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Abstract 

A descending (multi-item) clock auction (DCA) is a mechanism for buying items from multiple 
potential sellers. ln the DCA, bidder-specific prices are decremented over the course of the auction. In 
each round, each bidder might accept or decline his offer price. Accept ing means the bidder is willing 
to sell at that price. Rejecting means the bidder will not sell at that price or a lower price. DCAs have 
been proposed as the method for procuring spectrum from existing holders in the FCC's imminent 
incentive auctions so spectrum can be repurposed to higher-value uses. However, the DCA design has 
lacked a way to determine the prices to offer the bidders in each round. This is a recognized, important, 
and timely problem. 

We present, to our knowledge, the first techniques for this. We develop an optimization model for 
setting prices so as to minimize expected payment while stochastically satisfying the feasibility con­
straint. (The DCA has a final adjustment round that obtains feasibility after feasibility has been lost in 
the final round of the main DCA.) We prove attractive properties of this, such as symmetry and mono­
tonicity. We developed computational methods for solving the model. (We also develop optimization 
models with recourse, but they are not computationally practical.) We present experiments both on 
the homogeneous items case and the case of FCC incentive auctions, where we use real interference con­
straint data to get a fully faithful model of feasibility. Our optimization-based pri~setting approach 
significantly outperforms the natural percentile-based approaches in minimizing the final payment by 
the auctioneer. It also helps feasibly repacking more stations. An unexpected paradox about DCAs is 
that sometimes when the number of rounds allowed increases, the final payment increases. We provide 
an explanation for this. 

1 Introduction 

MAR 3 1 2014 

A descending {multi-item} clock auction (DCA} is a mechanism for buying items from multiple potential 
sellers. In the DCA, bidder-specific prices are initialized at reserve prices and then decremented over the 
course of the auction 113]. In each round, the auctioneer decrements the offer prices to the bidders, who 
might accept or decline the offers. Accepting means that the bidder is willing to sell at that price. Rejecting 
means that the bidder has to exit the auction permanently and cannot sell. This process is repeated until 
the auctioneer's target number of items to purchase would become infeasible if additional bidders were to 
reject any new (lower) offers. At that point the auction ends and the current prices are paid. 

We consider the following setting. The auctioneer wants to buy items from a pool, N, of n potential 
sellers. Each seller i E N has a specific type of item Gi and decides to sell it or not depending on the 
offer price. The items from the sellers could be substitutable and complementary. The auctioneer has a 
target number of items to buy, T, and there is a feasibility function F: 2N --t {0, 1} that specifies, for each 
subset of potential sellers, S, whether the items from Scan fulfill the target Tor not; i.e. F (S) = 1 if the 
combined items from { Gi, i E S} fulfill the target. 
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A simple example of this is the case where the sellers have identical items and the auctioneer wants to 
buy a target number T them. In this case, the feasibility is simply F(S) = 1 if lSI ~ T , and F(S) = 0 
otherwise. 

However, in real-world application such as the FCC spectrum reverse auctions discussed later, the 
feasibility function can be highly complex. Often it cannot be given in closed form, but rather is stated 
through constraints as an optimization problem. 

In the DCA, the auctioneer sends offer prices to the sellers and checks whether they accept those prices. 
Bidders who accept the offers are called active. If the combined items from the active bidders fulfill t he 
target, then the auctioneer reduces the prices further in the next round and repeats the process. If at some 
point the items from the active bidders do not fulfill the target, then the auctioneer goes back to the last 
step and conducts a last-round adjustment to offer higher prices to some declined bidders so that feasibility 
is obtained. Algorithm 1 describes the general DCA framework. 

ALGORITHM 1: Descending Clock Auction (DCA) 
Input: A set of sellers N = {1, ... , n} with goods {G1, ... , Gnf, an auctioneer with a feasibility mapping 

function F : 2"' ~ {0, 1}. A target number of rounds allowed m. Initial value function estimates v;. 
Output: A set of feasible sellers A C N, i.e., F(A) = 1, and the corresponding vector of offer prices p that aims 

to minimize the expected payment that the buyer needs to pay. 
1 . Initialize the price vector p to the reserve prices. Let the set of active bidders be A(O) = N ; 
for round r = l...m do 

2.1. Find a vector of prices p to offer the bidders; 
2.2. Find the set of rejected offers R ; 

if F(A(r\R) = 1 then 
2.2.1. A(r+l) ~ A<r>\R; 
2.2.2. Update the distributions of the bidders' values; 

else 
2.2.3. Enter the readjustment round in Step 3; 

end · 
end 
3. Readjust the prices for bidders in the last round to meet the target; 
4. Pay winning bidders the offered prices; 

A key challenge in a DCA lies in how to set the prices offered to the bidders. A natural approach is 
to set the offer price at some fixed percentile of the (buyer's model of the) distribution of that bidder's 
valuation. For example, the prices could be set so that each bidder has the same probability of accepting 
her offer. The choice of the percentile would depend on what the auctioneer aims for on the trajectory of 
the sizes of sets of active bidders through the rounds. An example of the trajectory could be such that 
the expected number of rejections in each round is distributed evenly throughout the auction. Another 
example of the trajectory is to set a fixed percentage of rejection in each round, that is, the expected 
number of rejections is proportional to the size of the remaining set of active bidders. We call this class of 
methods percentile based. 

Those methods have several drawbacks. First, having a fixed percentile means there is no way to 
distinguish between bidders with high bid values and the rest; hence the final payment will likely be 
unnecessarily high due to the probabilistic inclusion of high-priced bidders. More importantly, those 
methods do not have any special treatment for the degree of interaction among the items in the feasibility 
function. 

This paper presents a significant improvement within the DCA by addressing these issues by designing 
an optimization model for setting the prices. The model is designed to minimize the expected final payment 
while ensuring feasibility in a stochastic sense. It is flexible in that it can incorporate bidder-specific 
characteristics with respect to feasibility. 
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1.1 FCC Incentive Auctions 

The current flagship application of DCAs is the Federal Communications Commission (FCC) incentive 
auctions. The FCC has been selling radio spectrum licenses via auctions since 1994 [2, 12]-in recent 
years via combinatorial auctions (4, 5]. However, there is not enough spectrum left to sell for the new 
high-value spectrum uses that have arisen. The idea of incentive auctions, therefore, is to buy some of the 
existing licenses back from their current holders, which frees up spectrum, and then to sell spectrum to 
higher-value users. The idea of such incentive auctions was introduced in the 2010 National Broadband 
Plan [6]. It is motivated by the fact that the demand and the value of over-the-air broadcast television has 
been declining while the demand for mobile broadband and wireless services bas increased dramatically 
in recent years. Given the limited spectrum resources, incentive auctions were introduced as a voluntary, 
market-based means of repurposing spectrum. This is done by creating a market that exchanges the usage 
rights among the two groups of users: (a) existing TV broadcasters and (b) wireless broadband networks. 
Three key players in this market are existing spectrum owners, spectrum buyers, and the FCC, which acts 
as the intermediator. 

An incentive auction consists of three stages {8] (see also a whitepaper about design choices by Hazlett 
et al. (10)): 

1. Reverse auction: parts of the spectrum currently used by TV broadcasters is bought back. 

2. Repacking: remaining broadcasters are reallocated to a smaller spectrum band. 

3. Forward auction: freed spectrums is sold via a (combinatorial) auction for use in wireless broadband 
networks. · 

In the reverse auction, we need to find a set of stations to be reallocated to lower-band channels and 
a separate set of stations to be bought off the air, in order to achieve the following goals: (a) meet some 
target on the number of contiguous channels freed on the higher spectrum band and (b) minimize total 
payment by the FCC. The FCC is required to respect the broadcasters' carry-right, which means, in the 
context of a DCA, a station that rejects the offer still has the right to stay on the air, but possibly on a 
lower spectrum band. This repacking stage needs to ensure that all the stations that rejected their offers 
can be feasibly repacked into the allocated band without violating the engineering constraints, that is, 
interference-free population coverage, as we will detail later in the paper. 

