flat earth surface distance between the transmit and receive 
antennas  

  h1 effective height of the transmit antenna  
h2  effective height of the receive antenna 
clp  cluttered path length, through clutter layer from entry point 

to receive antenna  
dcp  the portion of d under the clp. 
r0  =    total length of direct signal path ray from transmit to 

receive antenna. 
 
we then derive: 

r0 =  ( h1 - h2 )/ sin θr    
 

clp * (h1- h2 ) =   r0 *(CH - h2 )  =  ( (h1 - h2 )2 + d2) *(CH - h2 )  
 
  clp  = ( ( (h1 - h2 )2 + d2) *(CH - h2 ))/ ( h1 - h2 ) 
 
  clp   =  CHR / sin θr   =  (CH - h2 ) / sin θr    
 where  

sin θr =  ( h1 - h2 ) /( (h1 - h2 )2 + d2) 1/2 
 

Note: flat earth geometry is adequate here; at these distances, the effective earth curvature 
correction is less that the reading error from the P.1546-2 figures. 

    
From Beer’s Law, the clutter attenuation ACL, is equal to the average clutter absorption 
per meter function, AB, times the clutter path length, clp:  

 
ACL = AB * clp  = AB * (CH - h2 ) / (sin θr )  

 
Based on an assumption that the average clutter height effectively remains the same at all 
distances in the ITU Figures, we interpret from Figure 1 of P.1546-2, where we find: 
f=100 MHz, h1 = 10 (or, 37.5/4=9.375) meters transmitter height, and h2 =10 meters 
(rural) receive height.  The statistical reliability is 50% of locations, for 50% of the time.   
We initially reference the clutter attenuation as being the vertical distance between the h1 
= 10 meter line and the h1 = 1,200 meter line, and hypothesize that the distance between 
the h1 = 1,200 meter line and the FSL line represents the 2-ray multipath losses and other 
losses. 

 
To test this theory, we determine a set of points across the ITU-R P.1546-2 Figure 1, that 
have equal receive terminal take-off angles, i.e. where the θr is constant.  Since clp = CHR 
/ sin θr , and the average clutter height is a constant: if the angle θr does not change, the 
clutter path length, clp, cannot change.  The clutter attenuation should then remain the 
same for each distance where θr is held constant.  A result showing no change in 
attenuation per meter across this 19 km portion of path, as its location changes with path 
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distance, would validate the deterministic theory; or, alternately, would isolate and 
identify any attenuation due to other causes: 

 
Solving for a held-steady receive take-off angle theta
Figure 1.       

sin theta dist her het 1200 het dB
 line line

0.014498 80000 10 1170.0 54.5 54.4 0.1
0.014498 40000 10 590.0 70.25 62 8.25

0.0144985 20000 10 300.0 80 69.5 10.5
       

0.0144985 10000 10 155.0 86.5 72 14.5
0.0144985 9000 10 140.5 87 73 14
0.0144985 8000 10 126.0 88 74 14
0.0144985 7000 10 111.5 89 74.5 14.5
0.0144985 6000 10 97.0 90.25 76 14.25
0.0144985 5000 10 82.5 92 78 14
0.0144985 4000 10 68.0 94 80 14
0.0144985 3000 10 53.5 96 81.5 14.5
0.0144985 2000 10 39.0 100.5 86 14.5
0.0144985 1000 10 24.5 106 91.5 14.5

 
 
 

First, we note the appearance of a straight, steady attenuation result line from 1 to 10 km, 
at approximately 14.5 dB, which we will refer to as a “Bouguer” line, for the original 
discoverer of the scientific concept on which this determination is based.  On P.1546-2 
Figure 1, if plotted, this line appears to be parallel to, and approximately 15 dB below, 
the Maximum (free space) line.  

 
We see a counterintuitive reduction in attenuation with distance beyond 10 km.  For the 
test, to hold the sin of θr steady, we had to vary the effective transmitter height (h1) with 
distance, so the reduction of attenuation due to changes in the average height above the 
clutter line of the path above the clutter line, a reduction of 4 dB between 10 and 19 km, 
became evident. This attenuation reduces as the transmitter site height is increased.  Since 
the length of the path through the clp is held steady, this additional effect appears to be 
varying only with the height of the transmitter, or the length of the path distance. 

 
Therefore, in our test, in addition to the steady clutter loss of 14.5 dB from 1 to 10 km, 
we find a reduction in loss of 4 dB between 10 km and 20 km that continues to increase 
with distance; possibly due to an increase in the transmitter height, a change not related to 
path length change either above or below the clutter line, and not related to the Beer’s 
law clutter attenuation below the effective clutter line.     
 
As an alternative test, we adjust the spreadsheet by referencing the loss without any 
consideration of 2-ray or other losses, only free space loss and Beer’s Law loss.   To do 
this, instead of taking the difference between the h1=1,200 meter line and the   
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h1=10 meter line, we take the difference between the Maximum (free space) line as 
shown on P.1546-2 Figure 1, and the h1=10 meter line.   

  
Solving for a held-steady receive take-off angle theta 
at f = 100 MHz 
Figure 2.         

sin theta dist her Het FSL het dB
 line line

0.014498 100000 10 1460.0 66 51 15
0.014498 90000 10 1315.0 67 52 15
0.014498 80000 10 1170.0 69 54 15
0.014498 40000 10 590.0 76 61.5 14.5

0.0144985 20000 10 300.0 80.5 68 12.5
       

0.0144985 10000 10 155.0 87 72 15
0.0144985 9000 10 140.5 87.5 73 14.5
0.0144985 8000 10 126.0 88.5 74 14.5
0.0144985 7000 10 111.5 89.5 74.5 15
0.0144985 6000 10 97.0 90.75 76 14.75
0.0144985 5000 10 82.5 92.5 78 14.5
0.0144985 4000 10 68.0 94.5 80 14.5
0.0144985 3000 10 53.5 96.5 81.5 15
0.0144985 2000 10 39.0 101 86 15
0.0144985 1000 10 24.5 106.5 91.5 15

 
 

Except for a slight aberration at 20 km, the Bouguer line, along which a sliding but fixed-
length cluttered path distance, clp, generates a fixed amount of attenuation, now clearly 
extends from 1 to 100 km!  This provides proof that the average clutter height of the 
measurements used for ITU-R P.1546-2 were, on the average, high enough to practically 
eliminate all 2-ray plane wave, a.k.a. multipath, reflection effects.   From this we can say 
that the line-of-sight attenuation measured in ITU-R P.1546-2 consists primarily of two 
components:  (1.) Free Space Dispersion, and (2.) Radiative Transfer.   We, for purposes 
of understanding, will consider the three main components of Radiative Transfer 
Equations as a Beer’s Law consideration of cluttered path absorption losses (Iri) muted by 
Radiative Transfer scatter(I1) and scatter function(I2).  
 
Since this proves one of the concepts used to develop the original form of the empirical 
model in Part I above, to be false, namely, that a small but significant amount of 
multipath consideration exists, the empirical model provided above has been recalculated 
to eliminate all current consideration of two-ray multipath effects, as they have proven to 
be insignificant.   
 
By these tests, the absorptive loss theory presented here for use in developing a 
deterministic line-of-sight model, namely, attenuation from clutter loss, where the radio 
path is unobstructed except for passage through, over, and under an absorptive layer of 
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clutter, computed according to Beer’s Law, is validated, in that it is in direct accord with 
the ITU data.  
 
 
Solving for the Deterministic Clutter Factor equations: 
 
We now need to quantify our constants and factors, and include a form of Radiative 
Transfer consideration, for the Beer’s Law equation.   

