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Abstract

We report the results of a computational study of repacking in the FCC Incentive Auctions. Our
interest lies in the structure and constraints of the solution space of feasible repackings. Our analyses
are “mechanism-free”, in the sense that they identify constraints that must hold regardless of the reverse
auction mechanism chosen or the prices offered for broadcaster clearing. We examine topics such as the
amount of spectrum that can be cleared nationwide, the geographic distribution of broadcaster clearings
required to reach a clearing target, and the likelihood of reaching clearing targets under various models for
broadcaster participation. Our study uses FCC interference data and a satisfiability-checking approach,
and elucidates both the unavoidable mathematical constraints on solutions imposed by interference, as
well as additional constraints imposed by assumptions on the participation decisions of broadcasters.

1 Introduction

We report the results of an extensive computational study of the broadcaster repacking problem, which plays
a central role in the FCC’s proposed Incentive Auctions. The Incentive Auctions are designed to repurpose
broadcast television spectrum for wireless broadband use, and the reverse auction portion necessitates that
broadcasters not cleared by the process be repacked onto lower frequencies. Co-channel and adjacent channel
interference constraints, as well as those presented by international borders and other issues, make repacking
a computationally challenging task. 1

While the FCC is currently considering a particular descending clock mechanism for the reverse auction,
as well as other potential mechanisms, the problem of determining which subsets of broadcasters can be
feasibly repacked at a given nationwide clearing target 2 is one that must be addressed by any mechanism.
The structure and constraints on this solution space are thus “mechanism-free” and of fundamental interest,
and they are the subject of our study. Examples of the types of questions we pose and investigate here
include:

• For a given nationwide clearing target, what is the minimum number of broadcasters that must be
cleared in order for there to exist a feasible repacking solution for the remaining broadcasters, and how
does this number increase with higher clearing targets?

∗Research conducted on behalf of AT&T. All experiments, analyses, exposition, and opinions are exclusively the work of the
authors. Contact author M. Kearns can be reached at mkearns@cis.upenn.edu

1Throughout the paper, we shall assume the reader is familiar with the Incentive Auctions, and in particular the nature of
the repacking problem in the reverse auction and the formulation of its feasibility as an instance of Boolean formula satisfiability.

2Our focus on nationwide clearing targets is done for simplicity of exposition; we offer no opinion on whether a nationwide
or more variable approach is appropriate for any resulting wireless band plan.
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• For a given nationwide clearing target, how many broadcasters must be cleared from each local market
in order for there to exist a feasible repacking solution, and how variable is this number from solution
to solution?

• What is the cost of border constraints in terms of the number of broadcasters cleared and its geographic
distribution?

• How diverse is the space of possible feasible solutions at a given clearing target?

• How do the answers to such questions change under varying assumptions on the participation decisions
of different classes of broadcasters (such as network affiliates)?

To investigate these questions and related ones, we have implemented a computational framework in which
the feasibility of repacking is formulated as an instance of the satisfiability of a Boolean formula that captures
the nationwide interference constraints provided by FCC data, and the existence of solutions is determined
using the open-source software package PicoSAT. Our experimental platform is thus very similar to that
used in recent compute-intensive FCC studies, but our purpose is complementary: whereas the FCC studies
have naturally focused on greatly improving the computational efficiency of determining repacking feasibility
for the real-time needs of a live auction, our focus here is on elucidating the fine-grained structure of the
solution space, and the constraints on it; computational efficiency is only a secondary concern.

We wish to emphasize from the outset that all of our findings are the results of logical and numerical
computations performed using publicly released FCC data, and in some cases, models and assumptions for
the probabilities of participation by broadcasters and groups of broadcasters. Consequently all results and
conclusions reported here should be viewed as contingent on the quality and accuracy of that data, and the
validity of those assumptions. We make no claims about the generalization of our results to other data sets
or assumptions, and for this reason we encourage the reader to focus more on the qualitative and relative
findings (such as the rate at which broadcaster clearings must increase with clearing target, or the geographic
locations of broadcaster clearings and their relative distribution), as opposed to the precise numerical values
we do indeed provide. The qualitative and relative findings are more likely to survive plausible changes to
the data (such as FCC revisions to interference and border constraints) and assumptions (such as alternate
broadcaster participation models); the precise numerical findings are less likely to.

1.1 Form of Analyses

Our analyses fall into two categories that can be thought of as what “must” happen in the repacking solution
space, and what “might” happen. In the “must” category, we assume that in principle every broadcaster
is willing to relinquish their license (at some price), and investigate solution space structure such as the
smallest number of broadcaster clearings required nationwide, or on a market-by-market basis, at a given
clearing target. One can view these as thought experiments into the most clearing-efficient solutions available,
acknowledging that they do not account for practical considerations on participation. We refer to these as
“must” or absolute analyses because they investigate purely mathematical and structural constraints on the
solution space; there is simply no getting around these constraints, regardless of the mechanism or the prices
it offers. 3

These analyses are not only mechanism-free, they are also “model-free” regarding participation decisions
by individual broadcasters, since we explicitly assume any broadcaster is willing to clear. While this is
valuable in identifying the absolute constraints on repacking solutions, it is unrealistic in the sense that we
may have prior knowledge or assumptions about the likelihood of participation by certain broadcasters or
classes of broadcasters, such as network affiliates. In other words, rather than only identifying what “must”
happen purely from solution space constraints, we also interested in what “might” happen under various

3Note that all of our analyses deliberately avoid any assumptions about clearing prices or any other mechanism-specific
details.
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participation models. These models are not meant to reflect predictions or judgments about participation,
but rather to examine hypothetical outcomes under varying participation assumptions.

The participation models we examine take the form of a joint probability distribution over participation
decisions by broadcasters; more formally, we represent each broadcaster’s availability for clearing (again,
at some unspecified price) as a binary random variable. The joint distribution of these variables for all
broadcasters nationwide can then be designed to capture assumptions about correlations in participation
across groups of broadcasters.

To give perhaps the simplest example, suppose one believed that roughly a fraction α of all broadcasters
will choose not to participate, and that each broadcaster will make an independent, random participation
decision. This (perhaps naive) assumption could be modeled by the standard binomial distribution

P (�x) =

n∏

i=1

αxi(1− α)1−xi

which simply corresponds to a distribution in which each broadcaster i flips a (biased) coin with probability
α of coming up heads (xi = 1, representing non-participation and thus forcing repacking) and 1 − α of
coming up tails (xi = 0, representing participation or availability for clearing). Already for this most basic
model of participation, one can ask a computationally and analytically non-trivial question of interest: as
a function of α, how much spectrum might one expect to clear nationwide? Computationally, this can be
answered by drawing samples �x repeatedly from the distribution P , and determining via satisfiability testing
whether the set of broadcasters i for which xi = 1 can be feasibly repacked at various clearing targets. Thus
such analyses are methodologically very similar to the “must” analyses above, but have a crucial conceptual
difference: while the “must” analyses identify unavoidable mathematical constraints on repacking, here we
have a model P for participation decisions, and any conclusions are of course dependent on the model chosen.

In principle our framework can accommodate any joint distribution P (�x), allowing us to explore scenar-
ios in which the participation decisions of various groups of broadcasters are correlated in varying ways
and strengths. For example, one might posit that network affiliate (e.g. ABC, NBC, CBS) broadcasters
might make decisions that are more likely to be in agreement with each other than the overall population
of broadcasters. Such assumptions can be modeled by the introduction of hidden variables in the form of
a distribution that correlates affiliates of a specific network or affiliates in general in a hierarchical fash-
ion. Similarly, we can examine joint participation distributions that correlate participation behavior with
broadcaster revenue or other economic, geographic or demographic properties of broadcasters. For instance,
one can posit distributions in which the most profitable broadcasters are less likely to participate, or in
which the participation of a coalition of broadcasters with a shared corporate parent are correlated. For
any proposed model P (�x) (which we view as the input to such analyses, with all subsequent findings being
conditioned on the plausibility and realism of the input model), our broad methodology remains the same:
for various clearing targets, we estimate the probability of being able to successfully clear that target (repack
the non-participants), and perform a variety of related analyses.