Once the reverse auction phase is completed and the remaining stations are repacked, the FCC an­
nounces the cleared spectrum which is now available for purchase. Buyers then submit bids on bundles 
of spectrum frequencies. The FCC solves a winner determination problem to decide which bids to accept 
or reject. This does not involve the engineering constraints, so it resembles standard combinatorial auc­
tions; hence existing algorithms like those by Sandholm et al. [17], Sandholm [15, 16] can be used for this. 
Therefore, we focus on the reverse auction stage. 

The FCC aims to free up a number of high spectrum channels-say between channel 32 and 51. In 
order to do that, all stations need to be assigned to the lower band channels or give up their carry right 
in exchange for some payment. The process of deciding which stations to retain, which stations to leave, 
and at what prices, is done through the reverse auction. Within this stage, the repacking problem needs 
to be solved in order to check whether the remaining stations can be feasibly reassigned to the targeted 
lower-band channels. Other groups have recently also tackled the repacking part (e.g., Leyton-Brown [11]). 

Two apparent options for the reverse auction design are a single-round Vickrey-Clarke-Groves (VCG) 
auction or a DCA. In the VCG, stations submit sealed bids. The auctioneer then solves the winner de­
termination problem (WDP) to determine the winning bids, that is, those stations that the FCC buys 
back at their bid prices. Stations with rejected bids are repacked into the lower-band channels. Unfortu­
nately, solving this WDP is challenging because it involves thousands of binary variables and millions of 
interference-avoidance constraints. In fact, the FCC has attempted to solve it, but according to Milgram 
and Segal[14], solving an instance of this problem with state-of-the-art optimization packages takes weeks 
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of compute time without finding the optimal solution. Also, even if the list of winners were available, solving 
for the VCG payment for each winning bidder would involve solving a combinatorial problem similar to the 
WDP. It is the same as the WDP except that a small portion of the binary variables are fixed. Furthermore, 
a small approximation error in solving these problems can lead to significant over-payment (13). 

The DCA was proposed by Milgrom and Segal (13), who have shown attractive features of the framework. 
According to documents that the FCC uses to communicate with its stakeholders regarding incentive 
auctions (wireless.fcc.gov I incentiveauctionsllearn-program), the DCA is the FCC's design of choice. 

However, there is a key missing piece in the DCA: how to determine what prices to offer to the different 
bidders in the different rounds. In this paper we present a solution t.o this. To our knowledge, this is the 
first paper on the topic. 

The importance of this question is highlighted on the FCC web site (wireless.fcc.gov I incentiveauctionsllearn-
programlrule-optionlreverse-auction.html): 

The algorithm that determines how prices are decremented for each station in each round ... 
is an important part of the auction design. This algorithm will rely on a score for each bid 
that accounts for factors like the potential interference created by a station and the population 
served by the station, as well as the money amount of the bid. The use of population in scoring 
could reflect the fact that the value of a broadcasting license depends in part on its population 
served. Ranking bids and paying winning bidders in relation to their population served or other 
indicators of value may reduce the amount that the Commission would have to pay to repurpose 
broadcast television spectrum. The details of the scoring will need to be examined further. 

This problem is also timely. The FCC was planning to run the first incentive auction in 2014, but 
because the auction design is not ready, in December 2013 the FCC postponed the start of the incentive 
auction to at least mid-2015 (18). 

1.2 Contributions and Paper Outline 

We develop an optimization model for setting offer prices in DCAs. To our knowledge, this is the first 
paper on the topic. Section 2 starts with a general model for price setting in DCAs. Section 2.1 presents 
computational methods, complexity, and properties of the optimal prices for various settings. A key pur­
pose of DCAs is price discovery; Section 2.2 discusses updating beliefs about the bidders' value functions. 
Section 2.3 describes optimizing the final round settlement in deciding the winners. Section 3 provides ex­
periments for homogeneous-item DCAs and for FCC incentive auctions using real data. Section 4 concludes 
and provides a discussion of future directions. 

2 Techniques for Optimizing Offer Prices in the Descending Clock 
Auction 

A key component of a DCA is to set the prices to offer to the active bidders. The auctioneer needs to 
consider the tradeoff between minimizing payment to the accepted bidders and fulfillment of the target 
(i.e., repacking feasibility in the case of incentive auctions). 

Furthermore, the pricing affects the speed of the auction in terms of the number of rounds. Therefore, 
there is another tradeoff. On the one hand, if the offer prices are too high, many rounds are required, and 
that may be undesirable from the perspective of minimizing logistical effort. On the other hand, if the 
offer prices are too low, many bidders reject and the auction ends too quickly without properly serving its 
price-discovery purpose. 

In this section, we present a method for setting the offer prices. They should be dependent on (a) the 
estimated value functions of the bidders, (b) the importance of the items for the target to be fulfilled , and 
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(c) how quickly/slowly the auctioneer wants the auction to run. We provide an optimization model that 
incorporates these considerations. 

Throughout this section, we assume the auctioneer's target Tis a given scalar number and the feasibility 
mapping F is given in some specific form. Obviously these inputs are not readily available in many settings 
such as in incentive auctions: the feasibility function involves a complex repacking problem. Later in 
Section 3.2 we show how to translate such a complex setting to the forms of T and F described in this 
section. 

2.1 Optimization Model for Price Setting in Each Round 

Suppose each bidder has a threshold price Vi below which it declines the offer. The auctioneer does not know 
these threshold prices. Suppose, however, that the auctioneer has an estimate/belief that the threshold 
price v;. of bidder i follows some distribution on the support set [l,, u;]. Assume that the auctioneer knows 
these distributions. 

Let X;.(p;.) be the corresponding Bernoulli random variable that indicates whether bidder i will accept 
the offer at price p;.. The total payment is 

c(p) = L x,(p,)p; , 
i E.A<•> 

where A(r) is the set of remaining active bidders in the current round r . One objective of the auctioneer 
is to set the prices in such a way that minimizes the expected payment which is equal to 

E[c(p)J = L E[X1(p,)Jp;. (1) 
i E.A(r) 

The expected payment is nondecreasing in the offer prices. So, setting low prices would lead to low expected 
payment. However, doing this would lead to a high chance of reaching infeasibility too soon, so little price 
discovery could be done. The auctioneer , therefore, needs to balance feasibility with low expected payment. 
The bidders' values are random to the auctioneer, so, for any fixed set of offer prices, t.he feasibility can 
only be expressed in a stochastic sense. It is possible to apply ideas from stochastic programming to model 
this as a chance constraint. However, this often leads to computational intractability since the feasibility 
mapping tends to be a highly complex function of the prices. We propose a simpler measure of the expected 
number of bidders accepting the offers N(p) as this is directly related to the chance of feasibility, i.e., the 
larger the population of active bidders, the higher the chance of feasibility. We have 

E [N(p)] = L E[X;.(p,)J. (2) 
iE.A(•) 

The problem of minimizing the expected payment while ensuring the expected number of accepted bidders 
to meet some target can be modeled as the following optimization problem: 

minimize L E[X;(p;))p;, subject to L E[X,(p;)J ;::: r <r)' l;. $Pi $ 1.4. Vi E A(r)' (3) 
i E.A<rl iE.A<• > 

where r <r) is the targeted number of active bidders at round r. The auctioneer has the flexibility in 
choosing this target depending on how quickly or slowly the auctioneer wants to complete the auction. 
One possibility is to set 

r<r> = n<r) - n<r> - T 
m-r+l' 

where n<r) is the number of active bidders remaining, Tis the final target, and (m- r + 1) is the number 
of remaining rounds. In this case, T(r) is set such that the size of the sets of active bidders reduces evenly 
throughout the rounds. 
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Both the payment and feasibility are expressed in expectation due to the stochasticity of the bidders' 
values. This means the actual number of accepted bidders might exceed or fall below the target r<r>. That 
potential disparity, and its effect on the later rounds, imply that better prices than those from Model 3 could 
be obtained via a model that incorporates recourse. We present one such model in Appendix A.l. That 
model is, however, computationally highly complex to solve and might not be appropriate in large-scale 
DCA settings if quick rounds are needed. 