 
The absorption of a single tree at UHF frequencies can exceed 15 dB.  Also, if we 
attempt to calculate AB as a constant at 1 km and at 40 km, at a h1 = 37.5 meters, the 
value of AB is orders of magnitude smaller at 40 km than at 1 km.  Since AB for a 
homogenous medium must be a constant, there is a second set of phenomenon at work 
here; this phenomenon is Radiative Transfer scatter and scatter function. 
 
Our hypothetical simplified framework model for radio signal propagation consists of up 
to three significant considerations:   
 
For a transmitting antenna at or below the clutter layer, the considerations in addition to 
FSD are: 

1. Absorptive loss of the signal, as it travels vertically (and to some 
extent, horizontally) up from the antenna to the top of the clutter layer, 
and back down through the clutter layer to reach the receive antenna. 

2. Radiative Transfer scatter and scatter function (surface wave) across 
the top of the clutter layer. 

3. Absorptive loss of the signal that occurs near the start of the cluttered 
path as the Radiative Transfer scatter and scatter functions build up to 
swamp out the absorptive loss.  

 
For a transmitting antenna above the clutter layer, the primary considerations in addition 
to FSD are: 

1. Radiative transfer across the top of the clutter layer from where the 
direct signal path would enter the clutter layer, to the receive antenna. 

2. Absorptive loss of the signal, as near the receive antenna, it passes 
through the clutter layer to reach the receive antenna. 

3. Absorptive loss of the signal that occurs near the start of the cluttered 
path as the radiative transfer function builds up to swamp out the 
absorptive loss. 

.  
 
To attempt to start to separate out the Beer’s Law absorption factor, AB, from the ITU 
data, we go to the h1 = 10 line, where the entire radio signal path is below the clutter 
canopy line, and clp, the cluttered path distance = d, the flat earth radio path distance.  By 
definition, d1 the portion of d, the path distance, above which the clp is found, is here also 
equal to clp, and at h1 = 10, clp = d = d1.      
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   d1 =  CHR/( tan θr) 
 
On the h1 = 10 curve, at d=0, h1 – h2 = 0; clp = 0, and  ACR = AB(clp) =  0. 
On the h1 = 10 curve, at d=1000 meters, clp = 1000 meters, and  ACR /(clp) < AB 
At h1 = 10 (9.375) m., and d= 1 km (1000 meters), ACR = 106.9 – 90 = 16.9 dB, and  
AB > 16.9/1000 = 0.0169 dB/meter: this value has already been reduced by the effect of 
Radiative Transfer over the first 1000 meters, so we can only say that the constant AB > 
0.0169 dB/meter; the loss at 2 km is 100.88 –80.25 = 20.63 dB; less the loss in the first 
km, the average loss in the second km is only 3.7 dB vs 16.9 dB in the first km; at 4 km, 
doubling the distance, the loss is 94.86 – 69.5 = 25.36 dB, a 4.7 dB additional loss in 2 
km; and an average of 2.4 dB loss in the 3rd and 4th km; so the Radiative Transfer 
function, f[RT], quickly takes over from direct path propagation as the primary delivery 
medium of radio frequency field strength at the receive location, even in the first km.  

 
The losses are therefore:  ACR = AB(clp) – f[RT]     (xxx).    
 
And this general equation includes the considerations for the condition of “at or under the 
clutter path” mentioned above, as the AB(clp) term includes the entry and exit losses 
from the transmitter to the top of the clutter layer, and from the top of the clutter layer to 
the receive antenna. 
 
Even at h1 = h2, there can be some clutter attenuation loss.   Referring to ITU-R P.833-2, 
Attenuation in Vegetation, Figure 1; note that in this example, the transmitting antenna is 
the same height as the receive antenna, and h1 = h2.   From the chart, we notice that the 
moderation of absorptive loss in Radiative Transfer starts at zero at d = 0, where the 
initial clutter absorptive loss is represented by the straight line on the Excess loss vs. d 
graph.  The loss reduction effect of Radiative Transfer increases with distance, causing 
the absorptive loss line to bend in a logarithmic manner, reducing to a horizontal line as d 
increases. 
 
Therefore, for this case, where we can conceptually utilize a homogeneous clutter 
medium with properties averaged from the sum of the exponential data, it appears that we 
should be able to utilize the simple exponential function given in ITU-R P.833-2 to 
approximate all surface wave radiative transfer over clutter in P.1546-2.  This function is:  
 
   Aev =  Am [ 1 – exp ( -dγ / Am)] 
 where: 

γ , or gamma, the specific attenuation for very short paths, in units of   
dB/meter.  It is, in fact, the same as the absorptive loss factor AB 
we have used in Beer’s Law.  

  d is the path distance under clp, d1. 
Am, is the maximum attenuation for one terminal within a specific type  

and depth of vegetation. 
 
Our analysis of Figure 1, however, does not support the equation given in ITU-R P.833-2, 
which indicates that the attenuation function reaches a maximum, and therefore ceases 
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increasing, at a distance.  The empirical data on Figure 1, when separated from the FSD, 
continue to show an increasing attenuation with distance.  While the function does follow 
a logarithmic line, and, at a distance, does approach a horizontal line, it does not achieve 
it within 1000 km.   The use of this equation for a deterministic solution is also limited by 
the requirement to determine a value for the factor Am.  
  
For all cases where the transmitting antenna height, h1 is not equal to the receive antenna 
height, h2, the Radiative Transfer function, f[RT] or RET would vary with the distance d1, 
not clp.  The distances clp and d1 are nearly the same at far distance, but near the 
transmitter, as d, clp and d1 approach zero, clp approaches the value of CHR as (sin θr) 
approaches 1.0; the function f[RT] approaches 0 as it varies with d1, which approaches d1 

= (CHR /Infinity) as the (tan θr) approaches tan (π/2) radians, or tan (90o). 
 

Summarizing, At h1 = 10  
At 0 km, ACR[1] = 0, clp = 0, d= 0, and f[RT] = 0 
At 1 km, ACR[1] =  16.9, AB > 0.0169 dB/meter 
At 2 km, ACR[1] =  20.63 
At 4 km, ACR[1] =  25.36 
 
At 2 km, without the surface wave radiative transfer function, (SWRT) i.e. where the 
clutter layer is so deep that the RET scatter components are minimalized, the attenuation 
would be at least: 
 
ACR[2] = AB(clp) – f[RT]  > .0169 (2,000) – 0 >  33.8 dB.   
 
So in the second km, surface wave radiative transfer is reducing the attenuation by at 
least:   
 (33.8 – 20.63) dB / 1 km  > 13.17 dB/km  
 
And over the next doubling of distance, reducing the attenuation by at least: 
 
ACR[4] = AB(clp) – f[RT]  > .0169(4,000) – 0 >  67.6 dB.  

 (67.6 – 25.36) dB/ 2 km  > 42.24 dB/2 km >  21.12 dB/km   
 
The rate of reduction of the scatter components, including the surface wave of the 
radiative transfer function, where both the transmitting antenna and receive antenna are 
below the clutter layer, triples between 1 to 2 km, and 2 to 4 km, a factor of 42.24/13.17 
= 3.21.  Therefore, we can estimate that the rate of reduction of attenuation for the 
distance between 0 and 1 km is 13.17/3.21  = 4.1 dB, and therefore the attenuation for the 
Beer’s Law direct ray cluttered path should be at least 16.9 + 16.9/4.1 dB, or > 22.02 dB 
per kilometer, giving us a new estimate of AB > 22.02/1000, or > 0.02202 dB/meter.    
 
Repeating the above process with AB > .02202 dB/meter, the iteration stabilizes in 10 
cycles, with the rate of reduction of 6.2585 dB, resulting in an AB  = .019526 dB/meter, 
and the result is that ACR, in extremely deep, thick clutter where the scatter(I1) and scatter 
function (I2) components of radiative transfer are minimal, and at h1 = h2, will be: 
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ACR[Deep Clutter] = AB(clp) =   .019526(clp) dB  =  .01953 dB, approximately .02 dB/meter 
 
Which adds up fast; for 1 km, the result would be equal to 19.5 dB below the FSD line, 
significantly limiting the reception range in deep clutter. 
 