2 Interference Data and Computational Framework

To begin, we formally define the repacking problem, and describe our data and experimental framework. We
run our experiments on a dataset obtained by filtering the US baseline provided by the FCC on July 22nd

2013. 4 We only consider the 1672 broadcasters currently assigned to UHF channels (14-51). We ignore
low and high VHF stations because they are unlikely to be repacked onto the UHF band. The goal of the

4Recently (June 2 2014), the FCC released an updated dataset that replaces the use of proxy channels with the specific
pairwise channel assignments for determining potential interference constraints, along with an analysis showing this should have
a minimal impact on feasibility. While our analysis does not use this updated release, we similarly expect it would have minor
impact on our analyses and conclusions. (FCC Public Notice DA 14-677)
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repacking process is to assign broadcasters to a subset of the 38 channels in the UHF band, and therefore clear
a large contiguous block of spectrum. Because each channel uses six MHz of spectrum, reaching a clearing
target of M MHz is equivalent to clearing �M/6� channels. This leaves 38 − �M/6� channels available
for repacking. 5 A solution A to the repacking problem consists of an assignment of broadcasters to the
remaining c channels. Let A(i) = k denote that the solution assigns broadcaster i to channel k. A feasible
solution must obey a number of interference constraints. The FCC has used specialized software (OET-69)
to decide, for every pair of stations, whether the pair can be assigned to the same or adjacent channels.
The results were publicly released on July 22nd 2013 in the form of binary matrices. There are three types
of interference constraints. A co-channel constraint indicates that two broadcasters i, j cannot be assigned
to the same channel in an assignment, or equivalently A(i) �= A(j). An adj-channel-up constraint indicates
that broadcaster i cannot be placed on the channel above another broadcaster j, i.e. A(i) �= A(j) + 1, and
an adj-channel-down constraint indicates that broadcaster i cannot be placed on the channel below another
broadcaster j, i.e. A(i) �= A(j)− 1.

A feasible solution must also obey a set of domain constraints, each of which enforces that a broadcaster i
cannot be assigned to a particular channel k, i.e. A(i) �= k. The majority of domain constraints are a result
of international treaties with Canada and Mexico, which forbid US stations from being assigned to channels
on which they would interfere with stations across the border. The FCC has also released a description of
these constraints in the form of a binary matrix. Because these current domain constraints may or may not
restrain the ultimate auction, we have run our experiments both including and excluding these constraints.
The reality will therefore lie somewhere between the two results. We note that all of our reported results
forbid any assignment or repacking onto the public safety broadcast channel 37, even when border and other
domain constraints have been dropped. However, when domain constraints are excluded, other non-border
domain constraints,such as those involving T Band public safety channels, are excluded as well.

Given a clearing target M and a set S of broadcasters that must be repacked, our goal is to find a feasible
channel assignment. We first encode the constraints described above as Boolean formulae. In particular, we
write formulae to ensure that:

1. Each broadcaster in S is repacked onto exactly one channel.

2. 38− �M/6� channels are not occupied by any broadcaster.

3. All interference and domain constraints are satisfied.

There are some optional parameters as well; i.e. we can specify a maximum number b of broadcasters to
clear nationwide, a maximum number b′ of broadcasters to clear from a particular DMA, and a maximum
number d of DMAs in which clearing is allowed to occur. Each of these additional constraints can also be
encoded as Boolean formulae. The complete encoding is provided in the Technical Appendix in Section 6.1.
We then give these formulae as input to PicoSAT, an open-source SAT solver initially developed in 2007 by
Armin Biere at Johannes Kepler University in Austria. If a feasible solution exists, PicoSAT will typically
find a corresponding channel assignment in 30 seconds or less. If the constraints are unsatisfiable, however,
PicoSAT may or may not quickly find proof of infeasibility. In our experiments, we assume infeasibility after
60 seconds have elapsed.

Although we have run the reported experiments on a wide range of clearing targets, and both with and
without domain constraints, in the interests of brevity we sometimes choose to report results only for an 84
MHz clearing target without domain constraints, since this target has been frequently used as an example
in other writings about the Incentive Auctions. We have no opinion on the optimal or appropriate clearing
target for the auction.

5If the clearing target is greater than 84 MHz, we in fact need to clear �M/6�+ 1 channels, because channel 37 is reserved
for public safety broadcast. Thus, there will only 37− �M/6� channels available for repacking.
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Figure 1: Minimum number of broadcasters cleared as a function of nationwide clearing target, in order to
permit a feasible repacking; both including and ignoring domain constraints.

3 Absolute Constraints on the Solution Space

3.1 Clearing Requirements at the National Level

We begin our results with perhaps the most basic of “must” analyses: if we assume that every broadcaster
is willing to relinquish their license at some unspecified price, what is the absolute minimum number of
broadcasters that must be cleared in order to meet a given nationwide target?

The answer is provided in Figure 1. To generate this figure, we encoded Boolean formulae that specified
not only the clearing target, but also a maximum number x of broadcasters allowed to be cleared in the
solution. By gradually reducing x for a given clearing target until the point that the formula is determined
to be infeasible, we identify the smallest number of clearings required. In the figure, we show plots both
incorporating and ignoring the domain constraints.

As can be seen in Figure 1, the minimum number of clearings required increases approximately linearly,
and reasonably gradually, with the nationwide target; even this fact is not self-evident from first principles.
Specific values of interest can be read directly from the plot, such as slightly less than 200 broadcaster
clearings being required for clearing an 84 MHz target ignoring border constraints. The gap between the
two curves reveals that the cost of the currently released domain constraints is approximately 50 additional
broadcaster clearings, regardless of the nationwide target. If one believes the current domain constraints to
be overly conservative, this cost would presumably be lower.

We again emphasize that in this analysis, all broadcasters are considered as candidates for clearing — in
effect, we are letting the satisfiability solver choose the particular set that is cleared in service of reaching
the given clearing target. At lower clearing targets, there are many possible solutions with many possible
sets of cleared broadcasters; at higher targets, these choices become more constrained. We shall comment
further on the diversity of the solution space in Section 3.6.
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3.2 Clearing Requirements at the DMA Level

Figure 1 identifies the most basic and nationwide constraints on clearing a given amount of spectrum. We
next report on absolute clearing constraints on a finer geographic scale, namely at the level of individual
markets or DMAs. More specifically, in order to achieve a given nationwide target efficiently (in the sense
of Figure 1), and again assuming every broadcaster is a candidate for clearing, how many broadcasters must
be cleared in each market?

A meaningful answer to this question requires that we make it a bit more precise. First, since we are interested
primarily in solutions that are efficient in the number of clearings nationwide, we encode the constraint that
this number be not too much larger (say, 5%) than the values dictated by Figure 1 6; otherwise, we permit
the trivial solution in which all broadcasters are cleared and essentially any target can be reached. The more
subtle issue is how to constrain clearings on a per-DMA basis. This could be done by adding constraints
that specify a maximum number x of broadcasters allowed to be cleared in a particular DMA, and gradually
reduce x until infeasibility occurs. Such an approach would determine the minimum number of broadcasters
that must be cleared in this DMA to achieve feasibility; we could then repeat for each DMA. The problem
with this approach is that there is no guarantee that all the individual per-DMA minima found can be
achieved simultaneously in a single feasible solution — indeed, this is certainly not the case. For instance,
clearing the minimum number of broadcasters in one DMA will frequently necessitate that extra broadcasters
are cleared in neighboring DMAs, a consequence of so-called “daisy-chain” or constraint propagation effects.
(We shall demonstrate these effects in a precise sense shortly.)