The price-setting strategy in Model 3 simplifies one important fact about the dynamical nature of DC As: 
the choice of offer prices in round r will affect. the population of active bidders in subsequent rounds as 
well as the distribution of those bidders' values. Thus, in principle, the pricing problem in DCAs should 
be modeled as the dynamic program shown in Appendix A.l. Solving it , however, would be prohibit ively 
complex. Instead, we simplify this process through a dynamic scheduling of the sizes of the sets of active 
bidders r<r). Specifically, we schedule the size of the set of active bidders n<r) evenly in the last (m- r + 1) 
rounds. The simplicity of the models described in this section makes them appropriate in situations when 
it is critical to offer prices to the bidders in a timely manner. 

To simplify the notation in Model 3 a bit, let us denote by F,(p,) the cumulative distribution of the 
valuation of bidder i. It can also be interpreted as the probability that bidder i will accept offer price p,, 
i.e., F,(p,) = <5, = E[Xi(pi)J. Model 3 can now be rewritten as 

minimize 2: Fi(pi)Pi, subject to 2: Fi(Pi) 2': r<r), li $Pi $ ui, "'i E A(r). (4) 
~~~ ~~~ 

2.1.1 Uniform Distribut ion on Bidder Values 

We first consider the case where the bidders' values are drawn from uniform distributions on [li , ui)· The 
probability that bidder i will accept t he offer price Vi is, 

6;(p;) = F;(p;) = { 
if Pi $ li, 

if l , $Pi $ u,, 
if Pi> Ui· 

Naturally, we can restrict the price to l, $Pi $ Ui· The expected payment is 

E[c(p)) = 2: F,(p,)pi = 2: (p~~~•J.P•. 
iEA(rl iEA (r) 1 

' 

T he constraint on the expected number of stations accepting the offers is 

E[N(p)) 2:: r <r> ~ 

which is linear in the offer prices p . 

"' Pi - li > r <r) 
LJ u · - l · - ' 

iEA (r) ' ' 

(5) 

So, the problem of minimizing the expected payment while ensuring the probabilistic constraints on 
feasibility can be modeled as the following quadratic program: 

minimize "' (pi - l,)Pi subject to "' Pi-li > T{r) l · < p · < tLi "'i E A (r). {6) 
LJ u·-l· ' LJ u ·- l·- '•- •- ' 

iEA (r) ' ' ieA<r> ' ' 

The problem has a strictly convex separable quadratic objective and one joint constraint in addition 
to lower and upper bound constraints. Thus, the problem has a unique optimal solution. In addition, the 
expected payment increases with p while the expected number of rejected stations decreases with p . Thus, 
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we would expect the constraint to be tight at the optimal solution. Let A be the Lagrangian multipliers 
for the joint constraint E~1 !£:=~: ~ r<r>. The Lagrangian dual function is 

.C(A,p) " (pi - li)Pi + A (y(r) _ " Pi - l, ) 
~ u · -l· ~ u·-l· 

iEA (r) t t i EA(r) t ' 

The Lagrangian dual problem can be derived as 

{
TA + " min Pt- (A+ l,)Pi + Ali} . 

~ l ·<p <u· u · -l-
ieA!rl •- ' - • • ' 

The problem is convex, so there is no duality gap when we take the Lagrangian relaxation. For each fixed 
set of Lagrangian multipliers .>., the optimal prices can be derived: 

if l, ~ A ~ 2u, - l, , 
if A~ l,, 
otherwise. 

(7) 

Proposition 1. {Symmetry/ For any two bidders with the same valuation distribution, the optimal offer 
prices must be the same. 

Proof. Straightforward from Formulation 7. For any two bidders i , j with the same boundaries, i.e., l, = li 
and u, = Uj, any choice of A leads to Pi = pj. 0 

The Lagrangian dual function can be calculated efficiently in O(n) for each fixed A. The Lagrangian 
dual problem is a. piece-wise concave maximization problem with one scalar variable on the non-negative 
orthant. One could apply a conjugate gradient method to solve this problem. Better still, we present an 
algorithm that exploits the structure of the problem and is O(nlogn): 

Proposition 2. The optimal offer prices can be found- i.e., Model6 can be solved- in O{nlogn) opera­
tions. 

Proof. The optimal offer price Pi is a piece-wise linear function on A with three pieces that are intersected 
at two points li and (2u, - l,). We can order all the 2n points {l, , 2u, - l,}, '<li = 1, ... , n on the vertical 
axis in O(n logn). From that we obtain (2n + 1) pieces (some potentially with zero length). For A that 
falls within each piece, we have a corresponding linear mapping to the offer prices p,, i = 1, ... , n. Thus, 
the Lagrangian function on that piece can be calculated as a corresponding quadratic function on A. The 
optimum A on each piece can therefore be calculated. The global optimal A can be found by taking the 
maximum Lagrangian function among all the (2n + 1) pieces. 0 

2.1.2 Heterogeneous Bidders with Respect to Target Feasibility 

The feasibility constraint in Model 6 was for the homogeneous case. Consider now a heterogeneous case 
where the item from each bidder would affect feasibility differently. For example, in incentive auctions, 
depending on the current list of rejected stations, the repacking feasibility is highly sensitive to the choice 
of new rejection due to engineering constraints. Suppose there is a weight vector w = (w1 , ... , wn) that 
represents the contribution from the bidders to the feasibility function F; in Section 3.2 we will show how 
to derive these weights for the case of incentive auctions. For now, we consider a simple example where 
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bidders all share the same type of item but each of them will have a different number of items to sell. In 
that case, Wi can represent the amount available from bidder i. We assume a. setting where each bidder 
considers its item as a single product and considers selling it or not depending solely on the offer price (to 
avoid the C'.ombinatorial complexity). Now, Model 6 can be modified to 

. . . "" (pi -li)Pi b' t "" Pi-li > T(r) l < < \J' A(r) mm1m1ze L,_; . -l· , su Jec to L,_; Wiu · -l· _ , i _ Pi_ ui, vt E . 
i E.A(r) Ui t iEA(r) ' ' 

(8) 

Applying the same Lagrangian relaxation method as shown in solving Model 6, 

.; ~ { ~ if li/wi :5 A :5 (2ui - li)/wi, 2 , 
li, if A :5 li/wi, (9) 

Ui, otherwise. 

Similar to Model 7, the problem is strictly convex, so it has a unique optimal solution and there is no 
duality gap when we take the Lagrangian relaxation. 

Proposition 3. a) [Symmetry] For any two b-idders with the same valuation distribution and with the 
same weights, the optimal offer prices must be the same. 

b) [Monotonicityj For any b-idders with the same valuation distribution, the optimal offer prices are 
higher for those with higher weights. 

Proof. In part (a), for any two bidders with identical value distributions and weights, any choice of A would 
lead to the same formulations for the offer prices (as shown in Formulation 9) for the two bidders, which 
means t.he optimal offer prices are the same. Part (b) can be derived in the same way with a note that 
both w and A are non-negative. 0 

The implication of part (b) is that the auctioneer should offer higher prices to more 'important' bidders 
to keep them active. We will show how this is applied to the case of incentive auction where the stations 
affect the feasibility differently. 

Proposition 4. The optimal offer prices can be found- i.e., Model 8 can be solved-in O{n logn) opera­
tions. 

Proof. The proof is similar to that of Proposition 2. 0 

2.1.3 General Valuation Distributions 

Now we drop the assumption that the bidders' valuation distributions are uniform. In this setting, Model 8 
generalizes to a nonlinear program: 

iEA<r > iEA(r ) 

Depending on the valuation distributions, this program might be non-convex and might be hard to 
solve in general. The attractive part of this model, however, is that it has a separable objective function 
and only one joint constraint. Using the same Lagrangian relaxation method, we obtain the following 
Lagrangian dual problem: 

max 
A;?:O 
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For each fixed Lagrangian multiplier A, the optimal prices p of the inner problem can be found by solving 
n nonlinear sub-problems, each with a single scalar variable. In the case where the distribution of the value 
function is piecewise linear, the inner problem is a piecewise cubic function where the optimal solution of 
Bach piece can be found efficiently. 

The problem might be non-convex so the Lagrangian relaxation method might produce some optimality 
gap. The Lagrangian relaxation method has been show~1 to perform well empirically, that is, with small 
optimality gaps, for a number of combinatorial problems (see Fisher [9] for details about the method and 