 
Radiative Transfer 
 
Radiative Transfer, (RTE) as defined in the Generic Model[4], consists of a coherent 
component, Iri, and an incoherent( diffuse) component Id.   Id is normally split up and 
considered as two components, I1 and I2.  These three major components are: 
 

1. Absorption. This is, plain and simple, the Beer’s Law clutter absorption (and 
associated inseparable scattering loss) we have been considering previously in 
the discussion.  Johnson, Schwering,[3] refers to this as the “first term”; The 
Generic Model refers to this as the coherent component Iri, defining it as a loss 
function e−τ of the “optical density”.  Here we consider this component in 
Beer’s Law terms of the length of the cluttered path (clp) times the density of 
the clutter (c, set to 1.0), times the absorption loss rate (AB) of the clutter.  It 
is therefore modeled using a straight-line formula.  This absorption function is 
the base starting function of the RTE.  Its loss is first reduced by:  

  
2.  Scattering.  The Generic Model refers to the two equations that comprise this 

component, combined, as the component I1.  Johnson, Schwering, refers to 
this as the “second term.”   In practice, its effect moderates the absorption loss 
Iri for a short distance, mid-path, as graphically displayed in Figure 3-18 of the 
Generic Model.  The mathematical model of this term in the Generic model is 
an exponential term added to a straight line function.  The significant part of 
this term, for the portion of the path where this component controls the results, 
is primarily contained in the straight line function, so we can approximate this 
term using a straight line formula. 

 
3. The Scattering Function.  The Generic Model refers to this as the non-

coherent component I2; Johnson, Schwering, refers to this as the “third term”.  
In practice, its effect moderates the absorption loss Iri, taking over from I1 and 
continuing to the end of all line-of-sight paths.  The Generic Model uses an 
exponential term added to a straight line function to model this component. 

 
Each RTE component controls the loss value during a separate portion of the total path 
length.  The RTE bears a resemblance to a three-stage, variable-leg-length relay foot 
race; the 1-km distance runner, Beer’s Law absorption, starts the race; passing the baton 
to a 30-meter sprinter, I1, who then passes the baton to a 10-km runner, I2. It is therefore 
necessary to use a MINimum function to separate out the controlling component.  The 
component producing the least loss will therefore be the one “holding the baton” at any 
given point in the radio path.  
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Deriving the RTE coefficients from the P.1546-2 data:  
 
At 2 km, where the clutter layer is so deep that Id (I1 and I2) is insignificant, the 
attenuation would be at least: 
 
ACR[2] = AB(clp) – f[RT]  > .0195 (2,000) – 0 >  39 dB.   
 
And in the second km, Id is reducing the attenuation by at least:   
 
 (39 – 20.63) dB / 1 km  > 18.4 dB/km  
 
And over the next doubling of distance, reducing the attenuation by at least: 
 
ACR[4] = AB(clp) – f[RT]  > .0195(4,000) – 0 >  78.1 dB.  

 (78.1 – 25) dB/ 2 km  > 52.7 dB/ 2km > 26.4 dB/km   
 
A 2.86 times increase for the second doubling of distance. 
 
Therefore, from an analysis of these results, it appears that the a function of the form:  
  
 ASWRT  = CAB + b*20log(d1 +1) dB, where d is in km, or: 
 
 ASWRT  = CAB + b*20log(d1/1000 +1) dB, where d is in meters. 
  
Will serve as the form for an initial, interim, simplified RET attenuation (first term)[3] and 
scatter (second and third term)[3] development equation valid for d1 = d > 1 kilometer.  At 
h1= h2, CAB should be a constant value, as the RET startup, entry and exit losses should 
be the same for all d1 = clp = d.  So we should be able to solve for a constant b that will 
stay approximately the same for all values of h1 and h2 when both are below the clutter 
canopy top, varying only with statistical variation in data, until we reach a point that is 
level with the top of the clutter layer.  
 
It is expected that CAB will be found to be a function representing the initial absorption 
attenuation losses, the initial exit loss from the transmitting antenna to the top of the 
clutter layer, and any final entry loss to the receive antenna.  The b*20log(d1 +1) term 
will represent the Id loss moderation function for the RET with both terminals below the 
clutter line, CH.  The 1 is added so that the logarithmic function used, a common 
logarithm, or base 10 function, will properly solve to zero (20log10 of 1/1 is zero dB) 
when d = 0. 
 
As we increase h1 to approach the top of the clutter layer, CAB will approach a minimum.  
These facts we can use to determine the approximate depth of the average clutter layer in 
P.1546-2. 
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Solving for the data on each h1 line starting with 10 meters, and fitting to match the 
P.1546-2 Figure 1. h1 = 10 line data, and using d in lieu of d1, we obtain: 
 
 ASWRT  = CAB + b*20log(d1 +1) dB 
 
 At h1 = 10 meters,  ASWRT  =  6.4725 + 1.34795*20log(d1 +1)  dB 

At h1 = 20 meters,  ASWRT  =  1.638 + 1.34795*20log(d1 +1)  dB 
At h1= 37.5 meters,  ASWRT  =  -1.966 + 1.3056*20log(d1 +1) dB 

 
The negative value of CAB at 37.5 meters, a nonsensical value, indicates that our 
calculation failed at 37.5 meters because d1 no longer equals d; we have reached and 
exceeded the top of the average combined terrain roughness and absorptive clutter layer 
in the P.1546-2 data.   Therefore the average terrain and clutter layer canopy top height, 
CH, needed to solve for the length of d1 above the clutter line, lies between 18.375 and 
37.5 meters. 
 
We average the multiplication constant for the logarithmic term for h1 =10 and h1 = 20, 
and obtain: 1.34795.  Returning to the above calculations, we recalculate ASWRT at 37.5 
meters with the averaged logarithmic multiplication constant, for a best fit to the data: 
 

At h1= 37.5 meters,  ASWRT  =  -3.049 + 1.34795*20log(d1/1000 +1) dB 
   
  Where d1, the ground level distance under the clp, is in meters.  
 
Therefore, CAB:  

1. Reduces from 6.741 dB to 1.638 dB between 10 (9.375) to 20 (18.75) meters. 
2. Swings between 1.638 to –3.049, a total difference of 4.687 dB, between 20 

(18.75) and 37.5 meters.  
 
CAB, as a below the clutter canopy line function, solves to a near-zero value where the 
transmitter height equals the average clutter canopy height; so we solve for the zero-
crossing point in the below-the-canopy equations above to approximate the average total 
of the terrain roughness and clutter layer height combined, CH, and obtain:  
 
  CH = 18.75 + 18.75 *1.638/4.687 = 25.30 meters. 
 
  CHR, the portion of CH above the receive antenna height, h2 = 10 m., is 
then:  
 

CHR  = CH -  h2 = 25.3 – 10  =  15.3 meters.    
 
We now have a useable estimate of the average height above ground level of the 
combined averages of the terrain roughness and ground clutter layer thickness, of CH = 
25.3 meters, and can use the known set of constants to solve for an equation for CAB 
below the clutter line, and for the constants above it.  
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This at first appears to be a Beer’s Law formula, useable only for h1 < CH.  The solution 
must equal zero at h1 = CH.  This attenuation, CAB, now identified as due to Radiative 
Transfer launch losses, and a part of Iri, will follow the Beer’s Law equation: 
    

CAB = AB* clp[RTL] 
 
The distance that the signal must traverse through the clutter from the transmit terminal to 
the top of the clutter layer, clp, must be determined as; 
 
   clp[RTL]  =  ((CH - h1)2 + (d[RTL]) 2)1/2 
 
Where d[RTL]  is the ground level distance traversed by the radiative transfer primary ray 
rising from the transmitter antenna to the clutter layer canopy. 
 