Thus at the DMA level, it is more informative to examine “typical” nationwide feasible solutions and
then measure the average number of broadcaster clearings occur in each DMA. More precisely, for a given
nationwide clearing target, and fixing the total number of broadcasters cleared at (approximately) the
minimum possible as given in Figure 1, there will in general be many feasible repacking solutions that
vary in the geographic distribution of cleared broadcasters. Because the algorithm used by PicoSAT is
randomized, we can run it multiple times in order to sample this solution space. 7

In Table 1, we show sample results for exactly such an experiment. The data underlying this table consisted
of 300 sampled feasible repacking solutions at an 84 MHz clearing target and with the total number of
broadcaster clearings constrained to be at most 206 (10 larger than the minimum possible), and ignoring
domain constraints for the moment. From these sampled solutions, we compute the average number of
broadcaster clearings within each of the 210 DMAs, as well as the standard deviations of this quantity. We
also report the minimum number of clearings observed in the sample for each DMA. Together these metrics
provide us with a geographically granular view of the space of feasible solutions.

Table 1 shows the top DMAs when sorting by the average number of broadcaster clearings. Unsurprisingly, at
the top of the list we find large and “congested” markets like New York City, Philadelphia, and Chicago. But
some less obvious challenge areas appear as well, such as large swaths of South Florida, North Carolina, and
Ohio. It is also noteworthy that in the highest ranked DMAs, the standard deviations are small compared to
the averages themselves. For instance, in New York City, the average solution required about 10 broadcasters
to be cleared, and the standard deviation is only about 1. Of the 300 sampled solutions, the minimum number
of clearings observed in this DMA was 8. This suggests that, at least statistically speaking (and with respect
to the distribution over solutions generated by PicoSAT), that there is very little flexibility in the amount of
clearing required in these largest markets, especially when considered simultaneously and in the aggregate.

6The reason for allowing a slight buffer over the absolute minimum number of clearings is discussed below.
7PicoSAT employs a greedy search heuristic in which a satisfying assignment of the input formula, if one exists, is gradually

constructed from an initial assignment. Since this process periodically involves setting variables randomly when there is a
choice for their values, by running the algorithm repeatedly on the same formula, we can sample the space of feasible solutions.
While the resulting samples are not distributed uniformly, the process does provide a good sense of the variability across
feasible solutions, which is the main goal of our analysis here. In Section 3.6 we shall quantify the size and diversity of the
solution space. We leave to future work the possibility of producing nearly uniform samples via a more complex computational
framework. (Gomes et. al., “Near-Uniform Sampling of Combinatorial Spaces Using XOR Constraints,” Neural Information
Processing Systems, 2006.)
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Rank DMA Size Avg # Cleared Std Dev Observed Min Absolute Min
1 New York, NY 23 10.177 1.229 8 1
2 Philadelphia, PA 23 8.31 1.2804 5 0
3 Chicago, IL 21 8.1 1.3276 5 1

4
San Francisco - Oakland -
San Jose, CA

23 7.8767 1.2301 2

5 Boston, MA 17 7.15 1.2051 3 0
6 Los Angeles, CA 27 6.8733 0.98005 5 2

7
Orlando - Daytona Beach -
Melbourne, FL

21 6.1967 1.2067 3 2

8 Miami - Ft. Lauderdale, FL 18 5.7633 1.4402 2 0
9 Raleigh-Durham, NC 17 5.44 0.93236 3 0
10 Milwaukee, WI 12 5.23 1.5137 1 0

11
Greensboro - High Point -
Winston Salem, NC

9 4.8333 1.0144 2 0

12
Tampa - St Petersburg -
Sarasota, FL

15 4.8 1.1154 2 0

13 Washington, DC 17 4.69 1.1798 2 0
14 Charlotte, NC 15 4.6133 1.0036 2 0
15 Dayton, OH 7 4.1967 0.80839 2 0
16 Indianapolis, IN 16 4.0033 0.96943 2 0
17 Baltimore, MD 7 3.6933 0.8092 1 0
18 Cleveland - Akron, OH 15 3.6033 1.0277 1 0
19 Atlanta, GA 15 3.5833 0.91241 1 0
20 Columbus, OH 14 3.38 0.96888 1 0

21
West Palm Beach -
Ft. Pierce, FL

11 3.2033 1.1775 1 1

22 Pittsburgh, PA 19 2.84 1.0762 0 0
23 Cincinnati, OH 9 2.6433 0.85551 0 0
24 Denver, CO 16 2.6067 1.1874 0 0

25
Greenville - Spartanburg, SC -
Asheville, NC

10 2.6033 0.87285 0 0

Table 1: Top 20 DMAs when ranked by the average number of broadcasters that must be cleared in the
DMA in order to reach a feasible solution for a nationwide 84 MHz clearing target, and ignoring domain
constraints.
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Figure 2: Average number of broadcaster clearings per DMA at 84 MHz, sorted by the same quantity. The
upper and lower red curves show one standard deviation above and below the means, respectively.

In the lower ranked markets, the standard deviation is much closer to the mean, which suggests that there
is considerably more flexibility in these markets.

Two different visualizations of the distribution of clearings required across all DMAs are provided in Figures
2 and 3. Figure 2 visualizes the sorted average number of clearings required per DMA, overlaid with the
standard deviations. Figure 3 projects the same information onto a geographic map, both with and without
domain constraints.

For comparison, we also used the alternate Boolean formulae approach discussed above to find the absolute
minimum number of broadcasters that must be cleared in each DMA in isolation, while still requiring
a near-optimal amount of clearing nationwide. Recall that these minima can certainly not be achieved
simultaneously in a single solution. Rather, for each DMA, a solution does exist in which the minimum for
that particular DMA is achieved. Interestingly, these absolute minimum single-DMA values are 0 for almost
all DMAs, including many of the largest, meaning we can essentially avoid clearing any broadcasters in any
particular DMA if we are willing to pay a higher price in neighboring markets.

3.3 Daisy-Chain Effects and DMA Correlations

Above we have argued that the absolute minimum number of clearings required in a specific DMA, or even
the minimum number observed in our sample for that DMA, may be misleading quantities for understanding
what can be plausibly achieved, and that the sample averages are more appropriate guides to expectations.
As we have intimated, this is due to what are sometimes referred to as “daisy-chain” effects, more technically
described as propagation over the network of network of interference constraints. The fundamental issue is
that if we clear less in one market, we may have to clear more in surrounding markets. Here we provide
some quantitative analysis of such effects.
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(a) Without domain constraints

(b) With domain constraints

Figure 3: A map illustrating the average number of clearings per DMA, with and without domain constraints.
Each DMA is labeled by a red circle whose area is proportional to the average number of clearings required
in the sample of 300 feasible solutions. The inner black circle area is proportional to the minimum number
of clearings observed in the sample for the DMA.