successful applications). The offer prices found, however, might not be optimal. In what follows we present 
a method that could either be used as a stand-alone method for finding the optimal offer prices or can be 
used in combination with the Lagrangian relaxation method to enhance the performance. This method 
takes advantage of the discreteness property of the decision variables, the separability of the objective 
function, and the single joint constraint. Consider an auction design where the offer price for bidder i must 
take discrete values in a given set { Pi1, . .. , ~k} . This restriction often holds in practical auction settings 
because (1) allowing fractional bids can increase hassle (e.g., bookkeeping), and (2) allowing unimportant 
digits to be expressed opens the door for collusion among bidders. Such collusion has been observed in 
FCC auctions and the FCC has subsequently pract iced, for example, "click-box" bidding where bidders 
have to select their bids from a small set of discrete values [3, 1]. The problem becomes 

n n 

minimize L F;(p;)Pi, subject to L:wiFi(pi) ~ T, p; E {Pil, ... , ~k} , T/i = 1, ... ,n. (11) 
i=l i=l 

This is a mixed-integer nonlinear program. They are generally very difficult to solve. However, this one 
has a knapsack-type structure so a dynamic program can be utilized: 

Proposition 5. Optimal offer prices for Model ll can be found in O(KLn2) operations, where K is the 
maximum number of discrete price levels and L is the number of precision points in the range (0, 1] used 
to calculate the cumulative values F, ( ·). 

The proof is in Appendix A.2. Here we discussed the problem in the first round where A(l) =Nand 
has the largest size. Results for other rounds can be derived similarly. Also, it is possible to combine the 
idea from Lagrangian relaxation and dynamic programming to improve the computational performance 
further. This can be done by using the approximated results from the Lagrangian relaxation method and 
using it to guide the discretization of the feasible space for p before applying the dynamic program. For 
example, the discretization around the solution suggested by the Lagrangian relaxation could be more 
refined than elsewhere. · 

2.2 Updating Value Function Distributions 

The auctioneer utilizes the price discovery feature of the DCA to update the estimated value functions in 
Step 2.2.2 of Algorithm 1. Suppose that, at the beginning of round r , the auctioneer has a belief that the 
random threshold price v; for bidder i follows a distribution on the support set (l;, u;] with a cumulative 
distribution Fi(·). Once the auctioneer has made an offer p~r) to i, there are two cases. In the first case, i 
rejects the offer. The rejected list is updated and i is no longer active (except in the last round when the 
target is not met). In the second case, i accepts the offer and stays active. The auctioneer needs to update 
the belief about the threshold price of bidder i based on the fact that the bidder accepted. We need to 
find the conditional distribution for (vi I Vi $ p~r)) , which can be calculated as follows: 

(12) 
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The auctioneer then uses this new set of beliefs on the value functions and the new set of active bidders to 
run a new auction round. 

If Fi(pi) is piece-wise linear at iteration r , then the updated cumulative distribution is also piece-wise 
linear at iteration (r + 1). In the special case of a uniform distribution, the updated distribution is uniform 
on !l. ,pir>], that is, we simply update the upper bound to be Pir>. 1 

2.3 Final-Round Settlement 

In Step 3 of Algorithm 1, the auctioneer selects the winners of the auctions after having undertaken the 
price discovery through the multiple rounds of the DCA. Let p be a vector of prices that the auctioneer 
offers to the bidders in the last round. Given the offer prices, the bidders might accept or reject the offers. 
The auctioneer then updates the upper bounds on the bidders' values: upper bounds for bidders that 
accepted will be updated to the offer prices and those of the bidders who rejected remain unchanged. After 
the final round, the auctioneer does not have any further opportunity to do price discover, and has to 
decide which bidders are the final winners to meet the target. For the simple case where each bidder has 
only one item, the auctioneer chooses T bids with the smallest updated upper bounds and pays each of 
those bidders that price. For the weighted case, the auctioneer solves the following knapsack problem to 
determine a set of winners that meets the target with the least total payment: 

mi~imize L UiZi, subject to L W i Zi 2: T, Zi E {0, 1}, 'ViE A(m), (13) 
iEA<m> iEA<~> 

where Zi indicates whether bid i should win. 

3 Experiments 

In this section we instantiate the methodology in two settings, and present optimization experiments in 
both. We start with a setting where the items are homogeneous. We then proceed to the reverse auction 
in incentive auctions, using real FCC data. 

3.1 DCA with Homogeneous Items 

In this section we study a relatively simple auction with n bidders, each of whom has one item to be sold. 
The objects are identical from the auctioneer's point of view, and the auctioneer has a target of buying T 
objects. In this case, the feasibility function is 

F(A) = { 1, 
0, 

if IAI2: T, 
otherwise. 

To apply the general DCA framework of Algorithm 1 to this relatively simple setting, we need to adapt 
Algorithm 1 in Step 2.1 and set the target number of accepting bidders to y(r) = n<r)- (n(r) - T)j(m - r), 
where n<r) = IA(r) I, and solve Model 10 to find a vector of prices p to offer the bidders. In this step, we 
assume the auctioneer first aims for a trajectory of the sets of active bidders and then optimizes the prices 
correspondingly. Another strategy that the auctioneer could adopt is to first try to 'foresee' the offer prices 
in the final round by solving ModellO for y(r) = T , and t hen shrink these final prices to the upper bound 
by taking advantage of the multi-round guessing in price discovery. We present details about this strategy 

1 In general, there could also be other factors to take into account when updating the value function distribution. For one, 
the auctioneer might want to update the bounds based on how other bidders have responded to offers. This, and DCAs in 
general, beget interesting questions for future research related to interdependent valuations. Within the scope of this paper, 
our focus is, however, on how to set offer prices given the beliefs. 
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in Appendix A.5. We also need to adapt Step 3 of Algorithm 1 by solving Formulation 13. Details about 
this and other steps are presented in Algorithm 2 in Appendix A.3. 

We compare the performance of our method with a natural percentile-based method where the prices 
at round r are set to 

(r) 
Pi (14) 

where a:i = 1 - {t and Q = (,;:::;rl) is the expected number of rejections per round. This essentially aims 
to distribute the expected number of rejections evenly among m rounds. 

This percentile-based pricing scheme needs to be incorporated into a DCA such as in Step 2.1 of Algo­
rithm 1. When we refer to a percentile-based method for the homogeneous setting, we mean Algorithm 2 
(in the appendix) with Step 2.1 being replaced by the pricing from Equation 14. Similarly, when we refer 
to a percentile-based method for incentive auct ions in the next subsection, we mean Algorithm 3 (in the 
appendix) with Step 2.1 replaced by the percentile-based pricing from Equation 14. 

One can develop other percentile-based methods such as setting the offer prices at a fixed percentile in 
the bidders' value distributions, for example, either always aiming for a fixed 5% of rejection at each round 
or dynamically having tbis percentile depend on the current number of active bidders and the number of 
rounds remaining. We conducted extensive tests using these percentile-based methods. Their performance 
was almost the same on average as the percentile-based method described above. Therefore, we only present 
the performance of that percentile-based method in comparison with our optimization-based method. 

In the experiments, we let there be n = 100 bidders. We check the performance of the algorithms for 
various choices of the target T. We first generate random bounds for the bidders' valuations. The upper 
and lower bounds for bidder i are set to ui = (1 + 8)~ and l, = (1 - 8)mi, where mi is a uniform random 