On attempting an iteration to solve with the two data lines provided, h1 = 10 and h1 = 20, 
solving at dRTL = 0, where clp = (CH - h1), we find that AB is a function with infinite 
solutions, such that for each value of AB calculated, there is a primary ray launch angle 
from the transmitter, θe, that solves the equations: 
 
 CAB = AB* clp[RTL] 
 clp[RTL]  =  (CH - h1)/ sin θe 

(sin θe[h1=20]) = 1.91(sin θe[h1=10])  
AB[h1=10] = .44(sin θe) 
AB[h1=20] = .23(sin θe) 
 

This indicates that an exponential parabolic solution exists for RTE component Id. Since 
we are solving for a value of field strength loss, instead of a value of power received, the 
curves to solve these equations would match the inverse of the exponential Sum of 
Contributions curves in the Generic Model, Figure 3-18.  The inverse of an exponential 
function is a logarithmic function.  It has already been found and shown that a single term 
of this logarithmic function is adequate to approximate the RTE Id functions at or below 
the clutter canopy top, where clp = d = d1.     
 
Which parallels the Weissberger Modified Exponential Decay Model (MED), the COST 
235 [COST235, 1996] model, and the ITU model, in that it proposes an exponential 
mathematical model of loss that rapidly increases from zero over a short distance, and 
then nearly plateaus with an increasingly smaller increase in loss per km with increasing 
distance.  These three models, however, are empirical models.  The RTE is the 
deterministic model emulated here.  This model is attempting to approximate the 
combined result of the RTE, in a grossly simplified approximation of the RTE model 
presented in the Generic Model, appropriate to the data that can be derived from the P-
1546-2 over-land 50% reliability curves.   This simplification is made possible by the 
homogeneity of the clutter and terrain roughness information present in the P.1546-2 
over-land figure curves.   
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Deriving from the Generic Model, and inverting the exponential functions into decibel 
logarithmic functions for field strength loss calcuation, the form it would follow would 
be:  
 

ARTE = MIN( Iri  , Id ) =  MIN( Iri , MIN(I1, I2) 
 
ARTE = MIN((AB*(clp)), MIN((20log(a1d1 +c1)),(20log(a2d1 + c2)]))))   dB 

 
Our model splits the RTE into three competing terms, the lesser of which at any given 
location controls the output of the function.  The first, Iri term is the straight-line function 
of the absorptive loss line function(s) following Beer’s Law.  For the at-or-below canopy 
computations, it will be split into rising signal clutter absorption loss CAB and Radiative 
Transfer absorptive launch loss, CAB2.    It is reduced by terms two and three, as the 
amount of the absorptive loss is undermined by the increasingly lessening loss-per-
distance-traversed double exponential curve of the Id clutter scatter and canopy scatter 
surface wave functions.  For the first 250 meters of canopy path distance, the Iri term 
produces the lowest loss; therefore, the results of the Id functions do not take significant 
effect for this distance.  Generally speaking, the I1 function, the second term, then takes 
control, producing the lowest loss results for a short portion of the clutter canopy 
distance; at the end of this distance, the I2 function, the 3rd term, then starts to produce 
the least loss, and takes final control of the results to the end of the line-of-sight. 
 
For at or below the canopy, it appears that we can use only a single logarithmic term to 
adequately approximate the RTE Id function.  Above the canopy, it is expected that to 
calculate the Id function, it will have to be split into the I1 and I2 terms, and both will need 
to be calculated to adequately approximate the h1 curves. 
 
It will be necessary to consider both the straight line and exponential components of the 
I2 term; but the active portion of the I1 term, where its losses are less than the Iri and I2 
terms, can be approximated with a straight line function, and will be derived last. 
 
 
Solving for the RTE terms at or below the clutter canopy line: 
 
 
 Using 2 points to solve for the RTE field strength attenuation losses at or below 
the clutter canopy line (ARTE-ABC), in order to obtain the Iri, or first term, absorptive 
functions, CAB and CAB2, at or below (ABC) the clutter line: 
 

at h = 10 (9.375) meters, CH - h1  = 15.9277 meters = clp[RTL10]    
at h = 20, (18.75) meters, CH - h1  =  6.5527 meters =clp[RTL20]     

 
Iterating for a best fit of CAB along the h1 = 10 and h1 = 20 curves using a log constant of 
1.34795 and a CH = 25.30 meters, using: ARTE-ABC  = CAB + 1.34795*20log(d1 +1) dB, 
where d1 = d = clp, results in: 
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  AB[RTL10] * clp[RTL10]  = CAB10  
AB[RTL10]  = CAB10 / clp[RTL10]  =  6.4725 /15.9277 = 0.40637   
AB[RTL20]  =  CAB20 / clp[RTL20] =  1.638/6.5527  = 0.249973 

 
Leaving to solve: 

 
RTRI1 = c – b*exp(CH - h1)-1 dB/meter 
   
0.40637 = c – b*exp(15.9277)-1 dB/meter 
0.249973 = c – b*exp(6.5527)-1 dB/meter 

  
This solves to be: 
  

 RTRI1 = 2.06943 - 1.56184exp(CH - h1)-1 dB/meter 
 
Since the reduction in the RTRI1 function with an increase in d[RTL] is such that as d[RTL] 
increases, RTRI1 reduces to match,  any change in RTRI1 is then related only to an 
equivalent change in (CH - h1).  Since this function is only sensitive to changes in path 
height, it acts as a vertical vector component of Iri, and will not change with path 
distance.  This results in:  
 

CAB  = AB* clp[RTL]  = RTRI1(CH - h1) 
 
CAB  = (CH - h1)(2.06943 -1.56184exp(CH - h1)-1) dB/meter                (xxx) 

 
 
Absorption Loss in the Radiative Transfer Launch Range; the second part of Iri. 
 
In addition to the rise function above, a trans-clutter path absorptive loss function, 
component Iri of the RTE, which follows Beer’s Law, does briefly appear at the 
beginning of the radio path when the transmitter is below the clutter layer canopy, and is 
quickly swamped by the rapidly lessening loss of the radiative transfer Id function.  
Therefore, while this absorption loss alone would follow the function:  
 

  CAB2 = AB* d = AB* d1 
 
The equation is then modified to include a decay exponent, to reflect the swamping, or 
bypass increasing with distance, of its effect by the radiative transfer function: 

 
CAB2 = cebd1      

 
As the rise path shortens, the absorptive path assumes a higher percentage of the total 
path length, thereby increasing the total absorption; this is accommodated by making the 
constant c into a function of a straight line, c = x – a(CH-h1).  A best fit to the data is then 
achieved with:  
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CAB2 = cebd1   =  (x – a(CH-h1))ebd1 =  (17.98 – .84224(CH-h1))e-.61(d1/1000) (xxx) 
 

Where d, the path length, is in meters. 
b, the radiative transfer exponential swamping delay coefficient, is –0.00061  
x and a are chosen, using a straight line function, to fit the increase found between 
the h1 = 10 and h1 = 20 meter curves.   

Since this function is sensitive to changes in distance, it acts as a horizontal vector 
component of Iri.  Which we add to the full radiative transfer function approximation 
equation for below or at CH: 
  
 ARTE-ABC  = CAB + CAB2 + 1.34795*20log(d1 +1) dB,    
 (xxx) 
     
where:  

CAB  = (CH - h1)(2.06943 -1.56184exp(CH - h1)-1) dB/meter              (xxx) 
  

and: 
CAB2 = (17.98 – .84224(CH-h1))e-0.00061(d1)     (xxx) 

 
 where d1, CH and h1 are in meters.     
   
Which should be used with an “if” statement, as the above equations are valid only for h1 
< CH.   If h1 > CH, The equation for CAB disappears, and the equation for CAB2 takes a 
significantly different form.    
 