9



First DMA (Average #Clearings) Second DMA (Average #Clearings) Correlation
West Palm Beach-Ft. Pierce, FL (3.203) Miami - Ft. Lauderdale, FL (5.763) -0.678
San Francisco-Oakland-San Jose, CA (7.877) Sacramento-Stockton-Modesto, CA (2.500) -0.539
Milwaukee, WI (5.230) Chicago, IL (8.100) -0.537
Washington, DC (4.690) Baltimore, MD (3.693) -0.482
Tampa-St Petersburg-Sarasota, FL (4.800) Orlando-Daytona Beach-Melbourne, FL (6.197) -0.440
Greenville-Spartanburg, SC-Asheville, NC (2.603) Charlotte, NC (4.613) -0.298
Dayton, OH (4.197) Columbus, OH (3.380) -0.258
Greensboro-High Point-Winston Salem, NC (4.833) Charlotte, NC (4.613) -0.254
Pittsburgh, PA (2.840) Cleveland-Akron, OH (3.603) -0.248
Philadelphia, PA (8.310) New York, NY (10.177) -0.245
Raleigh-Durham, NC (5.440) Birmingham, AL (2.277) -0.239
Dayton, OH (4.197) Cincinnati, OH (2.643) -0.222
Hartford-New Haven, CT (2.087) Boston, MA (7.150) -0.198

Table 2: Top negatively correlated DMA pairs in terms of number of clearings in sampled solutions. Results
restricted to DMAs with an average of at least 2 clearings, and pairs where the correlation was -1.0 or smaller
with significance P ≤ 0.01.

Since each of our 300 sampled solutions specifies how many clearings were required in each DMA to reach the
nationwide clearing target, we can examine which pairs of DMAs have the strongest correlations — positive
or negative — in terms of number of clearings. If daisy-chain effects are present and strong, we would expect
the most negative correlations to be large in magnitude, and between geographically proximate DMAs.

This expectation is strongly borne out by Table 2, where we list the topmost negatively correlated DMA
pairs. 8 These pairs are all geographically adjacent DMAs, and also generally in highly congested regions
requiring large amounts of clearing. Thus while it is clear that in any individual DMA we may observe (or
be able to enforce) a small amount of clearing, in congested areas this only “pushes the problem elsewhere”
in a quantifiable sense.

It is worth noting that there are also weaker but still significant positively correlated DMA pairs, which are
more difficult to understand intuitively but still potentially meaningful daisy-chain effects. For instance, the
most strongly positively correlated pair is Miami - Ft. Lauderdale, FL and Charlotte, NC whose sample
correlation is 0.191 and statistically significant. While this magnitude is considerably smaller than those for
the top negatively correlated pairs, such positive correlations may capture longer-distance or “second order”
daisy-chain effects. One example would be subtle “alternation” effects — for instance, if DMA A is to the
north of DMA B, which in turn lies north of DMA C, then A and B, and B and C, will be negatively
correlated; but A and C may be positively correlated, because when there is more clearing in A, less is
required in B, but that necessitates clearing more in C.

3.4 Costs of Domain Constraints and Clearing Target at the DMA Level

We can also perform DMA-level analysis with domain constraints and higher clearing targets. To clear
84 MHz with border constraints, one must now clear about 275 broadcasters nationwide. Thus, more
broadcasters must now be cleared in each DMA. For instance, New York City now requires about 12 to be
cleared on average, compared to 10 without domain constraints. The rankings also change in expected ways;
namely, border cities such as Buffalo and San Diego now rank much higher. Both of these cities required
less than 1 clearing on average without border constraints, but require more than 4 with the constraints.
The two maps in Figure 3 illustrate the increase and redistribution of clearings required by adding domain
constraints.

8We restrict attention only to DMAs with a significant amount of clearing — namely, at least 2 broadcasters cleared on
average in the sample. Including DMAs with little or no clearing leads to many spurious correlations, especially positive ones.
All correlations reported are significant at the P ≤ 0.01 level.

10



As we increase the clearing target, the number of broadcasters that must be cleared on a per-DMA basis
grows modestly. In general, across a wide range of clearing targets, there is an approximate “5 in 15”
phenomenon — that is, it is necessary to clear more than about 5 broadcasters only in roughly the top 15
markets. To clear 96 MHz instead of 84 MHz, a full additional broadcaster needs to be cleared in just the top
markets. In markets ranking below 10, the difference drops to about half a broadcaster. The approximate
cost, regardless of clearing target, of incorporating the border constraints is about 2 broadcasters per DMA,
again limited only to the largest DMAs. In lower ranked markets, the border constraints have little effect.

Figure 4 highlights how rapidly the costs of either a greater clearing target or border constraints diminishes
with DMA rank. Figure 4(a) shows the additional number of broadcaster clearings required per DMA for
a 96 MHz clearing target compared to an 84 MHz target. Figure 4(b) shows the differences in the amount
of clearing required at 84 MHz between border constraints and no border constraints. In both cases, the
fraction of DMAs where there is more than a 1-surrender difference is very small. Thus, it seems that clearing
96 MHz is not qualitatively more difficult than 84 MHz, and that even the currently conservative border
constraints significantly impact only a small number of markets. Note that in both plots, there are a small
number of DMAs with negative values, meaning that the average number of clearings in those DMAs actually
became smaller under the more challenging condition (higher clearer target or adding border constraints).
In most cases, these are DMAs that require very little clearing to begin with, and thus this reduction is
likely simply due to sampling error.

3.5 Minimum Number of Participating Markets

We also studied the question of the minimum number of markets whose participation in the auction is
required to achieve a designated clearing target — in other words, what is the minimum number of DMAs
in which any non-zero amount of clearing is needed? Using our sampled solutions, we can compute the
average number of DMAs that require any amount of clearing, and also the minimum number of such DMAs
observed in the sample. For 84 MHz, without domain constraints, the average was 73.9 DMAs, with a
standard deviation of 3.2, and the minimum observed was 63. However, since this is just the observation
in 300 sampled solutions, it leaves open the possibility that the true minimum might be less than 63. To
determine this, we encode Boolean formulae that specify a maximum number x of DMAs in which any
broadcasters are cleared, and reduce x until infeasibility occurs. The results demonstrate that there exists
a solution in which only 43 DMAs require any clearing, and it is impossible to reduce the number further.
Table 3 gives results of this form for various clearing targets, all ignoring domain constraints. Each number
increases by about 10 broadcasters when these constraints are taken into account.

3.6 Clearing Buffers and Solution Diversity

We now elaborate on our choice in the analyses above to allow the nationwide number of clearings to be
slightly larger than the absolute minimum necessary. More precisely, in Table 1 and similar experiments,
we enforced that the total number of broadcaster clearings be below the feasibility minimum plus a small
10-broadcaster “buffer”. Thus, while the actual feasibility minimum for 84 MHz without domain constraints
is 196 clearings, we allowed up to 206 broadcasters to be cleared. This has the effect of enlarging the space of
feasible solutions, and therefore generates a more varied distribution over still near-optimal solutions. The
effect of the size of this buffer on the size of the solution space may be of independent interest, and is shown
in Table 4. As the size of the buffer increases, the number of unique solutions found in our sampled set of
300 solutions increases, suggesting a more varied and less constrained solution set. Indeed, if we let D be
the distribution over solutions generated by PicoSAT, we can perform a “missing mass” estimate of the total
weight under D of solutions that do not appear in our sample; we use the standard estimate that divides
the number of solutions that only appear once in our sample by the total number of draws. 9 As the table

9Gale, William A. “Good-Turing Smoothing Without Tears”. Journal of Quantitative Linguistics 2: 217-237, 1995.
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(a) Sorted differences between amount of clearing required per DMA for 96 MHz vs. 84 MHz
clearing target.

(b) Sorted differences between amount of clearing required per DMA with border constraints
and without, at 84 MHz clearing target.

Figure 4: Effect of a higher clearing target or border constraints on the number of broadcasters clearings
required per DMA. Both plots rank DMAs according to the quantity being plotted. The horizontal red lines
mark 1 additional broadcaster clearing.
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Clearing Target Average DMAs with Clearing Standard Deviation Minimum Possible
60 42.5900 2.9264 24
66 46.1500 2.5775 27
72 55.0200 2.8673 30
78 60.4900 3.2440 38
84 73.9800 3.2818 43
90 80.8800 3.5310 58
96 90.5800 3.2423 66
102 102.3300 2.9782 68
108 109.0000 2.9162 77
114 115.1800 3.3975 96
120 120.4565 2.8915 106

Table 3: For each clearing target, and ignoring domain constraints, the average number of DMAs in which
some clearing occurs, the standard deviation of this value, and the absolute minimum number of DMAs in
which some clearing is needed to achieve feasibility.