variable in (0, 1]. Here, 8 is a measure of how good the auctioneer's estimate of the bidders' values is. We 
vary 8 between 10% and 50%. We then draw M = 10 sample valuation vectors with bidder valuations 
from these ranges, that is, dk) "'U(li,ut] fork = 1, ... , M , and for each bidder i = l , . .. , n. That gives 
us M auction instances to run on. We report the average of them in the figures. 

For convenience in reference, in the rest of the paper, we use the label 'OPT-SCHED' to refer to 
DCAs that make use of the price optimization method suggested by Model 10. These include output 
from Algorithm 2 for the homogeneous case and Algorithm 3 for incentive auctions (presented later in 
Section 3.2). 

Figures 1-a and 1-b show the performance of the DCA for the setting where the number of rounds 
allowed m = 50, the weights Wi = 1 for all bidders i, the target T = 50, and 8 = 20%. 

20 ••.• 

~~==~.~.==~~~===.~===~~==~L_~~ ~~==~~~==~~~==~.;====~~===~~--~~ -- fbnl.......a. 

(a) OPT-SCHED algorithm (b) Percentile-based algorithm 

Figure 1: Comparison between OPT-SCHED and the percentile-based algorithm in terms of price discovery. 

The horizontal axis is the round number in the DCA. The vertical axis shows the number of active 
bidders, the total payment the auctioneer would pay if the auction ended at that round, the total value of 
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the active bidders, and the optimal (lowest) payment, OPT, with which the auctioneer could procure the 
needed items if he knew the bidders' valuations. 

The number of active bidders, the total payment, and the total values decrease during the DCA as we 
expected . The total payment is always above the total value, and the total value is always higher than the 
optimal value. Comparing the final payments at the last round, one can see that our optimization-based 
approach significantly outperforms the percentile-based approach. 

Figure 2 shows the final payoff as a function of the number of rounds allowed-for different targets T 
using the same parameters described earlier. 
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Figure 2: Comparison between OPT-SCHED and the percentile algorithm in t.erms of the final DCA 
payments for a varying number of rounds allowed. 

One can see that our optimization-based approach significantly outperforms the percentile-based ap­
proach across the board. 

Surprisingly, the final payment does not decrease when incrt>.asing the number of rounds allowed. This 
surprising finding does not always occur: we can find settings where the final payments for both the 
percentile-based method and the optimization-based method do keep decreasing as we allow more rounds. 
We can also design a specific percentile-based method that avoids this strange behavior completely, for 
example, by reducing offer prices of only the bidder with the highest. upper bound first. However, that 
percentile-based method will not be effective in minimizing the final total payment. 

We phrase the surprising behavior as a paradox and then proceed to explain it. 

Paradox 1. Having more refined offer prices can lead to a higher total payment. 

Explanation of the paradox: Throughout the multi-round auct,ion, t,here are two essential effects on the 
final payment: 

• Desirable effect (price discovery): The prices offered to the remaining active bidders keep decreasing. 
This lowers the final payment. 

• Undesirable effect: Some lower-priced bidders are 'accidentally' rejected as their offer prices keep 
decreasing. 

The first , desirable effect occurs in both the perC'.ent ile-based method and the optimization-based method for 
price setting (OPT-SCUED). The second, undesirable effect occurs more in the percentile-based method 
and than in OPT-SCHED because the objective function in Model 11 has already aimed to lower this 
expected payment and hence high-priced bids are supposed to be rejected before others. This leads to 
overall better performance of OPT-SCHED compared to the percentile-based method, as shown in Figure 2. 
To summarize, the reason behind the paradox is that, due to the randomness of the bid values, having 
more rounds allow a higher chance of rejecting good bids before the final adjustment round. Once the good 
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choices are excluded through more rounds, the less choice we have in solving the final settlement problem 
shown in Model 13, and thus the payment that the model is trying to minimize is higher. 

We now demonstrate the paradox through a specific example. Consider the following simple case with 
n = 3 bidders and a target number T = 2 items to be procured. Suppose all the bidders are still active at 
round r where the current offer prices are p~r). Consider the following two strategies: 

• Strategy 1: Reduce all the prices in round (r + 1) by the amounts 6, for bidder i. 

• Strategy 2: Reduce all the prices in round (r + 1) by smaller amounts f3i < 6; first, observe the 
bidders' responses, and then reduce the price by the additional amounts (6i - /3i) in round (r + 2). 

Consider the following scenario. Bidder 1 accepts new price (p~r) - 61) but Bidders 2 and 3 do not accept 
(p~r) - {32 ) and (p~r)-63). In this case, the number of acceptances is one for both strategies, so the auctions 
proceeds to the adjustment round. 

• For Strategy 1, the adjustment round involves solving a knapsack problem to choose the two smallest 
offers among three choices (p~r)- 6l,P~r),pf>). 

• For Strategy 2, the adjustment round involves solving a knapsack problem to choose the two smallest 
offers among three choices (p~r) - fJ1.P~r) ,p~r)). 

Since {J1 < 61, the knapsack problem resulting from Strategy 1 bas lower (or equal) cost compared to that 
from Strategy 2. 

3.2 DCA in FCC Incentive Auctions 

In this section we conduct experiments with a model of the FCC incentive auction that uses real FCC 
data regarding the feasibility. A key feature of reverse auctions in incentive auctions is that the feasibility 
function is highly sensitive to the set of rejected bids. This is due to a large set of engineering constraints 
between the stations that restrict them from being assigned to the same or adjacent channels. This means 
the inclusion of a set of stations in a current reject list would make the characteristics of remaining stations 
totally different from each other. We first describe these interference constraints and the feasibility function. 
We then show how the general DCA framework can be applied to incentive auctions. 

3 .2.1 Interference Constraints in Repacking and Feasibility Checking 

The description of the FCC incentive auction DCA setting with the engineering constraints is available in 
detailed files on the FCC web site, which we used [7J. There are n = 2177 stations and m = 49 channels 
available (ranging from channel 2 to channel 51 , with channel 37 not available). The target is to clear 
channels 33-51, that is, to repack all the rejected stations to channels 2-32. The feasibility function can be 
defined as 

F(S) = { 
1

' 
0, 

if S E P(C), 
otherwise, 

where P(C) is the set of feasible assignments to a list of available channels C and is defined as 

P(C) = { z: 
Zik E {0, 1}, ViES and k E c,, Eke c 1 z;k = 1, ViES, } 
Zik + Zjk ~ 1, V(i,j, k) E Ic, Zik + Zjk+ l ~ 1, V(i,j, k) E Ia. · 

(15) 

Here Zik is a binary variable that indicates whether station i is assigned to channel k, Ci C C, i E S, is 
the list of feasible channels to station i, Ic is the list of triplets (i,j, k) such that stations i and j cannot 
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be assigned to the same channel k, and Io. is the list of triplets (i,j, k) such that stations (i,j) cannot be 
assigned to neighboring channels (k, k + 1). 

Data for Ci , Ic and Io. are available from the domain file and the interference-paired file on the FCC 
web site 17]. There are a large number-up to 2.9 x 106-of constraints requiring pairs of stations not to be 
allocated in the same or adjacent channels. This makes checking the assignment feasibility very challenging 
for the full problem when all2177 stations are rejected. In our experiments, however, the largest number of 
stations being rejected among all the instances tested is less than 1000 and hence CPLEX can still handle 
the feasibility problem.2 We present more details about the repacking problem in Appendix A.6. 

3.2.2 Adapting the DCA to FCC Reverse Auctions 

We adapt the general DCA framework of Algorithm 1 to incentive auctions. First, as in the homogeneous 