 
RTE Above the Clutter Line  
 
Several changes occur in the set of propagation phenomena when the transmitter height 
rises above the clutter layer while the receiver remains below the clutter layer.  The 
logarithmic form of the term Id of ARET-ABC, namely c*20log(d1 +1), must be split and 
expanded to the fuller form of:  
 

 Id = MIN(I1,I2) 
 
And the full form will then include: 
 
 Attenuation from RET above clutter:  
 

ARETA = MIN( Iri ,MIN(I1, I2 ) 
 
And would theoretically follow the form of: 
 
ARETA= MIN(AB*crp/TC,MIN((cI1*AB*crp+c1*exp(1/d1)),(cI1*AB*crp + c1*exp(1/d1)))   
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In order to match the functional description of the three terms, Iri, I1 and I2, given in the 
Generic Model, section 3.6.4. 
 
Above the clutter canopy, the radio signal will follow a two-ray path: from the transmitter 
to the clutter canopy, and through the clutter canopy to the receiver.  Due to the effect of 
Snell’s law, these two rays will not form a straight line.  AB above the canopy will be 
multiplied by a function relating to T, the transmission coefficient, varying with the angle 
of incidence of the direct ray into the clutter canopy, according to the Fresnel equations.  
The angle of incidence, θi, the angle of the actual radio path with respect to the vertical 
(y) axis, will have to be calculated from Snell’s Law, using the refractive indices of the 
atmosphere and the clutter canopy.   The CAB rise absorption function disappears above 
the canopy.  The CAB2 function equation changes; as it now represents the radiation 
transfer effect launch losses from a signal arriving above the clutter canopy.   
 
 
Absorption above the Clutter Canopy 
 
We look primarily to the 1 km data on each h1 meter curve above the canopy, to 
determine and verify the equation for CABA (CAB2 above the clutter canopy), as the initial 
values of these curves represent only Beer’s Law absorptive losses.  On the h1= 1,200 m. 
curve, due to the effect of Snell’s Law, it is determined below that the actual radio path 
traversed will not be long enough for the RTE Id terms to have effect.  In the primarily 
line-of-sight range, all losses will be Beer’s Law absorption losses, i.e. RTE Iri or first 
term losses.  
 
The absorption loss alone follows the function:  
 

   CABA =  AB* crp/TC 
 
Where T is the relative transmission coefficient of the incoming ray as per Snell’s Law; a 
ratio representing the amount of incoming radio signal that will be transmitted through 
the clutter layer to the receive point.  C will represent any other residual transmissive 
coefficient, including consideration of clutter orientation and reduction in T due to terrain 
roughness. The term crp represents the actual cluttered radio path length through the 
clutter as reduced by the effect of Snell’s Law. 
 
There are three considerations associated with this coefficient, related to the ratios of the 
refractive indices and dielectric coefficients of the two mediums, air and clutter layer. 
 

1.  The variation in the actual path of the radio signal, from the direct path 
between the transmitter and the receiver, caused by the difference between the 
incident angle of the refracted signal vs. a theoretical direct ray between the 
transmitter and the receiver.  This difference causes the actual path refraction 
point on the clutter canopy to be farther from the transmitter than the 
theoretical direct ray, and requires a reduction adjustment in the length of clp 
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(the new value is identified as crp) and d1.  This adjustment reduces the 
absorptive and radiative transfer losses. 

 
2. The (actual) transmission coefficient, T, is a ratio of the signal arriving at the 

clutter layer top that is transmitted downward by refraction through the clutter 
layer to the receive point, relative to the signal arriving from the transmitter.  
The effect of the application of this coefficient would be to increase the loss. 

 
3. The approach of the reflection coefficient toward 1.0 (and the associated 

approach of the transmission coefficient to zero) at low grazing angles over 
rough surfaces, as revealed by Barrick[2].  At great distances from the 
transmitter site, or for very low transmit height, this would significantly 
reduce the reception by direct transmission through the canopy, and 
theoretically minimizes the direct signal absorptive loss components from the 
calculation at a significant distance from the transmitter, leaving primarily the 
surface wave I2 component of the RTE to transfer energy to the receive site.   

 
To solve for T requires the values of the cosine of the incident (cos θi) and transmissive 
(cos θt) angles.  To obtain these in a spreadsheet or in computer code, it is first necessary 
to iteratively solve, using Snell’s law, for the values associated with the actual radio 
signal path.   
 
 
The Actual Radio Signal Path  
 
The center of the path of the radio signal does not follow the theoretical straight-line 
direct path ray from the transmitter, through the clutter canopy, to the receiver.  Instead, 
by Snell’s law, the angle of the refracted ray from the clutter canopy to the receiver, with 
respect to a vertical line, (which we will refer to as the transmissive angle, θt), is related 
to the incident angle, θi, of the actual path line between the transmitter and the clutter 
canopy with respect to a vertical line, by the Snell’s law formula: 
 
   sin θi/sin θt = ηg / ηs         (xxx) 
 
 where:  
  ηg  is the refractive index of the ground (clutter) 

ηs is the refractive index of the atmosphere at the surface of the clutter 
canopy layer  
 

The differences this makes in the transmitter take off angle, the receive take off angle, the 
uncluttered radio path length (urcp) and the cluttered radio path (crp), for what is now a 
two-ray calculation (here used for refraction, not reflection), can be most efficiently 
solved on a spreadsheet in a three cycle iteration (or, in code, an iteration repeating until 
the level of accuracy required is achieved).  First, it is necessary to determine the values 
of θi and θt; this requires the refractive indicies of air and the clutter canopy. 
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The refractive indicies of air, ground (clutter), and water 
 
It is necessary to determine the refractive indices, or a reasonable working estimate 
thereof, for air and for the clutter layer.  The refractive index of a vacuum is, by 
definition, the minimum value of ηv = 1.0.  The refractive index of air is about 1.0003; of 
water is about 1.33.  In field application, microwave ellipsometry can be used to 
determine the refractive index and thickness of a layer of vegetation over a soil of known 
refractive index.[5] 
 
The atmospheric radio refractive index η can be computed from N, the radio refractivity:  
 
    η = 1 + N *10-6   [ITU-R P.453-7, (1)]  
 
In ESSA Technical Report ERL 79-ITS 67,[8] (ITS-67), Longley and Rice stated that the 
surface refractivity can vary between 240 to 400 N-Units, and that a commonly used 
value of Ns is 301 N-units.  
 
N0 is the refractivity of the atmosphere reduced to sea level; Ns, the surface refractivity, is 
derived from N0 using the equation: 
 
    Ns = N0 exp( -0.1057 hs )      [ITS-67,  (2)] 
 
Where the elevation hs is determined at the base of the lower antenna for line-of-sight 
paths.  Then: 
    ηs  = 1 + N s *10-6       
 
Can be adjusted for height of the ground above sea level using: 
 
    ηs = 1 + N0*10-6* exp(-hs/ h0 )      [ITU-R P.453-7, (8)]  
 
Therefore, for Ns  = 301, the equivalent, commonly used value of the atmospheric 
refractive index at ground level is: 

ηs  =  1.000301 
  
With a commonly found variation range of ηs = 1.000240 to 1.0004, primarily affected by 
a combination of relative humidity and ambient temperature.[6]  Recent experimental 
phased array weather radar tests have shown that the refractive index of the atmosphere is 
most stable, and converges on a value of ηs  =  1.00031, in cold weather.  In warm 
weather, near 38 degrees Centigrade ( 100o F), a relative humidity (RH) of 0% can result 
in an ηs  =  1.000250; a RH of 75% produces a ηs  =  1.0004; and a RH of 100% produces  
a ηs  =  1.0005.    
 