Buffer Unique Solns Solns Appearing Once Missing Mass Estimate
0 190 117 39.0 %
5 241 195 65.0%
10 255 214 71.3%
20 261 226 75.0%

Table 4: Effect of broadcaster “buffer” on size of solution space at 84 MHz clearing target.

shows, these estimates illustrate that sacrificing a small amount of optimality yields a much greater number
of solutions, since a buffer of only 10 clearings already increases the missing mass from 39% to 71%. 10

Just because the number of solutions increases, however, does not mean that the “diversity” of solutions
increases as well. One measure of diversity is the difference between the set of broadcasters cleared in
different solutions. In fact, by this measure, regardless of buffer size, the diversity is relatively constant. To
quantify this, for a pair of solutions, let x denote the number of broadcasters in the two assignments for
which the clearing status differs (i.e., the broadcaster was cleared in one solution but not the other). Let
y denote the maximum possible value of x, which is the sum of the number of broadcasters cleared in the
two assignments. Then define the “distance” between these two assignments to be x/y. 11 Empirically,
on average, the distance or diversity is about 0.5. In other words, about 50% of the possible broadcaster
clearing differences that could occur actually do. This is quite high, and suggests that the solution spaces
are indeed fairly diverse.

The above analysis does not indicate where this diversity occurs geographically. To measure this, we repeat
the analysis at a DMA level, and therefore determine the average solution diversity for each DMA. Intuitively,
a DMA with high diversity is one in which there is a lot of flexibility regarding which broadcasters can be
cleared to reach the target. The DMAs with the highest diversity are shown in Table 5, and form an
interesting geographic mix. Some major DMAs such as Los Angeles and Philadelphia appear, as well as
several smaller ones such as Denver, Syracuse, and Tulsa.

10Note that we expect the missing mass to be spread fairly evenly over a large number of unseen solutions, as opposed to
concentrated on small number, since in the latter case we would have seen these high-probability solutions in the sample itself.

11More formally, if S1 is the set of broadcasters cleared in one solution and S2 the set cleared in another, we define the
distance between the two solutions to be |(S1 ∪ S2)− (S1 ∩ S2)|/|S1 ∪ S2|.
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Rank DMA Diversity
1 Denver, CO 0.8380
2 Ft. Smith-Fayetteville-Springdale-Rogers, AR 0.8075
3 Dallas-Ft. Worth, TX 0.7835
4 Pittsburgh, PA 0.7525
5 Detroit, MI 0.6793
6 San Antonio, TX 0.6787
7 West Palm Beach-Ft. Pierce, FL 0.6724
8 Syracuse, NY 0.6658
9 Sacramento-Stockton-Modesto, CA 0.6658
10 Los Angeles, CA 0.6651
11 San Francisco-Oakland-San Jose, CA 0.6625
12 Cleveland-Akron, OH 0.6598
13 Philadelphia, PA 0.6486
14 Providence, RI-New Bedford, MA 0.6350
15 Miami - Ft. Lauderdale, FL 0.6294
16 Hartford-New Haven, CT 0.6289
17 Indianapolis, IN 0.6233
18 Milwaukee, WI 0.6184
19 Tulsa, OK 0.6072
20 Atlanta, GA 0.5918

Table 5: DMAs with the highest solution diversity.

Figure 5: Sorted fractions of 300 sampled feasible solutions in which each broadcaster is cleared at 84 MHz.
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3.7 Constraints at the Broadcaster Level

Finally, while so far we have reported on the absolute constraints on feasible solutions at the national and per-
DMA levels, each sampled solution of course commits to specific choices of which individual broadcasters
are cleared and repacked. While we shall refrain from providing detailed analyses and identities at the
broadcaster level, it is instructive to investigate the frequency with which each broadcaster is cleared in the
effort to reach a nationwide target in our sample of 300 solutions. Figure 5 shows the fraction of samples
in which each broadcaster is cleared, after sorting broadcasters by the same quantity. There are a few
broadcasters who are cleared almost always – one is cleared in 97% of samples, and there are 3 others
who are cleared in 96%. These are broadcasters that, at least with respect to the distribution of solutions
generated by PicoSAT, present a relatively challenging interference profile that leads to frequent clearing.
However, the dropoff is steep, with only 14 broadcasters who were cleared in more than 90% of solutions.

Note also that there are 1672 broadcasters in total, and a very large fraction are not cleared in any solution.
Thus it appears that the hard constraints on regional clearing emerge only at the DMA level and above, and
not at the resolution of individual broadcasters.

4 Incorporating Broadcaster Participation Models

All the analyses presented so far assume that every broadcaster participates in the auction and is willing to
be cleared off the air. This assumption allows us to identify the absolute and purely structural constraints on
the solution space, at the national, DMA, and broadcaster levels. However, this approach also ignores any
assumptions, hypotheses or information we have about the relative likelihood that various broadcasters will
participate in the auction. To analyze what “might” occur, rather than what “must”, we consider a different
type of analysis that incorporates models of broadcaster participation. In doing so, we do not seek to make
any judgment about who should participate. We simply seek to explore repacking feasibility given specific
and varying assumption sets for the purpose of understanding likely outcomes. Our models are expressed as
joint probability distributions over broadcaster participation decisions. We can design this distribution to
reflect various assumptions about the probabilities of, and correlations between, broadcaster participation
decisions, and therefore obtain results that more closely model reality under our assumptions. Rather than
extracting information at the DMA level, this analysis focuses on groups of broadcasters sharing similar
properties, such as network affiliate status.

4.1 Models and Methodology

We now outline the nature and purpose of each of the successive models we examine. Each of these models
specifies a parameterized class of joint probability distributions P (�x) over the vector �x of broadcaster partici-
pation decisions. Because the technical specification of the more complex models is somewhat mathematical,
we defer these details to the Technical Appendix in Section 6.3.

• Random Broadcasters Model. This is our simplest model, which has a single parameter α representing
the probability each broadcaster chooses not to participate in the auction (or exits without clearing),
and is therefore repacked; 12 thus with probability 1−α, the broadcaster is cleared. Each broadcaster
makes an independent decision of this type, hence the name of the model. In this model there will be
no correlations between the participation decisions of different broadcasters. By choosing or varying
the value of α, we can model more or less (probabilistic) participation in the overall population of
broadcasters. Obviously by making α larger, we expect to make the probability of reaching any fixed
clearing target smaller; the question is what the form and rate of this relationship takes.

12Again, in keeping with our desire to avoid pricing assumptions or other mechanism-specific details, we deliberately conflate
non-participation with participating but exiting at some point, and participation with eventual clearing at an unspecified price.
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• Random Affiliates Model. The assumption that all broadcasters make their decisions independently
is obviously a vast oversimplification, so we also consider models allowing correlations between the
decisions of related subsets of broadcasters. The random affiliates model represents a scenario in which
there are separate and independent events controlling the participation of each network affiliate group
(ABC, NBC, FOX, CBS, PBS 13), capturing the notion that (for example) internal corporate decisions
or influences at each affiliate may strongly determine the participation decisions of its constituents. In
this model, if the event for a particular affiliate group occurs, which happens with probability α, then
all members decline to participate in the auction. If the event does not occur, then all members in the
affiliate group participate. All non-affiliates still make an independent decision, again with probability
α of non-participation. Note that for any fixed value of α, the marginal (that is, isolated) probability
of any particular broadcaster not participating will be α, exactly as in the random broadcasters model.
However, now very strong correlations are present in the joint distribution — namely, knowing the
participation status of any broadcaster in an affiliate group immediately determines the same status
for all others in the group. We recognize that this model still oversimplifies the complex decision-making
broadcasters will undertake in determining whether to participate or not, but we believe this offers
a refinement of the random broadcasters models that is useful in determining the effects of affiliate
correlations.