setting, we need to adapt Step 2.1 and set the target number of accepting bidders to r<r) = n<r)- (n(r)­
T)/(m- r) , where n<r) = IA(r) l, and solve Model 10 to find a vector of prices p to offer the bidders. 
The key difference between incentive auctions and the homogeneous setting is in the feasibility function. 
Specifically, the feasibility function in incentive auctions is a complicated function that is highly sensitive 
to the set of rejected stations. We need to adapt Step 2.2. of Algorithm 1 to find the set of new rejections 
and check the feasibility on the updated set of rejected stations. Details about this and other steps are 
presented as Algorithm 3 in Appendix A.4. 3 

In order to apply the models developed in Section 2 to finding the offer prices in each round, we need 
to modify the feasibility constraint. As the bidders' true values are random variables and unknown to the 
auctioneer, any fixed set of offer priees leads to a stochastic set of rejected bidders and hence the repacking 
feasibility is also stochastic. However, at the beginning of each round, we could simulate the feasibility 
problem to draw a curve that shows the probability of having feasible repacking as a function of the number 
of new stations added. We could then choose a target r<r) so that the chance of feasibility when adding r<r) 
new stations is at some threshold (say 99% chance of feasibility). Once a target r<r) has been determined, 
we can then solve Model 6 to obtain the ofier price. The choice of the feasibility probability (and hence 
r<r>) would depend on how quickly or slowly the auctioneer wants to run the auction. For example, at the 
beginning of the auction, the auctioneer might want to have small r<r) for more accurate price discovery 
but then increase r(r) toward the end of the auction to lower the expected payment faster. 

Here we present a simple algorithm for price setting in incentive auctions. Within the scope of this 
paper, we do not undertake extensive simulation to obtain a cumulative function of the feasibility with 
respect to the number of new stations, r<r), added in each round. Instead, we use an estimated T = 1177 
number of stations in the final set of active bidders, that is, to have U = 1000 stations feasibly rejected. 4 

We compare the performance of our optimization model with the percentile-based method where both use 
the same U. 

To deal with the heterogeneity of the stations with respect to the feasibility function, we propose to 
associate each active station with a weight that is proportional to the possibility of causing interference on 
other stations, especially those that have already been rejected. One possibility for setting such a weight 
vector is to set 

(16) 

where d;. (N) is the number of stations in the entire set of stations N that i might interfere with, and 
di(n(r)) is the number of stations in the current rejected list that i might interfere on. By setting the 

2T he feasibility problem does not involve an objective function and hence is much easier to solve than the winner deter­
mination problem in a VCG setting. 

3In Step 3 of Algorithm 3, it is possible to do an improvement and select a smaller set of winners by solving a winner 
determination problem constrained by having n(r) as a subset of rejected bids. That problem, however, has a similar structure 
to a winner determination problem arising from a single-round, sealed-bid auction and is difficult to solve due to the large 
set of engineering constraints. 

4This choice of U comes from the prior experiments we have on the feasibility problem. 
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weights higher for stations with a higher potential of interference on others, we essentially try to avoid 
having these stations rejected in the next rounds by offering them higher prices (recall Equation 9 and 
Proposition 3) . 

3.2.3 Experimental R esults on Incentive Auctions 

Since no incentive auctions have yet been conducted, we have to use simulated data on the bounds of the 
bidders' valuations. The bounds for the first experiment are generated using a uniform distribution where 
the upper and lower bound for bidder i are Set tO U i = (1 + o)mi and li = (1 - o)m;, where mi is a uniform 
random variable in [0, 1]. Here, o = 0.2 is a measure of how good the auctioneer's estimate of the bidders' 
valuations is. The bounds for the second experiment are generated in the same way except that the mean 
value mi is set equal to the population that station i serves. In each of the two sets of bounds, we then 
draw random sample bid values from these ranges, that is, ~i rv U[li, Ui] for each bidder i = 1, . .. , n. For 
each of the two experiments, we draw one valuation vector (one valuation per bidder), so we report on one 
DCA instance in the figures in each of the two experiments. 

Figure 3-a compares the performance of the DCA when using our optimization-based price-setting 
method (Algorithm 4) versus the percentile-based method, for the bids generated uniformly in [0, 1]. The 
number of rounds allowed is 50. 
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Figure 3: Performance of our optimization-based pricing strategy versus that of the percentile-based 
method-using real FCC engineering constraints data. 

The horizontal axis shows the round number in the DCA. The vertical axis shows the number of active 
bidders, the total payment the auctioneer would pay if the auction ended at that round, and the total 
actual values of the active bidders. In each pair of these two curves, the dashed curves correspond to the 
percentile-based method and the dot-dashed curves to our optimization-based method. As can be seen, 
the number of active bidders, the payments, and the total actual values decrease through the rounds. 
The payment is always above the total actual values as we expected. Comparing the final payments at 
the last round, one can see that OPT-SCHED results in more stations to be reallocated and also in a 
lower final payment compared to the percentile-based approach. The lower final payment of OPT-SCHED 
was partially due to it having more auction rounds before encountering infeasibility: the percentile-based 
method encountered infeasibility at round 24 while OPT-SCHED encountered it at round 43. The better 
performance of OPT-SCHED in dealing with infeasibility is due to the added weighted constraints which 
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essentially avoid rejecting stations that are likely to cause interference. Another reason why OPT-SCHED 
outperformed the percentile-based method is that it has a better way of rejecting high-priced bids. This 
effect can be seen in each fixed number of rounds. For example, if both algorithms are terminated at round 
20, the payment for OPT-SCHED is 1088.7 while that for the percentile-based method is 1153.4.5 

Figure 3-b shows the same set of information resulting from the same set of experimental parameters 
as shown in Figure 3-a except that the valuations are randomly generated around the population that 
each station serves; this is a good indication of a station's valuation, and has been used by the FCC as a 
valuation estimate in many spectrum auction contexts in the past. The trends shown in Figure 3-b are quite 
similar to those in Figure 3-a. Although OPT-SCHED slightly outperforms the percentile-based method, 
the number of rounds before reaching infeasibility in the former is not greater than that in the latter. This 
is probably due to the very special structure of the network of stations that include many cliques which 
often correspond to large cities where there are many stations. On setting the bids to be proportional to 
the population served, the bids from the stations in large cliques are often large since the population in big 
cities is large. If all these large bids are rejected, then we will reach infeasibility in repacking. Including 
the weights according to Equation 16 alleviates this issue but does not solve it completely.6 

Figures 4-a and 4-b show the final payoff to bidders versus the number of rounds allowed. One can see 
that our optimization-based approach outperforms the percentile-based approach. The paradox of having 
the final payment increase as we increase the number of rounds allowed is again observable. 
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Figure 4: Final payments using our optimization-based pricing strategy versus those of the percentile-based 
method- using real FCC engineering constraints data.. 

4 Conclusions and Discussion 