For the reflecting/transmitting surface, for a radio signal, the refractivity of the ground, 
ηg, is defined as the characteristic impedance of the dielectric: 
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ηg  = 1 + Ng*10-6 = ( µ r ε r )1/2   
where:  
 µr is the relative permeability, and εr is the relative permittivity 
 
Parker and Makarabhiromya[10] found a relatively narrow range of µr and εr for tropical 
vegetation ranging from forests to underbrush for VHF frequencies < 100 MHz: 
 
     1.0  <  εr   < 1.1 
     0.8  <  µr   < 1.1 
and for HF frequencies;  
     0.9  <  εr   < 1.2 
     0.8  <  µr   < 1.1 
 
These results are suitable for modeling for horizontal polarity.  The approximation first 
considered, is an εr  = 1.05, and a µr  = 0.95; 
 
   ηgc  =  ( µrεr )1/2 = (1.05*0.95) 1/2 =  0.99875        

   
From Snell’s Law, the relationship between the refractive indices for ground, ηg, and 
air, ηa, and the incident incoming angle, θi, and incident transmission angle, θt, for an air 
to ground (tropical clutter canopy) refraction point is: 

 
   sin (θi )/ sin (θt) = ηg / ηa = 0.99875/1.0003 = 0.998449,  
 

and over land and vegetation, sin θi is very close to sin θt.  However, this difference is 
significant.  If they are equal, it means the indices of refraction are equal, the equivalent 
of no boundary at all.  The cosine terms in the Reflectance equation cancel out, causing 
the Reflectance coefficient to equal zero and Transmission coefficient to be 1.0; the 
results expected of no difference in the two mediums.  Which raises an interesting side 
note; since the range of the ground coefficients can swing through 1.0003, can  (µrεr ) 1/2 = 
ηs?   At that point, the Reflectivity near vertical would null out to zero in the associated 
tropical foliage. 
 
Our target area is more temperate; for P.1546-2, we need to consider foliage and other 
clutter in the continental Europe and the U.S.; for these areas, a more common range of εr  

used by Tamir[11] [12] is from 1.01 < εr < 1.5,  providing a midrange point of 1.03.  Tamir 
used a conductivity of the plant material value of 10–5 < σ < 10-3, and µr = 1.0. 
 
This produces:  
  ηg 

2 =  εr +  i60λ0σ./1   =  1.03 + i60λ0σ 
 
With an imaginary component varying with the frequency: 
   
  At:      50 MHz, ηg = (1.03 + i0.00073)1/2  
   1,300 MHz, ηg  = (1.03 + i0.00020)1/2    
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For now, it is adequate to approximate using only the real value, ηg  = 1.015. 
 

So:    sin (θi )/ sin (θt) = ηg / ηa = 1.015/1.0003 = 1.0147.  
 
  sin(θi ) = 1.0147(sin (θt) 
   

Water has a ηH2O of 1.33; the signal will refract into water at a steeper angle than into 
clutter; for water, sin θi / sin θt = ηH2O / ηa = 1.33/1.0003 = 1.3296.  

 
Incident angles are measured with respect to the vertical, or y-axis.  In radio 
communication, it is more common to work in terms of the grazing angle, the angle 
between the horizontal (ground, or x axis), and the transmitter, and the ground and the 
receive point. 
 
The radio path-lengthening effect for air to canopy is minor; it adds 100 meters in 1,000 
km.  Therefore, it is not necessary, except for high accuracy situations, to revisit the FSD 
calculation to include the additional path length due to refraction.  But the effect of the 
change in ratio of uncluttered path length to cluttered path length is significant. 
 
 
Calculation of the actual radio signal path parameters: 
 
Step 1: calculate the earth curvature correction angle for the actual earth radius, θ∆e: 
     θ∆e = d/r 
 

where: d is the total flat-earth radio path length from transmitter to receiver    
  r is the actual earth radius:  6,378,137 meters. 
 
Step 2: calculate the earth curvature height; hc: hc = (CH + r)(1 – cos(θ∆e)) 
 
Step 3: calculate the equivalent curvature flat distance, dx:  dx = (CH +r)sin(θ∆e) 
 
Step 4: calculate the un-cluttered radio path w/earth curvature correction; ucrpc:   
   ucrpc =  [(h1 – CH + hc)2  + (dx) 2 ]1/2 
 
Step 5: calculate the cosine of the flat earth incident angle; cos(θI’): 
   cos(θi’) =  (h1 – CH + hc)/ucrpc 
 
Step 6: calculate θi’:  θi’  = arccos[(h1 – CH + hc)/ucrpc] 
 
Step 7: calculate the total incident angle; θic:   θic =  θi’ + θ∆e 
 
Step 8: calculate the sin of the total incident angle;   sin(θic) = sin(θi’ + θ∆e) 
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Step 9: calculate the sin of the transmission angle, θtc :    sin θtc = (ηa /ηg )( sin(θic) 
 
Step 10: calculate θtc :  θtc =  arcsin [(ηa /ηg )( sin(θic)]    
 
Step 11: calculate cos θtc:   cos(θtc) =  [1 – sin2(θtc)]1/2 
 
Step 12:  calculate the cluttered radio path with earth correction; crpc:   

crpc = (CH – h2)/ cos(θtc) 
 
Step 13: calculate the sin of the grazing angle Ψ;   sin Ψ = (π/2 - θic) 
 
Step 14:  calculate the clutter canopy surface distance; d1a:  d1a = crpc(sin(θtc))/( 1 - 1/r) 
 
Step 15: repeat steps 1 to 13 using a new d’ = d (actual value) - d1a   until the required  

accuracy is obtained; for spreadsheet calculation, three iterations are adequate.  
 
 
The Transmission Coefficient 
 
Again, we will need:   ηa = 1.0003 

ηg = 1.015 for over cluttered land, or 1.33 for water. 
θt  = θrto  
θi  = arcsin(1.0147sin(θt)) 
 

The transmission coefficient, T, is defined as: T = 1- R, where R is the Reflection 
Coefficient. 
 
While ηg = 1.015 was used as a starting point, calculation iteration has shows that the 
optimal value of ηcc for the average clutter canopy, for matching the ITU-R P.1546-2 
curves to deterministic equations, has proven to be: ηcc = 1.0010 
 
 
The reflection coefficient, R, calculation is different for horizontal and vertical 
polarization: 

 RH =  [( ηa cos(θi ) - ηg cos(θt ))/(( ηa cos(θi ) + ηg cos(θt ))]2 
 RV = [( ηa cos(θt ) - ηg cos(θi ))/(( ηa cos(θt ) + ηg cos(θi ))]2 
 

The Transmission coefficient, T, is: 
 
TH = 1- RH , TV = 1- RV 
  

The P.1546-2 curves are not separated by polarity, and must be treated as circularly 
polarized; half of the horizontal polarity result is added to half of the vertical polarity 
result: 

TC = 1- 0.5RH - 0.5 RV  
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For an air to clutter canopy interface, a θt  = 0.69, and a h1 = 1,200; which describes a 
receive site near the transmitter site;  

cos (θt) = .77322, and cos (θi) = 0..76548   
RH =  0.000152 
RV = 0.000005 
R = 0.5RH + 0.5RV  = 0.000075 
T = 1 – R = 0.99992 

 
Or, for practical purposes, R = 0, T = 1 near the transmitter site. 

 
A higher result is obtained if the calculation also considers the imaginary, or phase, 
component of εr.  If the two reflectance indicies are, in fact equal, or nearly so, there is no 
or minimal reflection, and there is full or nearly full transmission.  If the two mediums 
have the same index of refraction it is equivalent to no boundary at all. 
 