• Correlated Affiliates Model. This model captures an even richer scenario, in which there is not only
correlation between the broadcasters within an affiliate, but also across affiliates themselves — thus
rather than no correlations at all (random broadcasters model), or only one “layer” of correlation
(random affiliates model), now we have two layers of correlation — one between affiliates, and one
between broadcasters within an affiliate. The top-level correlation captures the outcome of events that
might strongly influence the participation decisions of all the network affiliates. Again, the model is
designed so that the marginal probability of non-participation is a fixed value α across all broadcasters,
and can be varied to examine different assumptions on the background rate of participation nationwide.
Non-affiliates still remain independent of all other broadcasters with probability α of non-participation.
(See Section 6.3 for technical specifications.) This permits direct comparison to the models above at a
given marginal rate α, allowing us to isolate the effects of the correlations alone.

Although in the descriptions above we refer to probabilistic events and correlations, we can informally and
alternately view the models as capturing uncertainty (as opposed to randomness) and shared traits across
groups of broadcasters. For instance, in the random broadcasters model, we can view α as representing
an assumption about the fraction of the n broadcasters that will not participate, and the randomness as
representing agnosticism regarding exactly which subset of size roughly αn will not participate (all equally
likely). Similarly, in the random affiliates model the shared random event can be viewed as a crude proxy for
the fact that affiliates of the same network share properties or traits that make them more likely to behave
in unison.

Given any of the models above (or any other joint probability distribution P (�x)), and fixing a clearing target,
we can calculate the probability that a feasible solution can be reached. To do so, we run an experiment
consisting of multiple trials, each of which represents a potential outcome of the auction. In each trial,
we draw from the distribution P (�x) to make a random decision about which broadcasters will choose to
participate. If a broadcaster participates in the auction, then it can be cleared. If a broadcaster does not
participate, then it must be repacked. We then use PicoSAT to determine whether it is possible to repack
the set of non-participating broadcasters on the available channels, subject to the constraints. By repeating
enough such trials, we can approximate the probability of success at different clearing targets. The formal
description of the algorithm is given in the Technical Appendix in Section 6.2.

Before presenting the findings, we wish to emphasize that there is no special status to any of the models
examined — they were chosen for their balance between capturing potential real-world assumptions about

13We include PBS because these broadcasters are likely to have common influences affecting their participation decisions, not
because we believe their motives are similar to those of the other four networks listed above.
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participation rates and broadcaster decision correlations, and mathematical simplicity (e.g. having few free
parameters). Obviously all manner of hybrids of these models could be considered, as well as entirely different
models accounting for potentially relevant properties of broadcasters such as geographic location, population
density, industry events and views, and so on. Our goal here is not to present definitive findings, but to
illustrate the kinds of outcomes different models lead to.

4.2 Clearing Probabilities for the Participation Models

In Figure 6, we plot the probability of success for the first three participation models (all without border
constraints) as a function of clearing target. One immediately evident trend is that increasing the correlation
between broadcaster participation probabilities makes it more difficult to reach lower clearing targets, but
easier to reach higher clearing targets. In general, the curves for the correlated models start lower but decay
more gradually than for random broadcasters. Thus, for any fixed value α for the marginal probability of
non-participation or repacking across the three models, the random affiliates and correlated affiliates models
are more pessimistic (less likely to clear a given target) than the baseline random broadcasters model in the
60 - 78 MHz range; whereas at the higher targets in the 78 - 120 MHz range, and especially for larger α, the
correlated models are more optimistic.

We believe these asymmetric effects of correlation are largely due to the nature of the variance in the differing
models. In the random broadcasters model, since each broadcaster decision is an independent coin flip, the
fraction of broadcasters nationwide and even in broad geographic regions (such as the highly congested
Northeast Corridor) will be sharply concentrated around its expectation α — there is relatively little chance
of either “getting lucky” and clearing unexpectedly large numbers of broadcasters, or “getting unlucky”
and clearing unexpectedly small numbers of broadcasters. Relative to the correlated models, the random
broadcasters curves exhibit threshold behavior, in which clearing probabilities remain high for a time before
dropping sharply. However, clearing the higher targets requires getting lucky, and the correlated models
permit this when the correlating events or hidden variables assume values that cause much larger than
average participation from affiliate broadcasters. The flip side of this is that much smaller than average
participation is also possible. In statistical terms, even though the three models have the same average
participation rate α, the correlated models have much higher variance — achieving an average rate of α
by mixing cases of much higher and lower participation. One can even see this effect between the random
affiliates and correlated affiliates models at α = 0.7 (red curves in Figure 6(b) and (c)) — the former is more
likely to clear low targets, the latter more likely to clear high targets. Again, this is due to the correlated
affiliates model having an additional layer of correlation, thus increasing variance. We highlight the contrast
between the three models by plotting their curves for the common value α = 0.6 on a common set of axes
in Figure 6(d).

The sharp concentration or low variance of the random broadcasters model is highlighted by Figure 7, which
plots the probability of success for this model as a function of α at the fixed target of 84 MHz. A strong
threshold phenomenon can be observed, with an inflection point at around α = 0.6. At lower values of α,
success is almost guaranteed, whereas at higher values, failure is nearly certain.

Note that all results discussed so far ignore domain constraints. Figure 8 provides a comparison of the
random broadcasters model success probabilities, both with and without domain constraints. A similar
effect can be observed in all participation models. As can be seen, the probability of success is severely
reduced when domain constraints are taken into account. This reduction is largely caused by the existence
of broadcasters in the border regions that can only be repacked onto a few channels, if any, due to the current
treaties with Canada and Mexico. Thus, the non-participation of these broadcasters severely restricts the
set of feasible solutions.

Note that the “might” experiments discussed in this section present a rather more pessimistic view of
the domain constraints than the “must” experiments of the previous section. Recall that in the “must”
experiments, we assume that all broadcasters are willing to participate in the auction. As a result, we can
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(a) Random broadcasters model: each broadcaster has an
α probability of non-participation.

(b) Random affiliates model: each affiliate group has α
probability of complete non-participation and 1−α prob-
ability of complete participation.

(c) Correlated affiliates model: similar to random affili-
ates model, but participation of each group is correlated.

(d) All three models, with alpha fixed at 0.6.

Figure 6: Success probabilities for the first three participation models, as a function of clearing target, and
ignoring domain constraints. Each model represents successively greater correlation between broadcaster
participation decisions. As correlation increases, lower clearing targets are harder to reach, and higher
targets are easier to reach. This trend is evident in subfigure (d), which plots all three models for alpha =
0.6. The random broadcasters model has the highest success probability at 60 MHz and the lowest at 120
MHz, whereas the correlated affiliates model has the lowest success probability at 60 MHz and the highest at
120 MHz.
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Figure 7: Success probability for a clearing target of 84 MHz in the random broadcasters model, as a function
of α. The curve exhibits a steep threshold phenomenon, with the tipping point at about α = 0.6.

assume the broadcasters in particularly tricky border regions will be cleared off the air. However, in the
“might” experiments, we have no control over which broadcasters participate. The decisions are determined
for us by a random draw from a probability distribution. Thus, it is quite likely that some of the border
broadcasters will end up choosing not to participate, thereby making the problem infeasible.