A descending (multi-item) clock auction (DCA) is a mechanism for buying items from multiple potent ial 
sellers. In the DCA, bidder-specific prices are initialized at reserve prices and then decremented over the 
course of the auction. In each round, the auctioneer decrements the offer prices to the bidders, who might 
accept or decline the offers. Accepting means that the bidder is willing to sell at that price. Rejecting 
means that the bidder has to exit the auction permanently and cannot sell. This process is repeated until 
the auctioneer's target number of items to purchase would become infeasible if additional bidders were to 
reject any new (lower) offers. At that point the auction ends and the current prices are paid . 

. 5 In the incentive auction setting we do not have a number for the optimal payment if the auctioneer knew the bidders' 
valuations since the winner determination problem is too difficult to solve to optimality. 

6Jt is possible to include constraints into Model 11 to enforce that no more than a certain number of stations in each large 
clique is rejected, which could help further. Approaches like those are interesting directions for future. research. 
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DCAs have been proposed as the method for procuring spectrum from existing spectrum holders in 
the FCC's imminent incentive auctions so spectrum can be repurposed to higher-value uses. However, 
the DCA design has lacked a way to determine the prices to offer t he bidders in each round. This is a 
recognized, important, and timely problem. 

We presented, to our knowledge, the first techniques for this. We developed an optimization model for 
setting prices so as to minimize expected payment while stochastically satisfying the feasibility constraint. 
(The DCA has a final adjustment round that obtains feasibility after feasibility has been lost in the final 
round of the main DCA.) We proved attractive properties of this, such as symmetry and monotonicity. We 
also developed computational methods for solving the model and very efficient polynomial-time algorithms. 
(We also developed optimization models with recourse, but they are not computation"any practical.) We 
presented experiments both on the homogeneous items case and the case of FCC incentive auctions, where 
we used real FCC interference constraint data to get a fully faithful model of feasibility. The experiments 
showed that our optimization-based price-sett ing approach significantly outperforms the natural percentile­
based approaches in minimizing the final payment by the auctioneer . In incentive auctions, the optimization 
model helps feasibly repacking more stations. An unexpected paradox on the performance of DCAs was 
that sometimes when the number of rounds allowed increases, the final payment can actually increase. We 
provided an explanation of this paradox. 

There are a number of potential future directions that can be followed up from this research. First, 
we find the paradox concerning the relationship between the expected payment and the number of rounds 
allowed quite intriguing. Further research on when this would occur, and on quantification of these rela­
tionships, would be interesting. In this project, we have only considered the case where bidders' values are 
independent. It would be interesting to extend the techniques to settings with interdependent valuations. 
Another extension would be to incorporate the option of stations agreeing to share a channel, which is 
something that the FCC is seriously considering. 

Regarding the implementation of the reverse auctions DCA for the FCC incentive auctions, having 
extensive simulation for better estimation of the feasibility chance would improve the performance. Other 
ideas mentioned in the paper, such as adding clique constraints, using stochastic programming and chance 
constraints for the feasibility constraints, as well as approximated dynamic programming techniques are 
worth pursuing for such a high-stakes setting. 
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APPENDIX 

A.l A Dynamic Programming Model for Optimal Price Setting in DCA 

In each round of the descending clock auction, the auctioneer needs to offer each active bidder a price, i.e., 
to do Step 2.1. of Algorithm 1. Here we show a dynamic programming model that the optimal set of offer 
prices should solve. 

Let V ( m, S, u , l) be the minimum expected payment that the auctioneer needs to pay to the bidders in 
a descending clock auction with m rounds, with a set of active bidders S, with upper bounds u and lower 
bounds l within which the bidders' valuations lie. Let ~ be a realization of the bidders' values. For any 
offer prices p in the first round, the state of the auction by the end of that first round will be as follows. 

• The number of rounds left will be (m- 1). 

• The remaining active bidders will be S(p, ~). This includes bidder i if the offer price Pi is no smaller 
than the bidder's value ~i , i.e., Pi ~ ~i· 

• A new vector of upper bounds u(p, ~) which updates the upper bound of any remaining active bidder 
ito Xi· 
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• Unchanged lower bounds l. 

The minimum expected value that the auctioneer needs to pay under the new state of the auction will be 
V(m-1, S(p, ~), u(p, ~), l). Thus, the auctioneer's problem in the first round is to choose p that minimizes 
the expectation of V(m - 1 ,S(p,~), u(p,~), l). We have the Bellman optimality equation 

V(m,S,u,l) =min 
p 

E[V(m - 1, S(p, ~), u(p, ~), l)]. 

Solving this dynamic program would be extremely difficult. In fact, just finding V ( m, S, u , l) for the case 
m = 1 would be very difficult as shown in a simple case below. 

Optimal Price Setting in the Last Round with Recourse Action 

Consider the problem of setting prices in the final round of a descending clock auction. Assume that the 
actual bid values are uniformly distributed random variables, i.e., ~i "' U[li, ui], where (li, ui), i = 1, . .. , n 
are known. Let p be a vector of prices that the auctioneer offers to the bidders. Given the offer prices, 
the bidders might accept or reject the offers. The auctioneer then updates the best upper bounds on the 
bids values, that is, upper bounds for accepting bidders will be updated to the offer prices while those of 
rejected bidders will remain unchanged. The auctioneer chooses T bids with the smallest updated upper 
bounds and pays each of these bidders those prices. Since the bidders' values are random variables, the 
acceptance of the bidders for each set of offer prices p will also be stochastic, so the final payment is 
stochastic. We consider the problem of finding the optimal offer prices p such that the expected final 
payment is minimized. Here expectation is taken over the randomness of the bidders' valuations. 

For convenience in notation, we perform a linear transformation on the price vectors p to x where 
Xi = ;:=~:, that is, Xi E [0, 1] can be interpreted as the target chance of acceptance for bidder i. We also 
have Pi= li + xi(ui -li )· Let us denote by f(x) the stochastic payment. 

Let us first consider the simple case where T = 1 and n = 2. Here the payment is min( u1 , u2 ) if both 
bidders reject the offers, min(p1,p2) if both of them accept, and Pi, i = {1, 2} if only bidder i accepts the 
offer. The probability for each of these four events can be calculated as functions of x. For example, the 
chance of rejecting both offers is (1- xi)(l- x2). Putting all of these together, we have 

/(z) ~ { 
min(u~, u2), 

min(l1 + x1(u1 -l1), l2 + x2(u2- h)), 
h +xi(ui-li), 

l2 + X2(u2- h), 

The expected payment is 

W.p. (1 - x1)(1 - X2), 

W.p. X1X2, 

w.p. X1 (1 - X2) , 

w.p. (1- X})X2· 

E[f(x)] = (1- xi)(1- x2)min(u1> u2) + x1x2min(l1 + x1 (u1 -li), h + x2(u2 -l2)) + 
XI (1 - X2)(l} + X1(U1 - li)) + (1- X1)x2(l2 + X2(U2- h)). 

The problem of determining the optimal offer prices can therefore be formulated as 

min 
Xl,X2 

E[f(x)] 

s.t. 0::::; Xi ::::; 1, Vi= 1, 2, 

which is a non-convex quadratic optimization problem. If we extend the problem to the case n > 2, the 
problem becomes a polynomial optimization problem as follows; 

m4n L [rr Xi II (1 - Xi) ~if{ li +Xi( Ui - li)}l + II (1 -Xi)~~ Ui 
SCN,S¥0 iES i~S iEN 

s.t. 0 ::::; Xi ::::; 1, Vi= 1, ... , n, 
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which is very difficult to solve. Notice that we have considered only the simple case of T = 1 and also 
considered finding the optimal decision in the last round only. 

A.2 Proof of Proposition 5 