For other selected path lengths at h1 = 1,200, we obtain: 
 

At h1=1,200     
D R T 

km     
1 7.85E-05 0.9999
5 0.010598 0.9894

10 0.074045 0.926 
40 0.501144 0.4989
50 0.574967 0.425 

100 0.757943 0.2421
1000 0.972665 0.0273

 
With increasing distance, and increasing incident angle, the Reflectance coefficient, R, 
increases, and the transmission coefficient, T, decreases, reducing the transmission into 
the canopy and leaving the RTE and forward reflection as the primary propagation 
mechanisms functioning at far distances.  
 
 So we can see that, from Snell’s Law, the horizontal polarity and vertical polarity 
reflectance increases significantly with distance, at slightly different rates.  This reduces 
the percentage of the total radio signal that is transmitted directly into the clutter canopy 
as the path distance increases, and the receive site grazing angle decreases.  This serves to 
reduce the value of T at a distance, as observed in the P.1546-2 data.  Additional detail 
can be observed on the accompanying electronic spreadsheets. 
 
It also may be possible and necessary to add additional value to the additional 
transmittance coefficient C, currently set at 1.0, as there may be additional factors, such 
as the orientation of the components of the clutter, and the effect of terrain roughness on 
the Reflectance coefficient, to be compensated for.  Snell’s law, however, goes a long 
way toward explain the effects documented by Barrick at low grazing angles.[2] 
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The consideration of the transmissivity coefficient, and the significant change in the 
length of the cluttered radio path, crp, versus the temporarily considered direct path, clp, 
is accommodated by modifying our Beer’s Law equation for the RTE Iri term: 
 

    CABA = AB*crpc/ TC    (xxx) 
 
 
The direct “cluttered path”, clp versus the actual “cluttered radio path”, crpc: 
 
The length of the cluttered radio path, due to the Snell’s angle change at the clutter 
canopy, is very significantly less than the direct ray path from the transmitter to the 
receiver.  As θic approaches 1.57 radians, i.e. the transmitter to clutter entry point ray 
approaches the horizontal, θtc stabilizes near 1.4004 radians for an air to clutter interface.  
At d = 80 km, with h1 = 1,200 m., the portion of the direct ray that would pass through 
the clutter layer, clp, would be 1,029 meters; but due to angle of the refracted 
transmission ray, the actual radio path, crpc, has stabilized near 89.9 meters, and will not 
exceed 90.25 meters at d = 1,000 km!  This would tend to explain why minimal re-entry 
RTE term Id losses were discernable; the re-entry path is significantly shortened by the 
effect of Snell’s Law.   
 
 
Absorption Losses above the Clutter Line 
 
We have previously derived an estimate from the P.1546-2 data, for AB in clutter deep 
enough that radiative transfer does not function, of 0.0195 dB/meter.  We continue to use 
this above the clutter line, but have also added consideration of the Snell’s Law refractive 
transmission coefficient, T, to accommodate the “clutter canopy variable signal splitter” 
represented by the reflected energy versus the transmitted (into the clutter) energy at the 
air to canopy top interface.  T will vary with the incidence angle of the radio signal. 
 
As a result of the significant shortening of the cluttered radio path by the effect of Snell’s 
Law, the losses on the h1 = 1,200 m. line of P.1546-2 out to 3 km are all Beer’s Law 
absorption losses, a.k.a. RTE Iri term losses; as the actual length of the canopy top 
traversed, (d1a), due to the action of Snell’s Law, is only 15 to 50 meters; not long enough 
for the RTE Id term phenomena to overtake the Iri losses.  Study of the curves resulting 
from plotting the non-FSL losses vs. distance indicate that the Beer’ Law absorption 
losses apply for up to the first 50 meters of clutter canopy path length; from 50 meters to 
305 meters, a second set of Id effects provide the lowest losses; and from 305 meters 
onward, a third set of loss phenomenon are the controlling function.  This can clearly be 
seen on the following h1 = 1200 chart, where the initial, climbing Iri loss line gives way to 
a relatively flat Id line, which then transitions to a climbing flat curve: 
 
 
Figure 1;  Non-FSL losses in dB (y-axis) vs. d, total radio path distance in km. (x-axis) 
for h1 = 1200 meters. 
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The three distinct sections to the curve suggests that they represent the Iri, I1, and I2 
Radiative Transfer functions; but the Generic Model indicates that the length of path 
distance that the I1 function controls is short compared to the Iri function, and could be 
expected to be less than 15 meters in terms of canopy top (d1a) distance.  This would 
make it difficult to discern in the data used, representing at most a single point.  It is now 
assumed that the relatively flat area in the above chart from d = 3 km to d= 20 km is the 
combination of the I1, and I2 functions of the Id function, and that the rising curve past 305 
meters of d1a distance (20 km in the h1 = 1200 m. chart) represents a third set of Snell’s 
Law-related RTE phenomenon, here referred to as I3, not quantified in the Generic 
Model.  This I3 mode continues to the horizon, where the controlling propagation 
function transitions to a post-horizon diffraction mode.  The data has been analyzed, 
identifying specific phenomenon related to distances and heights, describing them in 
equations, and subtracting the results to serially uncover layers of data leading to the 
equations quantifying this I3 phenomenon. 
 
 
Approximation equations for the RTE  Id ( I1 and I2, ) functions: 
 
Two equations were derived to match the Id data in P.1546-2; both apply to situations 
where the transmitter is above the canopy top, and the canopy top distance (d1a) exceeds 
250 meters.  The first derives only from the h1 = 1,200 meter line, and are arbitrarily 
assumed to apply only to h1 > 1,000 m: 
 
The entire function relates to the canopy top distance, d1a; which forms the primary 
distance component of a Beer’s Law distance times loss/distance construct, with the 
absorption and dispersion loss term containing a total path distance-related term.  The Id, 
or combined I1 & I2 function approximation for f= 100 MHz, with h1 at or above 1,000 
m. is;  
 
  I1,2[h1>1000m]  =  d1a[0.03exp(-.14d)] - (0.7d −1)*(h2/h1)   (xxx) 
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The h1 = 1,200 line is missing incorporation of the vertical path length extension loss at 
locations near the transmitter site.  The fact that the approximation equations for the RTE 
function at the h1 = 1,200 line also do not match those for all other lines above the clutter 
line, is additional evidence that the data source and computation of the h1 = 1,200 line 
may need review. 
 
For f =100 MHz, and h1 between 1,000 meters and the canopy top, the Id equation 
changes to: 
   I1,2[h1>1000m]  =  d1a[0.07exp(-.17d)] - (0.7d −1)*(h2/h1)   (xxx) 
 
 
Approximation equation for the RTE  I3 pre-horizon clutter-top diffraction function: 
 
      The I3 function applies for d1a distances greater than 300 meters up to the past-
horizon point where diffraction loss is less, or up to a major path obstruction.  The entire 
function relates to the canopy top distance, d1a; which forms the primary distance 
component of a Beer’s Law construct, with the absorption and dispersion loss terms 
containing two path distance-driven terms, and an effective transmitter height term.  The 
I3 approximation for f= 100 MHz, with h1 above the clutter canopy and h2 below the 
canopy, has been discerned by staged subtraction and regression to be: 
 
      I3  =  d1a [0.00055d[km] + log(d[km])(0.041 – 0.0017(h1)1/2  + 0.019]   (xxx) 
 
The logarithmic form of the RTE terms of ARET-AC must be redefined and expanded to the 
fuller form of:  

 Id = MAX(MIN(I1,I2), I3 ) 
 

And the full form of the sum equation for Attenuation from RET above clutter will be: 
 

ARET-AC = MIN[ Iri ,MAX(MIN(I1, I2 ), I3)]    (xxx) 
 
For multiple computer calculations, it may be useful to limit the consideration of Iri to a 
maximum calculation distance of d1a <60 meters, and to limit the consideration of I1,2 to a 
maximum calculation distance of d1a < 350 meters. 
 