4.3 Causes of Infeasibility

Recall that a repacking problem is feasible if, given a clearing target M and a set S non-participating
broadcasters, all broadcasters in S can be repacked onto the c = 38− �M/6� remaining channels. Consider
a set of c+ 1 broadcasters with the property that each pair i, j in the set cannot be repacked onto the same
channel. Such a set corresponds to a clique in the co-channel interference graph. If all broadcasters in this
set choose not to participate, then there is simply no way to repack them all onto c channels. Thus, given
a clearing target M (or equivalently, c available channels) and a set S of non-participating broadcasters, if
the set S contains any co-channel clique of size c + 1, we immediately know the problem is infeasible. We
call such a clique a blocking clique.

Note that a problem can be infeasible for other reasons as well. In particular, the cause might involve the
interplay of both co-channel and adjacent-channel interference constraints. However, an interesting empirical
observation is that, at least when domain constraints are ignored, the most common cause of infeasibility
is a blocking clique. For instance, for the random broadcasters, random affiliates, and correlated affiliates
participation models discussed above, the percentage of infeasible cases that are due to the existence of a
blocking clique ranges from about 75% to 85% at a 60 MHz clearing target, and increases to almost 100%
for all three models at clearing targets above 90 MHz.

This observation has algorithmic and other benefits in determining feasibility. The fact that infeasibility can
usually be traced to a blocking clique allows us to bypass the use of a SAT or ILP solver entirely, by simply
first checking whether the set of non-participating broadcasters contains a blocking clique. We can compute
a set of cliques ahead of time, so this check can be done very rapidly. A single trial with PicoSAT takes on
average 30-40 seconds, and can go on indefinitely if a timeout is not used. A single trial of the alternate
methodology is almost instantaneous. The algorithm is described formally in the Technical Appendix in
Section 6.4.

Note that there might be exponentially many cliques in a graph, so finding all of them is computationally
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(a) Without domain constraints (b) With domain constraints

Figure 8: Success probabilities for the random broadcasters model, with and without domain constraints.

intractable. Thus, we can instead use a greedy method to enumerate as many as possible. As evidence
that this heuristic has near-optimal performance, we note that the percentages of infeasibilities attributed
to cliques given above were indeed found via the greedy method.

4.4 Degree of Infeasibility

Thus far we have been treating feasibility as binary, i.e. either our clearing target can be reached nationwide,
or not. However, there are many reasons why failure can occur, and some are more severe than others. For
instance, suppose we have a clearing target of 84 MHz, which leaves 24 channels open. If the set of non-
participating broadcasters contains exactly one blocking clique of size 25, then we have infeasibility. Yet this
infeasibility is quite weak, in the sense that if we are content to clear 78 MHz in the region containing the
blocking clique, we can reach our clearing target of 84 MHz in the rest of the country. On the other hand,
if the set of non-participating broadcasters contains multiple blocking cliques across the country, then this
infeasibility is more problematic.

One benefit of using the clique-based methodology discussed in the previous section is that we always know
the cause of failure. Thus, given a clearing target and participation model, we can measure how much of
the country will typically be affected by the event of infeasibility. Let z indicate the average number of
broadcasters that appear in any blocking clique when infeasibility occurs. For instance, if infeasibility occurs
due to the existence of a single blocking clique, then z equals the size of that blocking clique. If infeasibility
occurs due to the existence of multiple blocking clique, then z equals the size of the union of these blocking
cliques. Intuitively, the larger the value of z, the greater the fraction of the country affected, and therefore
the “worse” the infeasibility.

In Figure 9, we plot the average z value for various clearing targets in the random broadcasters model. Note
that we are conditioning on the event of infeasibility; i.e. the plots only illustrate trials in which failure
occurred. In each plot, the average z value increases as a function of both clearing target and α. A value in
the 0 - 100 range suggests that the infeasibility is quite local, and only affects a small region of the country. A
value above 300 suggests that many different areas of the country are affected, though not all are significantly
impaired. Finally, a value above 500 indicates that the failure is both widespread and severe. The analogous
figure looks numerically quite similar for the random affiliates and correlated affiliates models.

Figure 10 provides a geographic illustration of the degree of infeasibility z at four increasingly large values of
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Figure 9: Average z values for various clearing targets in the random broadcasters model. The average z
value increases as a function of both clearing target and α (i.e. as the repacking problem becomes more
constrained).

α, and was generated by running the random broadcasters model at an 84 MHz clearing target with “shared
randomness”, meaning that any non-participation choices made at one value of α are carried over to the
next higher value of α. For this particular run, at α = 0.6 we have z = 52, and infeasibility is due to two
isolated blocking cliques only. As we increase α to 0.9, the value of z climbs to 450, and the infeasibility
extends to blocking cliques all over the country, including California and Florida. The basic point is that
even conditioning on infeasibility, there is a difference between small and large non-participation rates, in
the sense that the extent of infeasibility is quantifiably worse in the latter than the former. We note that
the particular blocking cliques shown are of course specific to this particular random trial, and different runs
will lead to different specific problem areas.

5 Conclusions and Future Work

Our analyses have illustrated various properties of the solution space of the repacking problem. In particular,
we have determined what “must” happen for the problem to be feasible, and what “might” happen under
different probabilistic participation models. In the former category, our results highlight the effects of clearing
target and domain constraints on the type, size, and diversity of solutions, at both a national and DMA
level. In the latter category, we examined the effects of various assumptions about broadcaster participation,
namely based on network affiliate status. Our hope is that the presentation of these results provides a
quantitative framework in which to discuss and analyze the repacking problem. Moving forward, as more
information about and new data for the auction comes to light, we plan to extend and refine our analyses
and participation models.
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(a) α = 0.6, z = 52 (b) α = 0.7, z = 106

(c) α = 0.8, z = 222 (d) α = 0.9, z = 450

Figure 10: Illustration of different z values for a single trial run of the random broadcasters model for a
clearing target of 84 MHz. As α increases, z does as well, and infeasibility affects larger portions of the
country.

22



6 Technical Appendix

6.1 CNF Encoding

Each satisfiability instance takes the following parameters as input:

• (required) MHz clearing target M , or equivalently a channel clearing target �M/6�, which is converted
to a number c = m− �M/6� of channels available to repack on

• (optional) Maximum number b of broadcasters to clear nationwide

• (optional) Maximum number b′ of broadcasters to clear from a specified DMA z

• (optional) Maximum number d of DMAs in which clearing is allowed to occur

• (optional) Set R of broadcasters that must be repacked

We express the interference and domain constraints in the form of binary matrices. We have a co-channel
interference matrix Co of size n × n, where Co(i, k) = 1 encodes the constraint A(i) �= A(k). We have an
adjacent-up-channel interference matrix AdjUp of size n× n, where AdjUp(i, k) = 1 encodes the constraint
A(i) �= A(k) + 1, and we have an adjacent-down-channel interference matrix AdjDown of size n× n, where
AdjDown(i, k) = 1 encodes the constraint A(i) �= A(k) − 1. Finally, we have a domain matrix Domain of
size n×m, where Domain(i, j) = 1 encodes the constraint A(i) �= j.