Proof. For each mE {0, 1, ... , n} and for each budget B 2:: 0, let us define 

Then we have 

m 

V(m, B) = mJn L Fi(pi)Pi, 
i=l 
m 

s.t. LwiFi(pi) 2:: B, 
i=l 

PiE {Pil, ... ,~,k} ,'ii = 1, .. . ,m. 

V(m, B) =min Fm(Pm)Pm + V(m- 1, B- Fm(Pm)), 
Pm 
s.t. Pm E {Pml, ... ,P,.,.,k}, 

(17) 

where V(O, B)= 0, 'VB. Suppose Fi(pi) receives one of (L + 1) values in the set {0, 1/ L, . .. , 1}. Then we 
can calculate V(1, B) for all BE {0, 1/L, ... , 1}. If we knew V(m- 1, B), 'VB E {0, 1/L, ... , m- 1}, then 
we can plug this in into Formulation 17 and obtain V(m, B) by taking K calculations for Fm(pm)Pm + 
V(m - 1, B - Fm(Pm)) for each Pm E {Pm1, . . . , Pm,k} and then choose the minimum, i.e., 2K operations 
in total. To obtain V(m, B) for all possible BE {0, 1/ L, ... ,m}, we would need to repeat this Lm times, 
which means the total operations incurred for each m is 2K Lm. Summing this for all m E { 1, .. . , n} would 
require KLn(n - 1) operations. Thus the complexity of the algorithm is O(KLn2

). 0 

A.3 Descending Clock Auctions using Optimized Price Setting for the Homo­
geneous Setting 

ALGORITHM 2: A DCA Framework using Optimal Price Setting for the Homogeneous Setting 
Input: A set of sellers N = {1, ... , n} with goods {G1, ... , Gn}, an auctioneer with a target T. A target number 

of rounds allowed m. Initial valuation estimates v,. 
Output: A set of feasible sellers A C N, i.e., IAI = T , and the corresponding offer price vector p that aims to 

minimize the expected payment. 
1. Let the set of active bidders be A(r) = N; 
for round r = l...m do 

2.1. Set the target number of accepting bidders r<r) = n<r)- (n(r)- T)/(m - r) where n(r) = JA<">J and solve 
Model 10 to find a vector of prices p to offer the bidders; 
2.2. Find the set of rejected offers R; 
if J(A(r)\RJ 2: T then 

2.2.1. A(r+I) ~ A<">\R; 
2.2.2. Update the distributions of the bidders' valuations using Formulation 12; 

else 
2.2.3. Enter the adjustment round in Step 3; 

end 
end 
3. Adjm;t the prices for bidders in the last round to meet the target by solving Formulation 13; 
4. Pay winning bidders the offer prices; 
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A .4 Descending Clock Auctions using Optimized Price Setting for Incentive 
Auctions 

ALGORITHM 3: A DCA Framework using Optimal Price Setting for Incentive Auctions 

Input: A set of stations .N = {1, . . . , n}, an auctioneer with a feasibility function F : 2"' --+ {0, 1}. A target 
number of rounds allowed m. Initial valuation function estimates 11; . 

Output: A set of feasible stations to reject 'R. C .N, i.e. F('R.) = 1, and the corresponding offer price vector p 
that aims to minimize the expected payment on the remaining stations. 

1. Set the initial prices pat the reserves. Let the set of active bidders be n_(r) = 0; 
for round r = l...m do 

2.1. Set the target number of accepting bidders T(r) = n<r) - (n(r) - T)/(m - r) where n<r) = IA(r) l and solve 
Model 10 to find a vector of prices p to offer the bidders; 
2.2. Find the set of rejected offers R; 

if F(n<r) U 'R.) = 1, i.e. by solving 18 then 
2.2.1. n <r +l) t- n_(r) u 'R.; 
2.2.2. Update the distributions of the bidders' valuat ions using Formulation 12; 

else 
2 .2 .3 . Enter the final Step 3; 

end 
end 
3. Set all remaining bidders .N\R(r) as winners and pay them their offer prices; 

A.5 Approximation Method for the Multi-Round Case 

First, assuming that the auctioneer has only one round left. Then the optimal prices to offer to the bidders 
will be the solution of Model 10 for the continuous case (or 11 for the discrete case) . Now, given that the 
auctioneer has multiple rounds to do price discovery, he would not offer these 'optimal prices' right away. 
Instead, a set of higher prices will be offered first to learn more about the bidders' valuations and to update 
the bounds. 

A simple way that the auctioneer can do this is to discretize the prices into m equal intervals between 
the uppers bounds and p* and offer these to the bidders sequentially until feasibility does not hold. 

A better way is to do this dynamically as shown in Algorithm 4. Here, after solving Model 10 (or 11) 
in Step 1, the auctioneer can offer a guess Pi = u,+(:- l)pi to bidder i and see how the bidder responds. 
This price is obtained under the expectation that the offer price in the next m rounds will be distributed 
evenly within the range [p; , Ui)· Notice, however, that once the auctioneer has offered the prices to the 
bidders and received their responses to form the new state of the auction, the auctioneer now bas better 
information and can repeat Step 2.1 of Algorithm 1 to find the new set of offer prices, that is, to run 
Algorithm 4 again with the updated information. Formally: 

ALGORITHM 4: Finding Offer Prices in Round m 

Input: Current round r, a current set of active bidders A(r), most up-to-date valuation estimates 11;. 

Output: An offer price vector p. 
1. Solve Model 10 to obtain the optimal offer prices p• as if this were the last round; 

2. Divide the range !Pi , u;] into m equal intervals and set the actual offer prices p; = u,+(:;- l)Pi ; 

A.6 Interference Constraints in Repacking and Feasibility Checking 

There are two csv data files on engineering constraints available on the FCC web site 17]: 
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• A domain file called "Domain-2013Julyl5.csv", of size 306KB, that specifies the feasible channels for 
each station. 

• An interference file called "lnterference-Paired-2013Julyl5.csv", of size 6219KB, that specifies the 
interference constraints that the repacking must meet. This includes: 

- Pairs of (station, station) that must not be assigned to the same channel (among a given list of 
channels). 

- Pairs of (station, station) that must not be assigned to adjacent channels (among a given list of 
channels). 

The average number of feasible channels that each station can be allocated to is 44.15 (out of 49 
channels) with most of the channels being freely allocated to any available channels. However, some 
stations only have a. few feasible channels (that is, there are stations with only three possible channel 
assignments). There are 2.9 x 106 constraints requiring pairs of stations that are not to be allocated in the 
same or adjacent channels. Although this is smaller than 2mn2 = 493 x 106 in the worst case, i.e. , when 
interference matrices are fully dense, it is still a large number. 

Let S be a. set of stations that needs to be repacked into a. list of channels in set C. We use i, j as indices 
for stations and use k as indices for channels. Let C; c C, i E S, be the list of feasible channels to station 
i. Let Ic be the list of triplets (i,j, k) such that stations i and j cannot be assigned to the same channel 
k. Let Ia be the list of triplets (i,j,k) such that stations {i,j) cannot be assigned to channel (k,k + 1) 
respectively. 

From a given list of channels C, we say the set S of stations is feasible with respect to C if the stations 
can be packed into the channels without violating any of the constraints. Let 'P(C) denote the set of all 
subsets of stations that can be feasibly packaged into channels in C. 

Let Zik be a binary variable that indicates whether station i is assigned to channel k. We say z is an 
assignment to the repacking problem. For z to be feasible, we need the following: 

• All the indicator variables z;k are binary, i.e., Z;k E {0, 1}, ViES and k E C;. 

• Each station is assigned to exactly one channel, i.e., L:kec, ZiJ~ = 1, ViE S. 

• No pairs of stations that might interfere with ea{:h other can be assigned to the same or adjacent 
channels, i.e., Z;k + z;k ~ 1, V(i,j, k) E Ic and Zik + Zjk+ l ~ 1, V(i,j, k) E Ia . 

The set of feasible assignments 'P(C) is therefore defined as 

'P(C) = { z: Zik E {0, 1}.1V~ Ec·s· akn)d \.E C;, L:keC, Zik 1=;c'·v~ Ek)s, 7' } . 

Zik + Zjk ~ , v l,J, • E ""'<:! Zik + Zjk+l ~ , v t,J, E ..... 
(18} 

In the experiments, we used CPLEX to solve the repacking feasibility problem. We could also use 
a satisfiability (SAT) formulation for this purpose as has been done by Leyton-Brown [11). Our choice 
of CPLEX here was for the convenience of implementation and due to some special network structural 
properties of the repacking problem that CPLEX could exploit. However, a discussion on the comparison 
between the performance of SAT and CPLEX is out of the scope of this manuscript since our focus is on 
the price setting and not on computational method for solving the feasibility problem. 
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