 
At and beyond the horizon; transitioning to beyond-the-horizon diffraction: 
 
Analysis of the remaining data on P.1546-2 Figure 1, produces the following equation for 
diffraction losses beyond the horizon transition point for f= 100 MHz, consisting of the 
combination of a distance term, 0.0665d + 48.35, and a relative transmitter height term: 
 
   ADIFF[100MHz] =  0.0665d + 48.35 - .356(h1-h2)1/2 
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The results of this equation apply where the value produced is less than the RTE I3 term, 
or in all cases beyond the horizon, defined as where the combination incident angle above 
the clutter canopy, θic, is greater than 1.59 radians. 
 
 
Frequency Compensation for other than 100 MHz  
  
Up to this point, we have derived only from Figure 1, with a frequency = 100 MHz.  We 
now turn to an analysis of the change in the functions with frequency, derived from the f 
= 600 MHz and f = 2,000 MHz over-land figures. 
 
 
Frequency Compensation for beyond-the-horizon Diffraction 
 
The diffraction function contains frequency compensation requirements.  From basic 
knife edge diffraction theory, we expect the frequency compensation equation for 
diffraction to follow a form of: 
 
  Afreq  = 20log[(1/λ)1/2] 
 
 Where λ, the wavelength of the frequency, is equal to c/f, c is the speed of light in 
km/sec and f is the frequency in MHz.  Carrying the square root across the logarithmic 
function, and substituting a constant, a, for the equivalent of 10log(c), we obtain: 
 

 ADIFF Frequency Compensation  = 10log(fMHz ) + a     (xxx) 
 
Incorporating this frequency compensation into the earlier 100 MHz diffraction equation 
results in: 
 

ADIFF = .072d − 0.45( h1)1/2 + 10log(fMHz ) + 27     (xxx) 
 
This diffraction equation, incorporating height and frequency compensation, proves to be 
adequate to stand alone to approximate the diffraction attenuation in addition to the FSD, 
over land, from the horizon or first major pre-horizon obstacle to 1,000 km, for all 
transmit and receive heights and frequencies within the range of P.1546-2.  
 
 
Frequency Compensation for the RTE I3 Function: 
 
For the RTE Id functions I3, the frequency compensation required swings from slightly 
negative to positive with distance, with an intercept point controlled by the transmitter 
height above clutter canopy top.  Two equations describe the compensation: a negative 
compensation term applies prior to the zero intercept point, and a positive compensation 
term applies after the zero intercept.  The frequency compensation equations to be added 
to the result of the RTE I3 computation each consists of a frequency and transmitter-
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height-controlled gain term multiplied by a distance term based on the distance from the 
zero intercept: 

 
Zero intercept point = 1.5( h1 – CH)1/2  meters    (xxx) 

 
If d > 1.5( h1 – CH)1/2, FCI3B applies; if not, FCI3A applies.   (xxx) 

 
     FCI3A = [-20((Log(fMHz )-2)/( h1)1/2]*[ (1.5(h1 – CH)1/2 – d[km])/1.5( h1– CH)1/2) (xxx) 
 
     FCI3B = [10.2((Log(fMHz )-2)/(100-1.5(h1 – CH)1/2)]*[d[km] -1.5( h1– CH)1/2] (xxx) 
 
 
Frequency Compensation for RTE Id (I1 and I2): 
 
For the RTE Id function Id (I1 and I2), the height and frequency compensation 
approximation equation term to add to the result of the RTE computations solves to be: 

 
ARTEfc =   − ((log(fMHz)-2)*(h2/h1)       (xxx) 

 
 
Frequency Compensation for the Beer’s Law – RTE Iri component 
 
There is no frequency (i.e. color or wavelength) consideration noted in Beer’s Law.   
Therefore, we find, for now, that the Beer’s Law absorption function, AB, as used for the 
RTE Iri function, does not appear to be significantly frequency dependent.  No frequency 
compensation will be included in these approximations for the direct absorption Iri losses.   
 
Transition Points: 
 
To match the P.1546-2 data, the best transition point decision criteria has proven to be: 
 
For above the canopy top level: 
 
If the combined incident angle θic is greater than 1.59 radians, beyond-horizon diffraction 
controls the attenuation.   
 
If the under-canopy top ground distance d1a is greater than 275 meters, and if the 
combined incident angle θic is greater than 1.58 radians, but less than 1.59 radians, then 
the signal is in a transition at the horizon between I3 and diffraction mode, and the results 
of the I3 and diffraction modes should be averaged to determine the attenuation.  
 
If the under-canopy top ground distance d1a is greater than 275 meters, and if the 
combined incident angle θic is equal to or less than 1.58 radians, then the I3 mode 
controls the results. 
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If the under-canopy top ground distance d1a is less than or equal to 275 meters, and 
greater than 50 meters, then the Id (I1 and I2) mode controls the results. 
 
If the under-canopy top ground distance d1a is less than or equal to 50 meters, then the Iri 
mode (Beer’s Law direct absorption to RTE function transition) controls the results. 
 
For at or below the canopy top level:  
 
When the transmitter is at or below the canopy top level, the cluttered radio path distance 
is equal to the path distance d.  The results of the equations given for the Iri and Id 
functions are to be added together; and: 
 
If the path distance d is less than or equal to 6 km., the combined RTE Iri and Id function 
results control the resultant attenuation. 
 
If the path distance d is greater than 6 km., and if the combined incident angle θic is equal 
to or less than 1.595 radians, then the lesser of the RTE combined or diffraction mode 
results determines the horizon transition point and controls the resultant attenuation. 
 
If the path distance d is greater than 6 km., and if the combined incident angle θic is 
greater than 1.595 radians, then the path is beyond the horizon, and diffraction mode 
results controls the resultant attenuation. 
 
 
Combining the Results for the Deterministic Approximations Solution: 
 
The last step is to add the Two-Ray Plane wave attenuation, A2R, and the Free Space 
Dispersion, FSD, to the non-free-space attenuation from RTE or diffraction loss 
computed above, with frequency compensation included, to obtain the total predicted 
attenuation: 

 
ACA[total]  =  A(RTE or Diff)[+FC ] + A2R + FSD.  
 

Where for a ITU-R P.1456-2 land path, A2R = 0.    
 
FSD is calculated as in Part I.  However, the P.1546-2 figures do not included the 
additional vertical path loss; we therefore instead use the FSL computation for the current 
model to match the existing curves, and recommend that the additional vertical path loss 
be incorporated into the curves for h1 > 300 meters in any future revision of P.1546-2.  
For the present use, to approximate the results of P.1546-2, the equation then becomes: 
 

 ACA[total]  =  A(RTE or Diff)[+FC] + FSL.  
 

 
These deterministic approximations, when assembled on a single line of cells in a 
computer spreadsheet, calculate the geometry of the actual radio path length through the 
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clutter, or, by iteration, the radio path lengths above and through the clutter for a 
transmitter above the clutter canopy based on Snell’s Law, and then proceeds to calculate 
the non-free-space losses.  
 
This process, and the resulting spreadsheet or computer code, requires as input only four 
input variables in addition to the preset clutter height value of 25.3 meters, to produce a 
result approximating the results for P.1546-2.  These values are: the transmitter height, 
h1, in meters; the receiver height h2, in meters, the total path distance d in kilometers; and 
the frequency, f, in MHz.   
 
Where a terrain database, or terrain information regarding obstruction location and height 
is available, a diffraction and/or tropospheric scatter solution, similar to that utilized in 
the Longley-Rice Irregular Terrain Model, (ITM) or the future Irregular Terrain with 
Obstructions Model, (ITWOM), scheduled for release in 2008, can be utilized.  For 
compatibility with ITU-R P.1546.2, and, by reference, Okimura-Hata, the line-of-sight 
deterministic equations here presented will be used to replace the underlying line-of-sight 
calculations in the ITM model as part of the process of creating the ITWOM model. 
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