To solve the satisfiability problem, we encode the problem as a Boolean formula in conjunctive normal form
(CNF). Let B = {1, . . . , n}, C = {0, . . . , c}. Let xij for i ∈ B, j ∈ C be 1 iff broadcaster i is assigned
to channel j. Let xi0 for i ∈ B be 1 iff broadcaster i is not assigned to any channel. Let Dj ⊆ B for
j ⊆ {1, . . . , 210} denote the set of broadcasters belonging to DMA j. Let yj for j ∈ {1, . . . , 210} be 1 iff no
broadcasters are cleared from DMA j. The boolean formula is as follows:

∨

j∈C

xij ∀i ∈ B −R (1)

∨

j∈C−[0]

xij ∀i ∈ R (2)

∧

j,k∈C

¬xij ∨ ¬xik ∀i ∈ B (3)

¬xij ∨ ¬xkj ∀i, k ∈ B s.t. Co(i, k) = 1, ∀j ∈ C (4)

¬xij ∨ ¬xk(j+1) ∀i, k ∈ B s.t. AdjUp(i, k) = 1, ∀j ∈ C (5)

¬xij ∨ ¬xk(j−1) ∀i, k ∈ B s.t. AdjDown(i, k) = 1, ∀j ∈ C (6)

¬xij ∀i ∈ B, ∀j ∈ C s.t. Domain(i, j) = 1 (7)

at most true({xi0 | i ∈ B}, b) (8)

at most true({xi0 | i ∈ Dz}, b′) (9)

¬xi0 ∨ yj ∀i ∈ B, where i ∈ Dj (10)
∨

i∈Dj

xi0 ∨ ¬yj ∀j ∈ {1, . . . , 210} (11)

at most true({yj | j ∈ {1, . . . , 210}}, d) (12)

Lines 1, 2, and 3 ensure that each broadcaster is assigned to exactly 0 or 1 channels, unless the broadcaster
is a member of R, in which case it must be assigned to exactly 1 channel. Lines 4, 5, and 6 encode the
co- and adj- channel interference constraints, and line 7 encodes the domain constraints. The function
at most true(S, k) takes as input a set of variables S and a number k and returns a CNF encoding of the
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constraint that at most k variables in S can be true. The encoding we use is from the paper “Towards an
optimal CNF encoding of Boolean cardinality constraints” by Carsten Sinz. 14 Thus, line 8 encodes the
constraint that at most b broadcasters are cleared nationwide. Line 9 encodes the constraint that at most b′

broadcasters are cleared from DMA j. Lines 10, 11, and 12 encode the constraint that clearing occurs in at
most d DMAs.

6.2 PicoSAT Algorithm

Algorithm 1 provides a formal description of our approach. The algorithm takes as input a joint distribution
P (�x) and a clearing target M . Optional additional inputs are a maximum number of broadcasters to clear
nationwide, a maximum number of broadcasters to clear from a particular DMA, and a maximum number
of DMAs in which clearing is allowed to occur. The output is the probability p that a feasible solution can
be reached.

Algorithm 1 PicoSAT Algorithm

n = 1672 � Number of broadcasters
m = 38 � Number of channels
c = m− �M/6� � Number of available channels
infeasibilities = 0
for i = 1 to T do

x← P (�x) � Sample x from P (�x)
A← PicoSAT(n, c, x) � Run PicoSAT
if ¬A then � Infeasibility occurred

infeasibilities← infeasibilities + 1

p = 1− infeasibilities/T � p is probability of success

6.3 Detailed Specifications of Broadcaster Participation Models

We now provide a more formal description of the broadcaster participation models. Recall that each model
specifies a class of probability distributions over the vector of broadcaster participation decisions. The
models introduce varying degrees of correlation between these decisions. The random broadcasters model
has no such correlations, and is a simple product distribution in which each broadcaster has probability α
of choosing not to participate in the auction. In the random affiliates and correlated affiliates models, we
model correlations by introducing hidden variables that do not represent broadcaster decisions, but instead
might represent higher-level events whose outcome could influence those decisions.

In the random affiliates model, we have one hidden variable each for the networks ABC, CBS, FOX, NBC,
and PBS. Each of these variables takes the value of 1 with probability α. If a network variable has value 1,
then all member broadcasters also have value 1, which indicates non-participation. If a network variable has
value 0, then all member broadcasters also have value 0.

In the correlated affiliates model, we again have one hidden variable for each of the networks, and the effect
of this variable is the same; i.e. its value propagates down to all members. We also have an additional
top-level variable that influences all the second-level affiliate variables. If the top-level variable takes a value
of 1, which happens with 0.9 probability, then each affiliate variable has α

0.9 probability of taking value 1,
and 1− α

0.9 probability of taking value 0. If the top-level variable takes a value of 0, then each affiliate group
has probability 1 of taking value 0. In the previous model, the probability that each non-affiliate group

14Sinz, Carsten. “Towards an optimal CNF encoding of Boolean cardinality constraints.” In Proc. of the 11th Intl. Conf.
on Principles and Practice of Constraint Programming, pages 827-831. 2005.
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Pr[broadcaster = 1] = α

(a) Random broadcasters model

Pr[affiliate = 1] = α

Pr[broadcaster = 1 | affiliate = 0] = 0
Pr[broadcaster = 1 | affiliate = 1] = 1

(b) Random affiliates model

Pr[z = 1] = 0.9

Pr[affiliate = 1 | z = 0] = 0
Pr[affiliate = 1 | z = 1] = α

0.9

Pr[broadcaster = 1 | affiliate = 0] = 0
Pr[broadcaster = 1 | affiliate = 1] = 1

(c) Correlated affiliates model

Figure 11: Bayes nets representing three classes of broadcaster participation models. In each model, the
marginal probability of broadcaster non-participation is α.

chose not to participate was fixed; here, the top-level variable acts as a “switch” that either raises or lowers
this probability for each group simultaneously. Note that the probability of 0.9 is chosen for mathematical
reasons, and does not have a strong effect on the results observed in this model. All non-affiliates again
make an independent decision.

All of the models above belong to the class of graphical models (more specifically, the class of Bayesian
networks), which are probabilistic models that can be represented by a graph, i.e. a set of nodes and edges.
Each node in the graph represents a random variable, and a directed edge from node i to node j denotes that
the setting of variable i depends on the setting of variable j. For instance, in the random affiliates model,
each affiliate group and broadcaster is represented by a node. There is a directed edge pointing from each
affiliate group to each of its members. These edges reflect the fact that the participation decision of each
member is not made in isolation, but instead depends on some top-level event or influence corresponding to
its affiliation. The graphical models of the participation models we consider are illustrated in Figure 11.

The broadcaster revenue model is somewhat different, in the sense that the marginal probability of partici-
pation is no longer fixed at α. This model is defined by two parameters, β and γ. The parameter β controls
the fraction of broadcasters whose non-participation probability is above 1

2 , and the parameter γ controls
the amount by which we amplify the non-participation probability of network affiliates. Formally, the model
is created as follows. Let r denote the sorted vector of broadcaster revenues. Let k denote the index that
lies a 1 − β fraction of the way through of r. So a β fraction of r comes after k. We now subtract r(k)
from all elements of r. This has the effect of shifting the revenues so that a β fraction will be above 0. We
then divide all revenues by a scaling factor maxi |r(i)|/4, so that all values lie in the range [−4, 4]. Next, we
perform a sigmoidal transformation, and set r(i) equal to 1/(1 + exp(−r(i))). Finally, for all affiliates, we
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update r(i) = r(i) · γ.

6.4 Clique Algorithm

Algorithm 2 provides a formal description of the alternate clique-based approach for determining feasibility
that was outlined in Section 4.3.

Algorithm 2 Clique Algorithm

n = 1672 � Number of broadcasters
m = 38 � Number of channels
c = m− �M/6� � Number of available channels
S = {s ∈ S | |s| ≥ c+ 1} � Set of blocking cliques
infeasibilities = zcount = 0
for i = 1 to T do

x← P (�x) � Sample x from P (�x)
Z = ∅
for s ∈ S do

B = {i ∈ S | x(i) = 1}
if |B| ≥ c+ 1 then � B is a blocking set

Z ← Z ∪B � Take union of blocking cliques

if |Z| > 0 then � Infeasibility occurred
infeasibilities← infeasibilities + 1
z ← zcount + |Z|

p = 1− infeasibilities/T � p is probability of success
z = zcount/infeasibilities � z is average size of blocking set union
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